Part IA: Mathematics for Natural Sciences B Examples Sheet 3: Complex numbers

Please send all comments and corrections to jmm232@cam.ac.uk.

Questions marked with a (†) require you to carefully review your lecture notes to make sure you understand basic definitions and properties. Questions marked with a (*) are difficult and should not be attempted at the expense of the other questions.

Real and imaginary parts

1. Find the real and imaginary parts of the following numbers (where n is an integer):

(a)
$$i^3$$
, (b) i^{4n} , (c) $\left(\frac{1+i}{\sqrt{2}}\right)^2$, (d) $\left(\frac{1-i}{\sqrt{2}}\right)^2$, (e) $\left(\frac{1+\sqrt{3}i}{2}\right)^3$, (f) $\frac{1+i}{2-5i}$, (g) $\left(\frac{1+i}{1-i}\right)^2$.

2. If z = x + iy, find the real and imaginary parts of the following functions in terms of x and y:

(a)
$$z^2$$
, (b) iz , (c) $(1+i)z$, (d) $z^2(z-1)$

3. Define u and v to be the real and imaginary parts, respectively, of the complex function w = 1/z. Show that the contours of constant u and v are circles. Show also that the contours of u and the contours of v intersect at right angles.

Factoring polynomials and solving equations

- 4. Factorise the following expressions: (a) $z^2 + 1$; (b) $z^2 2z + 2$; (c) $z^2 + i$; (d) $z^2 + (1 i)z i$.
- 5. Consider the polynomial equation $a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0 = 0$, where the coefficients $a_n, a_{n-1}, ..., a_0$ are real. Show that the solutions to this equation come in complex conjugate pairs. Deduce that if n is odd, there is at least one real solution.

Geometry of complex numbers

- 6. (†) Using a diagram, explain the geometric meaning of the *modulus*, |z|, and *argument*, $\arg(z)$, of a complex number z. Find the moduli and (principal) arguments of: (a) $1 + \sqrt{3}i$; (b) -1 + i; (c) $-\sqrt{3} i/\sqrt{3}$.
- 7. For $z \in \mathbb{C}$, show that $|z|^2 = zz^*$. Hence prove that $|a + b|^2 + |a b|^2 = 2(|a|^2 + |b|^2)$, where $a, b \in \mathbb{C}$, and interpret this result geometrically.
- 8. (†) By writing $z = |z|(\cos(\arg(z)) + i\sin(\arg(z)), w = |w|(\cos(\arg(w)) + i\sin(\arg(w)))$, compute the modulus and argument of the product zw, and explain its geometrical significance.
- 9. Let $z_1 = 2 + i$, $z_2 = 3 + 4i$.
 - (a) Plot the numbers $z_1, z_2, z_1^*, z_2^*, z_2 z_1$ and $z_2 2z_1$ on an Argand diagram.
 - (b) Find $z_1 z_2$ by: (i) adding arguments and multiplying moduli; (ii) using the rules of complex algebra.
- 10. Show that the expression $z_1 z_2^*$ is invariant under a rotation of z_1, z_2 about the origin.

Circles and lines

11. Describe the sets of points $z \in \mathbb{C}$ satisfying:

(a) |z| = 4, (b) |z - 1| = 3, (c) |z - i| = 2, (d) |z - (1 - 2i)| = 3, (e) $|z^* - 1| = 1$, (f) $|z^* - i| = 1$.

12. Describe the set of points $z \in \mathbb{C}$ satisfying |z - 2 - i| = 6. Without further calculation, describe the sets of points $u \in \mathbb{C}, v \in \mathbb{C}$ satisfying u = z + 5 - 8i and v = iz + 2, where |z - 2 - i| = 6.

- 13. Let $a, b \in \mathbb{C}$. Show that the set of points satisfying $|z a| = \lambda |z b|$, where $\lambda \neq 1$, is a circle in the complex plane. Determine the centre and radius of the circle |z| = 2|z - 2|.
- 14. Describe the sets of points $z \in \mathbb{C}$ satisfying:

(a) |z-2| = |z+i|, (b) $|z-2| = |z^*+i|$, (c) $\arg(z) = \pi/2$, (d) $\arg(z^*) = \pi/4$.

Exponential form of a complex number

- 15. (†) State *Euler's formula* for the complex exponential $e^{i\theta}$. Hence provide a simpler derivation of the modulus-argument multiplication law proved in Question 8.
- 16. Find (a) the real and imaginary parts; (b) the modulus and argument, of:

$$\frac{e^{i\omega t}}{R + i\omega L + (i\omega C)^{-1}}$$

where ω, t, R, L, C are real, quoting your answers in terms of $X = \omega L - (\omega C)^{-1}$.

- 17. Express each of the following in Cartesian form: (a) $e^{-i\pi/2}$; (b) $e^{-i\pi}$; (c) $e^{i\pi/4}$; (d) e^{1+i} ; (e) $e^{2e^{i\pi/4}}$.
- 18. A simple harmonic oscillator has position $x(t) = 7 + 24\cos(3t) + 7\sin(3t)$ at time t.
 - (a) Show that the displacement from the centre of motion (at x = 7) is given by the real part of $(24-7i)e^{3it}$. Hence compute the amplitude of the motion, and the distances of the stationary points of motion from the origin.
 - (b) By writing the displacement from the centre of motion in the form $Ae^{i\phi}$, find the first two times at which the oscillator passes the origin after t = 0.
- 19. Explain why $e^{2\pi i n} = 1$ for all integers n. Hence find all natural logarithms of: (a) -1; (b) i; (c) 1 + i.

Roots of unity

- 20. (†) Write down the solutions to the equation $z^n = 1$ in terms of complex exponentials, and plot the solutions on an Argand diagram. [Recall that the solutions are called the *n*th roots of unity.]
- 21. Find all solutions of the following equations, and plot them on an Argand diagram: (a) $z^3 = -1$; (b) $z^4 = 1$; (c) $z^2 = i$; (d) $z^3 = -i$.
- 22. If $\omega^n = 1$, determine the possible values of $1 + \omega + \omega^2 + \cdots + \omega^{n-1}$, and interpret your result geometrically.
- 23. Show that the roots of the equation:

$$z^{2n} - 2bz^n + c = 0$$

will, for general complex values of b and c and integral values of n, lie on two circles in the Argand diagram. Give a condition on b and c such that the circles coincide. Find the largest possible value for $|z_1 - z_2|$, if z_1 and z_2 are roots of $z^6 - 2z^3 + 2 = 0$.

Trigonometry with complex numbers

- 24. (†) Prove *De Moivre's formula*, $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$. Hence express $\sin(3\theta)$ in terms of powers of $\sin(\theta)$.
- 25. (†) Starting from Euler's formula, derive formulae for the trigonometric functions $\sin(\theta)$, $\cos(\theta)$ in terms of complex exponentials. Hence express $\sin^5(\theta)$ in terms of $\sin(\theta)$, $\sin(3\theta)$ and $\sin(5\theta)$.
- 26. Evaluate the following trigonometric sums: (a) $\sum_{n=1}^{5} \sin(n\theta)$; (b) $\sum_{n=1}^{5} r^n \cos(n\theta)$.

Past paper questions

Only attempt these questions before the supervision if you have lots of spare time. Sometimes, we might do them together in the supervision; otherwise, you can use these questions as revision material in the holidays.

Paper 1, Question 11, 2022 (20 marks)

- (a) Find all possible real and imaginary parts of the following expressions: (i) $(i^i)^i$; (ii) $i^{(i^i)}$.
- (b) Describe, with the aid of a sketch, the curve in the Argand diagram whose equation is |z + 1 + i| = 8.
- (c) Describe, with the aid of sketches, the loci determined, for z on the curve in part (b), by the complex numbers:

(i) $u = \frac{3}{2}z + \frac{1}{2}z^*$; (ii) v = u + 4 + 3i;

- (iii) w = iv.
- (d) Express $\sin(5\theta)$ in terms of $\sin(\theta)$ and its powers, and find the values of θ such that $16\sin^5(\theta) = \sin(5\theta)$ for $0 \le \theta < 2\pi$.

Paper 1, Question 11, 2021 (20 marks)

(a) Find the real and imaginary parts of the following complex numbers: (i) $(1/2 + 2i)^2$; (ii) $(1/2 + 2i)^4$.

In the remainder of the question, a point z = t + i/t moves in the complex plane as the real parameter t increases continuously from t = 1/2 to t = 2.

- (b) In the following three cases, sketch the trajectories of the given points as t varies, showing the direction of their motion by arrows, and giving the coordinates of the initial and final positions, and also of points (if any) where the trajectories cross the axes:
 - (i) z and z^* ; where z^* is the complex conjugate of z;
 - (ii) $u = z^2$;
 - (iii) $v = z^4$.
- (c) For $v = z^4$, find a relation between the real and imaginary parts of v, and thus demonstrate that Re(v) is a quadratic function of Im(v).

Paper 1, Question 11, 2019 (20 marks)

- (a) Use De Moivre's theorem to express $8\cos(6\theta) + 15\sin(4\theta)\sin(2\theta)$ in terms of $\cos(\theta)$ and $\sin(\theta)$.
- (b) For $z \in \mathbb{C}$, with z = x + iy, find the real and imaginary parts of $\tan(z^*)$.
- (c) Find the locus that solves $|2z z^* 3i| = 2$, and sketch it on an Argand diagram.
- (d) By writing $z = re^{i\theta}$ (where $r, \theta \in \mathbb{R}$), find the real and imaginary parts of $f = \log(z^{1+i})$ in terms of r and θ . By limiting the argument of z to range from $-\pi$ to π , sketch on an Argand diagram the solution to $\operatorname{Re}(f) = 0$.