Part IA: Mathematics for Natural Sciences B Examples Sheet 4: Hyperbolic functions and differential calculus

Please send all comments and corrections to jmm232@cam.ac.uk.

Questions marked with a (†) require you to carefully review your lecture notes to make sure you understand basic definitions and properties. Questions marked with a (*) are difficult and should not be attempted at the expense of the other questions.

Hyperbolic functions

1. (†) Give the definitions of $\sinh(x)$ and $\cosh(x)$ in terms of exponentials. Hence show that:

(a) $\cos(x) = \cosh(ix)$, (b) $i \sin(x) = \sinh(ix)$.

Deduce Osborn's rule: 'a hyperbolic trigonometric identity can be deduced from a circular trigonometric identity by replacing each trigonometric function with its hyperbolic counterpart *except* in places where sine enters quadratically, where we must include an additional factor of -1.'

Hence, using Osborn's rule, write down the formula for tanh(x + y) in terms of tanh(x), tanh(y).

- 2. Let $b \ge a > 0$ be fixed, and let θ be a variable parameter. Find the Cartesian equations of the two parametric curves: (a) $(x, y) = (a \cos(\theta), b \sin(\theta))$; (b) $(x, y) = (a \cosh(\theta), b \sinh(\theta))$, and sketch them in the plane.
- 3. (†) Express $\cosh^{-1}(x)$, $\sinh^{-1}(x)$ and $\tanh^{-1}(x)$ as logarithms.

Basic definitions and notation for derivatives

- 4. (†) Let $y \equiv y(x)$ be a function of x. Define the *derivative* dy/dx of y as a limit.
 - (a) Using the limit definition, show that differentiation is a *linear* operation, that is, for any constants c_1, c_2 and any functions $y_1 \equiv y_1(x), y_2 \equiv y_2(x)$, we have:

$$\frac{d}{dx}(c_1y_1 + c_2y_2) = c_1\frac{dy_1}{dx} + c_2\frac{dy_2}{dx}.$$

(b) Using the limit definition, find the derivative of $y(x) = x^n$, for n = 0, 1, 2, 3, ...

5. Find the derivatives of the following functions, where a, b, c, θ are real constants and n = 0, 1, 2, 3, ...

(a)
$$x^2 + 3$$
, (b) $x^4 + 2x + 6$, (c) $ax^n + bx + c$, (d) $ax + bx^2 \sin(\theta)$.

6. Let $y \equiv y(t)$ be a function of t, determined through the differential equation:

$$t^2\frac{d^2y}{dt^2} + t\frac{dy}{dt} + y = 0.$$

Rewrite this differential equation using (a) Newton's notation for derivatives; (b) Lagrange's notation for derivatives.

7. Using the limit definition of differentiation, show that for a > 0, the derivative of $y(x) = a^x$ is proportional to a^x . [Recall that by definition, e is the value for which the proportionality constant is one.¹]

¹Proving that such a number exists and is unique is very hard, though, so we'll just assume this.

Rules of differentiation

- 8. (†) Using the limit definition of the derivative, prove the following rules of differentiation:
 - (a) THE CHAIN RULE.

$$(f(g(x)))' = g'(x)f'(g(x)).$$

(b) The product rule.

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

(c) THE QUOTIENT RULE.

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2}$$

(d) THE INVERSE FUNCTION RULE.

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

[Hint: For (c), apply the product and chain rules to the product $f(x) \cdot g(x)^{-1}$. For (d), apply the chain rule to $f^{-1}(f(x)) = x$.] (*) Explain how the inverse function rule is related to the *reciprocal rule* in Leibniz's notation for derivatives:

$$\frac{dx}{dy} = \left(\frac{dy}{dx}\right)^{-1}$$

- 9. (†) Using the inverse function rule, and the derivative of e^x , prove that the derivative of $\log(x)$ is 1/x.
- 10. Compute the derivatives of the following compound functions:

(a)
$$3^{x^2}$$
, (b) $\frac{e^x}{x^3 - 1}$, (c) $x^3 \log(x^2 - 7)$, (d) $\sqrt{x^3 - e^x \log(x)}$.

- 11. (†) By writing each of the following trigonometric and hyperbolic functions in terms of exponentials, compute their derivatives:
 - (a) $\cos(x)$, (b) $\sin(x)$, (c) $\cosh(x)$, (d) $\sinh(x)$, (e) $\tan(x)$, (f) $\tanh(x)$.
- 12. (†) Using: (i) the logarithmic formulae for the inverse hyperbolic functions you derived in Question 3; (ii) the inverse function rule, compute the derivatives of:

(a) $\cosh^{-1}(x)$, (b) $\sinh^{-1}(x)$, (c) $\tanh^{-1}(x)$.

13. Using: (a) implicit differentiation; (b) the reciprocal rule, find dy/dx given $y + e^y \sin(y) = 1/x$, and make sure that your answers agree.

Curve-sketching

14. (†) State what it means for a function to be *even* and for a function to be *odd*, and explain the geometric significance of these definitions. Hence, decide whether the following functions are even, odd, both, or neither:

(a)
$$x$$
, (b) $\sin(x)$, (c) e^x , (d) $\sin(\frac{\pi}{2} - x)$, (e) $|x| \cos(x)$, (f) \sqrt{x} , (g) 2, (h) 0, (i) $\log \left| \frac{1+x}{1-x} \right|$.

15. (†) Write down a list of things you should consider when sketching the graph of a function. Compare with your supervision partner before the supervision, and exchange ideas!

1.4

.

16. (†) Sketch the graphs of the following hyperbolic functions, explaining your reasoning in each case:

(a) $\cosh(x)$, (b) $\sinh(x)$, (c) $\tanh(x)$, (d) $\cosh^{-1}(x)$, (e) $\sinh^{-1}(x)$, (f) $\tanh^{-1}(x)$.

17. Sketch the graphs of the following functions, explaining your reasoning in each case:

(a)
$$(x-3)^3 + 2x$$
, (b) $\frac{x}{1+x^2}$, (c) xe^x , (d) $\frac{\log(x)}{1+x}$, (e) $\frac{1}{1-e^x}$, (f) $e^x \cos(x)$.

Leibniz's formula

18. (†) Using mathematical induction, prove *Leibniz's formula* for the *n*th derivative of a product:

$$\frac{d^n}{dx^n}(fg) = \sum_{k=0}^n \binom{n}{k} f^{(k)} g^{(n-k)}$$

where $f^{(k)}$ denotes the kth derivative of f. Hence compute the third derivative of $\log^2(x)$.

19. Use Leibniz's formula to prove that:

$$Z_n = \frac{d^n}{dx^n} e^{-x^2/2}$$

is a solution of the differential equation:

$$\frac{d^2 Z_n}{dx^2} + x \frac{dZ_n}{dx} + (n+1)Z_n = 0.$$

Past paper questions

Only attempt these questions before the supervision if you have lots of spare time. Sometimes, we might do them together in the supervision; otherwise, you can use these questions as revision material in the holidays.

Paper 1, Question 7, 2023 (2 marks)

Find the stationary values of the function $f(x) = \exp(x/(1+x^2))$ and the values of x at which they occur.

Paper 1, Question 8, 2023 (2 marks) Given that $x + y + e^x + e^y = c$ where c is a constant, find dy/dx in terms of x and y.

Paper 1, Question 6, 2022 (2 marks) Find the value of x at which the function $y = x^3 e^{-x}$ reaches its maximum in the range $0 \le x < \infty$ and evaluate the value of y at this point.

Paper 1, Question 7, 2022 (2 marks) Sketch $y = \sin(x)/x^2$ for positive x and label the crossing points, if any, with the horizontal axis.

Paper 1, Question 11, 2023 (20 marks)

- (a) Find the real and imaginary parts of (i) (3-2i)(4+3i), (ii) (3-2i)/(4+3i).
- (b) Find and sketch the set of points in the Argand diagram that satisfy the following equations with z = x + iy: (i) $\operatorname{Re}(z^2) = \operatorname{Im}(z^2)$, (ii) $\operatorname{Im}(z^2)/z^2 = -i$.
- (c) Solve, for real x, the equation $\cosh(x) = \sinh(x) + 2\operatorname{sech}(x)$.
- (d) Find all distinct solutions for z of the equation $\cosh(z) = i$.