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Part IA: Mathematics for Natural Sciences A
Examples Sheet 13: Exact differentials, algebra of differentials,

and applications in thermodynamics
Please send all comments and corrections to jmm232@cam.ac.uk.

Exact differentials, and exact ordinary differential equations

1. Letω = P (x, y)dx+Q(x, y)dy be a differential form.

(a) What does it mean to say thatω is exact? Define also a potential function for a given exact differential form.
(b) Show that ∂P/∂y = ∂Q/∂x is a necessary condition forω to be an exact differential form.

2. Determine whether the following differential forms are exact or not. In the cases where the differential forms are
exact, find appropriate potential functions f .

(a) ydx+ xdy, (b) ydx+ x2dy, (c) (x+ y)dx+ (x− y)dy.

3. Find all values of the constant a for which the differential form:(
y2 sin(ax) + xy2 cos(ax)

)
dx+ 2xy sin(ax)dy

is exact. Find appropriate potential functions in the cases where the differential form is exact.

4. LetP (x, y, z)dx+Q(x, y, z)dy +R(x, y, z)dz be a differential form in three dimensions. Show that:

∂P

∂y
=

∂Q

∂x
,

∂P

∂z
=

∂R

∂x
,

∂Q

∂z
=

∂R

∂y

is a necessary condition for the differential form to be exact. [It turns out that this is also a sufficient condition, under
suitable criteria which you may assume hold.] Hence, decide whether the following differential forms are exact or not,
and find appropriate potential functions in the cases where the forms are exact:

(a)xdx+ ydy + zdz, (b) ydx+ zdy + xdz, (c) 2xy3z4dx+ 3x2y2z4dy + 4x2y3z3dz.

5. Explain what is meant by an exact first-order ordinary differential equation, and describe how you can solve one. Show
that each of the following first-order differential equations is exact, and hence find their general solution:

(a)2x+ ey +(xey − cos(y))
dy

dx
= 0, (b)

dy

dx
=

5x+ 4y

8y3 − 4x
, (c) sinh(x) sin(y)+ cosh(x) cos(y)

dy

dx
= 0.

6. (a) Show that the differential formPdx+Qdy can be made exact through multiplication by the integrating factor
µ(x) if and only if:

1

Q

(
∂P

∂y
− ∂Q

∂x

)
is independent of y.

(b) Hence, find a functionµ for which the differential form:

µ[(cos(y)− tanh(x) sin(y))dx− (cos(y) + tanh(x) sin(y))dy]

is exact.
(c) Using the result of part (b), solve the differential equation:

dy

dx
=

cos(y)− tanh(x) sin(y)

cos(y) + tanh(x) sin(y)
.
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Algebra of differentials

7. Letf, g be functions of (x, y), leta, bbe constants, and letF : R → Rbe any differentiable single-variable function.
Prove the following basic properties of differentials:

(a) d(af + bg) = adf + bdg, (b) d(fg) = fdg + gdf , (c) d(F (f)) = F ′(f)df .

Hence, without computing partial derivatives, show that if f(x, y) = log(xy2), we have:

df =
dx

x
+

2 dy

y
.

Now, verify that your result is correct by computing the partial derivatives of f(x, y).

8. The periodT of a simple pendulum can be approximated by the formula:

T = 2π

√
l

g
,

where l is the length of the pendulum, and g is gravitational acceleration.

(a) By taking logarithms, show that:
dT

T
=

dl

2l
− dg

2g
.

(b) Hence, estimate the percentage change in the period of a pendulum if: (i) the length is increased by 0.1%; (ii)
gravitational acceleration increased by 0.2%.

9. The magnitude of the gravitational force between two points massesm1,m2 which are separated by a distancer > 0
in three dimensional space is given by:

F (r,m1,m2) =
Gm1m2

r2
,

where G is a positive constant. Find dF in terms of dr, dm1 and dm2. Hence compute the (approximate) fractional
change in distance if there is no change in the force, and the masses of both particles increase by 1%.

10. The energy,E(m, v), of a relativistic particle of rest massm and speed v is given by:

E =
mc2√

1− v2/c2
,

where c, the speed of light, is a constant.

(a) Find dE in terms of dm, dv.

(b) Two particles, A,B, have equal energy and move at 90% and 91% of the speed of light respectively. Particle
A has rest mass mA. What is the (approximate) difference in the rest masses of the particles, in terms of mA?
Which particle has the larger rest mass?

11. The differential of the volumeV of a geometrical figure is given by:

dV = 2πrhdr + πr2dh,

wherer andhare non-negative parameters and the volume vanishes when these parameters are zero. Find an expres-
sion for the fractional change in volume dV/V for fractional changes in the parameters dr/r and dh/h. Find dV/V
if r increases by 1% andh increases by 2%.
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Applications in thermodynamics

[This section applies everything we have learned about partial derivatives to a topic that is important in both chemistry and physics.]

12. A thermodynamic system can be modelled in terms of four fundamental variables, pressure p, volume V , tempera-
ture T , and entropy S. Only two of these variables are independent, so that any pair of them may expressed as func-
tions of the remaining two variables. The fundamental thermodynamic relation tells us that for any given system, the
differential of the internal energyU of the system is related to the differentials of the entropy and volume via:

dU = TdS − pdV.

(a) Give a physical interpretation of each of the terms in the fundamental thermodynamic relation.
(b) From the fundamental thermodynamic relation, prove Maxwell’s first relation:(

∂T

∂V

)
S

= −
(
∂p

∂S

)
V

(c) By defining an appropriate thermodynamic potential, show that−SdT − pdV is an exact differential. Deduce
Maxwell’s second relation: (

∂S

∂V

)
T

=

(
∂p

∂T

)
V

(d) Through similar considerations, derive the remaining Maxwell relations:(
∂T

∂p

)
S

=

(
∂V

∂S

)
p

,

(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

.

13. A classical monatomic ideal gas has equations of state:

pV = nRT, S = nR log

(
V T 3/2

Φ0

)
wheren is the amount of substance in moles, which we consider constant,R is the gas constant, andΦ0 is a constant
which depends on the type of gas.

(a) Using the fundamental thermodynamic relation, show that the internal energy of the gas isU = 3
2nRT .

(b) By appropriately expressing each pair of thermodynamic variables in terms of the remaining pair, verify Maxwell’s
relations for this thermodynamic system.

14. (a) Using the fundamental thermodynamic relation, and the Maxwell relations, prove that:(
∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p.

(b) In a van der Waals gas, the equation of state is:

p =
RT

V − b
− a

V 2
,

wherea, b, R are constants. Using part (a), derive a formula forU in terms ofV, T , assuming thatU → cT , for
some constant c, asT → ∞.

15. (a) Find an expression for
(

∂p

∂V

)
T

−
(

∂p

∂V

)
S

in terms of
(
∂S

∂V

)
T

and
(
∂S

∂p

)
V

.

(b) Hence, using the fundamental thermodynamic relation, show that:(
∂ log(p)

∂ log(V )

)
T

−
(

∂ log(p)

∂ log(V )

)
S

=

(
∂(pV )

∂T

)
V

[
p−1(∂U/∂V )T + 1

(∂U/∂T )V

]
.

(c) Show that for a fixed amount of a classical monatomic ideal gas, pV 5/3 is a function ofS. Hence, verify that the
relation in part (b) holds for a classical monatomic ideal gas.
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