J. M. Moore, 2025

Part I1A: Mathematics for Natural Sciences A
Examples Sheet 2: The vector product, and triple products of vectors

Please send all comments and corrections to jmm232@cam.ac.uk.

The vector product

1. Find the angle between the position vectors of the points (2, 1, 1) and (3, —1, —5), and find the direction cosines of
a vector perpendicular to both. Can both the angle and vector be computed using only the vector product?

2. Find all points rwhich satisfyr x a = bwherea = (1,1,0)andb = (1, —1,0).

3. Using properties of the vector product, prove the identity (b —a) x (c—a) =axb+b xc+cxa.

More on the equation of a line

4. (a) Explainwhythelinethroughthe pointswith positionsvectorsa, bis (r—a) x (b—a) = 0. Show using properties
of the vector product that an equivalent representation of this lineis r x (b —a) = a x b. Whatis the geometric
significance of the quantity [a x b|/|b — a| here?

(b) Expresstheliner = (1,0,1) + A(3,—1,0)intheformr x ¢ =d.

5. (a) Showthattheshortestdistance between the point p and the liner = a + Ab can be written as ‘B x (p— a)‘.

(b) Findtheshortestdistance from avertex of a unitcube toadiagonal excluding thatvertex using both the formula
in (a), and the formula from Question 13(c) of Sheet 1, and check that your answers agree.

More on the equation of a plane

6. (a) Explainwhy the plane through the points with position vectorsa, b, cis (r—a) - ((b—a) x (c—a)) = 0. Show
using properties of the vector product, and the result from Question 3, that this may equivalently be written in
the more symmetricformr- (axb+bxc+cxa)=a-(bxc).

(b) Findan equation of the form (r — a) - n = 0 for the plane passing through (1,1, 1), (1, 2,3) and (0,0, 4).

7. You need to drill a hole in a piece of metal starting at a right angle to a flat surface passing through the points A =
(1,0,0), B =(1,1,1)and C = (0, 2, 0), with the hole emerging at the point D = (2, 1,0). How long a drill must
you use and where (in the plane ABC) mustyou startdrilling?

8. Determine whether: (a) the pointsP; = (0,0,2),Py = (0,1, 3),P5 = (1,2,3), P4 = (2, 3,4) are coplanar; (b) the
pointsQ; = (—2,1,1),Q, = (—1,2,2),Q; = (—3,3,2),Q, = (—2,4, 3) are coplanar.

Shortest distances

9. Without using a formula, find the shortest distance between thelinesr; = (1,0, 1)+A(2, —1,3)andr, = (0,1, —2)+
(1, 0,2),justifying the steps you take. [Sometimes, it is better to understand a method, than to quote a formula.]

10. So far, we have developed formulae for the shortest distance from points to lines, and from points to planes. Now,
using the scalar and vector products, establish formulae for the following:

(@) theshortestdistance fromtheliner; = v; 4+ Aw; tothe linery = vy + puws, and the points on the lines where
this distance is attained; [Hint: Take care when the lines are parallel!]

(b) the shortestdistance from the liner = v + Aw to the plane (r — a) - b = 0, and the points on the line and the
plane where this distance is attained;

(c) theshortest distance from the plane (r; —a;) - by = Otothe plane (r; — a3) - bo = 0, and the points on the
planes where this distance is attained.
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The vector triple product, and vector equations

11.  (a) By expanding in terms of components, prove Lagrange’s formula for the vector triple producta x (b x ¢) =
b(a-c) — c(a- b). Think of a way of remembering this formula off by heart - it is very useful!

(b) Hence, construct an example of three vectors a, b, csuch thata x (b x ¢) # (a x b) x ¢
12. Using the vector triple product, prove the Jacobi identity,a x (b x €¢) + b x (e x a) + ¢ x (a x b) = 0.

13. Two vector operators, P; : R® — R3and R : R® — R3 aredefined by P;(r) = (r- u)uandR (r) =ax (rxa)
respectively. Interpret these operators geometrically, and hence explain why P;(r) + Rg(r) = rforall vectorsr. Also
explainwhy P? = P;and RZ = R,

14. Solve the following vector equations, and give geometric interpretations of their solutions:

(@ a x r+ Ar=c,where \ # 0,anda, c € R? are arbitrary 3-vectors;

)
(b) rx a=b,wherea € R%isan arbitrary non-zero 3-vector;
(© r=a+ (b-r)c,wherea, b, c € R3arearbitrary non-zero 3-vectors;
(d) 2r+n xr+n(n-r)? = a, wherenisaunitvector,andn-a = —1.

The scalar triple product, and non-orthonormal bases
15. Leta, b, c € R? be 3-vectors.

(@) Give the definition of the scalar triple product [a, b, ¢] of the 3-vectors a, b, ¢ € R3. Hence show that the volume
of the parallelepiped defined by the positions vectorsa, b, cis |[a, b, ¢]|. Why is the modulus necessary?

(b) Using the relation between the scalar triple product and a parallelepiped, explain why:
(i) thescalartriple product is antisymmetric on odd permutations of its entries, and symmetric on even per-
mutations of its entries;

(ii) the condition [a, b, ] # 0impliesthata, b, care not coplanar, and thus form a basis.

() Compute the volume of a parallelepiped defined by the three position vectorsa = (0, 3 5 2) b = (7, 0, %)

c= (2, %,0) and comment on whether these vectors form a basis.
16. Simplify the scalar triple products (a 4+ b) - (b +¢) x (c+a)and (a x b) - [(b x ¢) x (c x a)].

17. Let0,a, b, c form the vertices of a tetrahedron, witha - (b x ¢) > 0. Write down conditions in terms of the scalar
triple product for the vector r to lie inside the tetrahedron.

18. Leta, b, c € R3 be 3-vectors.
(@) If these vectors form an orthonormal basis, derive expressions for the coefficients «, 3,y in the formulad =
aa + (b + e Hence express (2, 3, 4) in terms of the basis {(1, 1,0), (1, —1,0), (0,0, 1) }.

(b) Ifinstead these vectors do not form an orthonormal basis, derive expressions for the coefficients «, 3,y in the
formulad = ca + b + ~c. [Hint: consider scalar triple products.] Hence express (1, 1, 1) in terms of the basis
{(L 25 1)7 (Oa Oa 1)7 (27 _la 1)}

() We define the reciprocal vectors to a, b, c to be the vectors:
b xc cxa axb

A = B = C == .
[a,b,c]’ [a,b,c]’ [a, b, c]

ShowthatA-a=B-b=C-c=1,andA-b=A-c=B-a=B-c=C-a=C-b = 0. Hence, by
comparing to part (b), explain how the reciprocal basis can be used to express a general vector d in terms of a
non-orthonormal basis {a, b, ¢}. Compute the reciprocal basis to the basis {(1,2,1), (0,0,1), (2, —1,1)}.




