J. M. Moore, 2025

Part I1A: Mathematics for Natural Sciences A
Examples Sheet 3: Vector area, polar coordinate systems, and complex numbers

Please send all comments and corrections to jmm232@cam.ac.uk.

Vector area

1. (a) Define the vectorarea A of a surface composed of k flat faces with areas A1, ..., A and unitnormals nq, ..., ng.
What are the conventions usually used when choosing the unit normal(s)?

(b) Interms of the position vectors a, b determine the vector areas of: (i) the parallelogram defined by a, b; (ii) the
triangle defined by a, b. Hence, given points O = (0,0,0), A = (1,0,0), B = (1,1,1),C = (0,2,0),
compute the vector area of the triangle O A B (with vertices taken in that order), and the vector area of the loop
OABC composed of straight-line segments (with vertices taken in that order).

2. (a) Give a very general explanation of how the idea of vector area could be extended to curved surfaces, and hence
explain why we expect the vector area of any closed surface to be 0.

(b) Compute the vector area of the square with vertices (0,0, 0), (2,0,0), (2,2,0), (0,2,0), taken in that order.
Hence, compute the vector area of the pyramid extending this square with the point (1,1, 1), excluding its
square face.

() Compute the vector area of a truncated hollow cone, bounded by a horizontal circle of radius 4 units and a hori-
zontal circle of radius 3 units at some height above the first (note the result is independent of the height!).

3. (a) LetS be the vector area of the surface S. Prove that the area of the projection of the surface S onto the plane
with unit normal mis |S - m|. [Hint: consider joining the surface to its ‘shadow’ on the plane to create a closed surface.]

(b) Compute the vector area of the projection of the square with vertices (0, 0, 0), (2, 0,0), (2,2, 0), (0,2, 0) onto
the plane with unit normalm = (0, —1,1)/v/2.

(c) By projecting areas onto the yz, xz, and xy planes, compute the vector area of the loop with vertices O =
(0,0,0),A=(1,0,0), B=(1,1,1),C = (0,2,0), taken in that order. [Your answer should match your answer
to Question 1(b)!] What is the area of the loop projected onto: (i) the plane with normal (0, —1, 1); (ii) the plane
that maximises the projected area?

Polar coordinate systems

4. Draw (convincing) diagrams defining plane, cylindrical, and spherical polar coordinates. In each case, derive the coor-
dinate transform laws from polars to Cartesians, and from Cartesians to polars. Hence, find the cylindrical polar and
spherical polar coordinates of the point (3, 4, 5).

5. (a) In2DCartesian coordinates, a circle is specified by (x — 1) 4 y* = 1. Find its equation in polar coordinates.

(b) In3D Cartesian coordinates, a sphere is specified by (z — 1)? + y? + 2% = 1. Find its equation in spherical
polar coordinates.

6. Leta > 0 bea constant. Describe the following loci:

(@) (i) ¢ = a;(iiyr = ¢, in plane polar coordinates.
(b) (i) z = a; (ii)r = a; (iii)r = aand z = ¢, in cylindrical polar coordinates.
(© (i) = a; (i) ¢ = a; (iii) 7 = a; (iv) r = 6 = a, in spherical polar coordinates.

7. Consider a point with position vector i on the unit sphere S.

(@) Explainwhy n = (sin(@) cos(¢), sin(8) sin(¢), cos(0)), where 0, ¢ are the spherical coordinates of fi.
(b) Show that the vectorarea dS of a small patch near n, subtending a small angle df in the 6 direction, and a small
angle d¢ in the ¢ direction, is given approximately by dS = fsin(0)dfd¢. Why might this be useful?
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Real and imaginary parts

8. Find thereal and imaginary parts of the following numbers (where n is an integer):
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9. If z = x + iy, find the real and imaginary parts of the following functions in terms of z and y:

(@) 22, (b)iz, © (1 +1)z, d)2%(z - 1), (€) 2* (22 — 22%).

10. Define u and v to be the real and imaginary parts, respectively, of the complex function w = 1/z. Show that the
contours of constantu and v are circles. Show also that the contours of u and the contours of v intersect at right angles.

Factoring polynomials and solving equations

11. Factorise the following expressions: (a) 22 + 1; (b) 22 — 22+ 2; (c) 22 +14; (d) 2% + (1 — 4)z — i. [Hint: you have
already computed the two square roots of i in Question 8(c).]

12. Giventhatz = 2+ i solves the equation 23 — (4 + 2i)2% + (4 + 5i)z — (1 + 3i) = 0, find the remaining solutions.

13. Consider the polynomial equation a, 2™ + an—12" "+ ... + a1z + ag = 0, where the coefficients a,,, dn_1, ..., Go
are real. Show that the solutions to this equation come in complex conjugate pairs. Deduce thatif n is odd, there is at
least one real solution.

Geometry of complex numbers

14. Using a diagram, explain the geometric meaning of the modulus, |z|, and argument, arg(z), of a complex number z.
Find the moduli and (principal) arguments of: (a) 1 + V3i; (b) =1 +4; (©) =3 — z/\/§

15. Forz € C,show that |z|> = zz*. Hence prove that |a + b|? + |a — b|*> = 2(]a|? + |b|?), where a,b € C, and
interpret this result geometrically. [Hint: you don't need to split a, b into real and imaginary parts.]

16. By writing z = |z|(cos(arg(z)) + isin(arg(z)), w = |w|(cos(arg(w)) + isin(arg(w)), compute the modulus
and argument of the product zw. Hence give the geometrical interpretation of multiplying one complex number
by another complex number. Give also a geometrical interpretation of division of one complex number by another
complex number, z/w.

17. Letz; = 2 4+ 1,29 = 3 + 4. Find z1 25 by: (a) adding arguments and multiplying moduli; (b) using the rules of
complexalgebra. Verify that your results agree.

18. By considering multiplication of the complex numbers z = 1 +iAandw = 1 + i B, derive the arctangent addition

formula: oD
+
tan(A) + tan(B) = t — .
arctan(A) + arctan(B) = arctan (1 — AB)
19. Give a geometrical interpretation (in terms of vectors) of the real and imaginary parts of the quantity Q@ = 2125.

Show also that () is invariant under a rotation of z1, z5 about the origin, and confirm that this is consistent with your
geometrical interpretation. [Hint: In Question 16, you showed that multiplying by a complex number v of unit modulus is
equivalent to a rotation about the origin.]




