Part IA: Mathematics for Natural Sciences A Examples Sheet 4: More complex numbers, and hyperbolic functions

Please send all comments and corrections to jmm232@cam.ac.uk.

Loci in the complex plane

1. (**Circles**) Describe the sets of points $z \in \mathbb{C}$ satisfying:

(a) |z|=4, (b) |z-1|=3, (c) |z-i|=2, (d) |z-(1-2i)|=3, (e) $|z^*-1|=1$, (f) $|z^*-i|=1$.

2. (**Transformations of circles**) Describe the set of points $z \in \mathbb{C}$ satisfying |z-2-i|=6. Without further calculation, describe the sets of points $u \in \mathbb{C}$, $v \in \mathbb{C}$, $w \in \mathbb{C}$ satisfying:

(a) u = z + 5 - 8i, (b) v = iz + 2, (c) $w = \frac{3}{2}z + \frac{1}{2}z^*$,

where |z - 2 - i| = 6.

- 3. (Circles of Apollonius) Let $a,b\in\mathbb{C}$. Show that the set of points satisfying $|z-a|=\lambda|z-b|$, where $\lambda\neq 1$, is a circle in the complex plane. [Hint: start by squaring the equation. You don't need to split z into real and imaginary parts.] Determine the centre and radius of the circle |z|=2|z-2|.
- 4. (**Lines and half-lines**) Describe the sets of points $z \in \mathbb{C}$ satisfying:

(a) |z-2|=|z+i|, (b) $|z-2|=|z^*+i|$, (c) $\arg(z)=\pi/2$, (d) $\arg(z^*)=\pi/4$.

- 5. (Lines and circles) Let $a \in \mathbb{R}$ and $b, c \in \mathbb{C}$. Without setting z = x + iy, describe the locus $azz^* + bz + b^*z^* + c = 0$ for different values of a, b, c. How does the locus change under the maps: (a) $z \mapsto \alpha z$ for $\alpha \in \mathbb{C}$; (b) $z \mapsto 1/z$?
- 6. (More complex figures) Sketch the sets of points $z \in \mathbb{C}$ satisfying:

(a) $\operatorname{Re}(z^2) = \operatorname{Im}(z^2)$, (b) $\frac{\operatorname{Im}(z^2)}{z^2} = -i$, (c) $|z^* + 2i| + |z| = 4$, (d) $|2z - z^* - 3i| = 2$.

Exponential form of a complex number

- 7. State Euler's formula for the complex exponential $e^{i\theta}$. Hence provide a simpler derivation of the modulus-argument multiplication law proved in Question 16 of Sheet 3.
- 8. Find (a) the real and imaginary parts; (b) the modulus and argument, of:

$$\frac{e^{i\omega t}}{R + i\omega L + (i\omega C)^{-1}},$$

where ω, t, R, L, C are real, quoting your answers in terms of $X = \omega L - (\omega C)^{-1}$.

- 9. Express each of the following in Cartesian form: (a) $e^{-i\pi/2}$: (b) $e^{-i\pi}$: (c) $e^{i\pi/4}$: (d) e^{1+i} : (e) $e^{2e^{i\pi/4}}$.
- 10. Let a,b,ω be real constants. Show that $a\cos(\omega x) + b\sin(\omega x) = \operatorname{Re}((a-bi)e^{i\omega x})$, and hence, by writing a-bi in exponential form, deduce that $a\cos(\omega x) + b\sin(\omega x) = \sqrt{a^2 + b^2}\cos(\omega x \arctan(b/a))$.

Multi-valued functions: logarithms and powers

- 11. Explain why the complex logarithm $\log: \mathbb{C}\setminus\{0\} \to \mathbb{C}$ is a multi-valued function, and give its possible values. Using the complex logarithm, find all complex numbers satisfying: (a) $e^{2z} = -1$; (b) $e^{z^*} = i + 1$.
- 12. Let the real and imaginary parts of the complex logarithm $\log(z)$ be u,v respectively. Sketch the contours of constant u,v in the complex plane, and show that they intersect at right angles.
- 13. Find the real and imaginary parts of the function $f(z) = \log(z^{1+i})$. Hence, sketch the locus $\operatorname{Re}(f(z)) = 0$.
- 14. Explain how the complex logarithm can be used to define complex powers, z^w , and hence describe the multi-valued nature of complex exponentiation. Compute all values of the multi-valued exponentials: (a) i^i ; (b) $i^{1/3}$.
- 15. Compute all possible values of $(i^i)^i$ and $i^{(i^i)}$.

Roots of unity

- 16. Write down the solutions to the equation $z^n=1$ in terms of complex exponentials, and plot the solutions on an Argand diagram. [Recall that the solutions are called the nth roots of unity.]
- 17. Find and plot the solutions to the following equations: (a) $z^3 = -1$; (b) $z^4 = 1$; (c) $z^2 = i$; (d) $z^3 = -i$.
- 18. If $\omega^n=1$, determine the possible values of $1+\omega+\omega^2+\cdots+\omega^{n-1}$, and interpret your result geometrically.
- 19. Show that the roots of the equation $z^{2n}-2bz^n+c=0$ will, for general complex values of b and c and integral values of n, lie on two circles in the Argand diagram. Give a condition on b and c such that the circles coincide. Find the largest possible value for $|z_1-z_2|$, if z_1 and z_2 are roots of $z^6-2z^3+2=0$.

Trigonometry with complex numbers

- 20. Prove De Moivre's formula, $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$. Hence, solve the equation $16\sin^5(\theta) = \sin(5\theta)$ by expressing $\sin(5\theta)$ in terms of $\sin(\theta)$ and its powers.
- 21. Starting from Euler's formula, show that the trigonometric functions can be written in terms of complex exponentials as:

$$\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}, \qquad \cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}.$$

Learn these formulae off by heart. Hence, express $\sin^5(\theta)$ in terms of $\sin(\theta)$, $\sin(3\theta)$ and $\sin(5\theta)$.

- 22. Show that if $x, y \in \mathbb{R}$, the equation $\cos(y) = x$ has the solutions $y = \pm i \log (x + i\sqrt{1 x^2}) + 2n\pi$ for integer n.
- 23. Find the real and imaginary parts of the function $tan(z^*)$.
- 24. Let $\theta \neq 2p\pi$ for $p \in \mathbb{Z}$. Show that $\sum_{n=0}^{N-1} \cos(n\theta) = \frac{\cos\left((N-1)\theta/2\right)\sin\left(N\theta/2\right)}{\sin\left(\theta/2\right)}$. What happens if $\theta = 2p\pi$?

Hyperbolic functions

- 25. (a) Give the definitions of $\cosh(x)$ and $\sinh(x)$ in terms of exponentials.
 - (b) Hence, show that $\cos(x) = \cosh(ix)$ and $i\sin(x) = \sinh(ix)$. Deduce Osborn's rule: 'a hyperbolic trigonometric identity can be deduced from a circular trigonometric identity by replacing each trigonometric function with its hyperbolic counterpart except where sine enters quadratically, where we include an extra factor of -1.'
 - (c) Using Osborn's rule, write down the formula for tanh(x + y) in terms of tanh(x), tanh(y).
- 26. Find the real and imaginary parts of the following complex numbers:

(a)
$$\log \left[\sinh \left(\frac{i\pi}{2} \right) + \cosh \left(\frac{9i\pi}{2} \right) \right]$$
, (b) $\sum_{n=1}^{121} \left[\tanh \left(\frac{in\pi}{4} \right) - \tanh \left(\frac{in\pi}{4} - \frac{i\pi}{4} \right) \right]$.

- 27. Let $b \geq a > 0$ be fixed, and let θ be a variable parameter. Find the Cartesian equations of the two parametric curves: (a) $(x,y) = (a\cos(\theta),b\sin(\theta))$; (b) $(x,y) = (a\cosh(\theta),b\sinh(\theta))$, and sketch them in the plane. [This explains why hyperbolic functions are called hyperbolic functions!]
- 28. Sketch the graphs of $\cosh(x)$, $\sinh(x)$ and $\tanh(x)$, noting any asymptotes. Hence, sketch the graphs of $\cosh^{-1}(x)$, $\sinh^{-1}(x)$ and $\tanh^{-1}(x)$.
- 29. Express $\cosh^{-1}(x)$, $\sinh^{-1}(x)$ and $\tanh^{-1}(x)$ as logarithms, justifying any sign choices you make.
- 30. Solve the equation $\cosh(x) = \sinh(x) + 2\operatorname{sech}(x)$, giving the solutions as logarithms.
- 31. Find all solutions to the equations: (a) $\cosh(z) = i$; (b) $\sinh(z) = -2$; (c) $\tanh(z) = -i$.

¹Provided the arguments of all the circular trigonometric functions are homogeneous linear polynomials in the variables of interest.