J. M. Moore, 2025

Part IA: Mathematics for Natural Sciences A
Examples Sheet 4: More complex numbers, and hyperbolic functions

Please send all comments and corrections to jmm232@cam.ac.uk.

Loci in the complex plane

1. (Circles) Describe the sets of points z € C satisfying:
@lz|l=4 M|z—1=3 ©@|z—i=2 Wz—(1-29)=3, (@z*—1=1 @O]z*—i|=1

2. (Transformations of circles) Describe the set of points z € Csatisfying|z — 2 — 4| = 6. Without further calculation,
describe the sets of pointsu € C,v € C,w € Csatisfying:

*

@u=z+5-—8q (byv =iz + 2, (c)w:%z+ 2",

1
2
where |z — 2 — i| = 6.

3. (Circles of Apollonius) Let a,b € C. Show that the set of points satisfying |z — a] = Az — b|, where A # 1,is
acircle in the complex plane. [Hint: start by squaring the equation. You don't need to split z into real and imaginary parts.]
Determine the centre and radius of the circle |z| = 2|z — 2.

4. (Lines and half-lines) Describe the sets of points z € C satisfying:

@ |z—2|=|z+1|, (b) |z—2| =1|z*+1, (0 arg(z) =7/2, (d) arg(z*) =n/4.

5. (Linesandcircles) Leta € Randb, c € C. Withoutsetting z = = + iy, describe the locus azz* + bz + b*z* +¢ =0
for different values of a, b, c. How does the locus change under the maps: (a) z — azfora € C; (b) z — 1/2?

6. (More complex figures) Sketch the sets of points z € C satisfying:

@ Re(2?) = Im(2?), (b) = —i, © 2"+ 2i| + |2| = 4, ]2z — 2* = 3i| = 2.

Exponential form of a complex number

7. State Euler’s formula for the complex exponential *?. Hence provide a simpler derivation of the modulus-argument
multiplication law proved in Question 16 of Sheet 3.

8. Find (a) the real and imaginary parts; (b) the modulus and argument, of:

ew}t

R+ iwL + (iwC)~1’

wherew, t, R, L, C are real, quoting your answers in terms of X = wL — (wC)~ 1.
9. Express each of the following in Cartesian form: () e ™/2; (b) e ~™; (c) €!™/%; (d) e*17%; (e) g2

10. Leta, b, w be real constants. Show that a cos(wx) + bsin(wx) = Re((a — bi)e™?®), and hence, by writinga — bi in
exponential form, deduce that a cos(wx) + bsin(wz) = va? + b? cos(wz — arctan(b/a)).
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Multi-valued functions: logarithms and powers

1.

12.

13.

14.

15.

Explain why the complex logarithm log : C\{0} — Cis a multi-valued function, and give its possible values. Using
the complex logarithm, find all complex numbers satisfying: (a) e2* = —1, (b)e* =i+ 1.

Let the real and imaginary parts of the complex logarithm log(z) be u, v respectively. Sketch the contours of constant
u, v in the complex plane, and show that they intersect at right angles.

Find the real and imaginary parts of the function f(z) = log(z'*%). Hence, sketch the locus Re(f(z)) = 0.

Explain how the complex logarithm can be used to define complex powers, z*, and hence describe the multi-valued
nature of complex exponentiation. Compute all values of the multi-valued exponentials: (a) i*; (b) i/3.

Compute all possible values of (%)’ and i(i").

Roots of unity

16.

17.

18.

19.

Write down the solutions to the equation z” = 1 in terms of complex exponentials, and plot the solutions on an
Argand diagram. [Recall that the solutions are called the nth roots of unity.]

Find and plot the solutions to the following equations: (@) 2% = —1; (b) 2* = 1;(c) 22 = 4; (d) 23 = —i.

If w™ = 1, determine the possible values of 1 + w + w? + - - - + w™ !, and interpret your result geometrically.

Show that the roots of the equation 22" — 2bz™ + ¢ = 0 will, for general complex values of b and ¢ and integral
values of n, lie on two circles in the Argand diagram. Give a condition on b and ¢ such that the circles coincide. Find
the largest possible value for |z; — 23], if 21 and 25 are roots of 26 — 223 +2=0.

Trigonometry with complex numbers

20.

21.

22.

23.

24.

Prove De Moivre’s formula, (cos(6) + isin(6))" = cos(nf) + isin(nf). Hence, solve the equation 16 sin® () =
sin(50) by expressing sin(56) in terms of sin(6) and its powers.

Starting from Euler’s formula, show that the trigonometric functions can be written in terms of complex exponentials

as:

il _ o—if il 4 —i0

—_—, cos() = ———
21 2

Learn these formulae off by heart. Hence, express sin® (6) in terms of sin(6), sin(36) and sin(56).

sin(f) =

Show thatifz, y € R, the equation cos(y) =  has the solutions y = +ilog (z + iv/1 — 22) + 2n forinteger n.

Find the real and imaginary parts of the function tan(z*).

N—1
Let @ # 2pw forp € Z. Show that Z cos(nd) =

n=0

cos ((N —1)8/2)sin (N0/2)
sin (6/2)

. What happensif§ = 2pn?
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Hyperbolic functions

25.

26.

27.

28.

29.

30.

31.

(a) Give the definitions of cosh(z) and sinh(z) in terms of exponentials.

(b) Hence, show that cos(z) = cosh(iz) and isin(z) = sinh(iz). Deduce Osborn’s rule: ‘a hyperbolic trigono-
metricidentity can be deduced from a circular trigonometricidentity' by replacing each trigonometric function
with its hyperbolic counterpart except where sine enters quadratically, where we include an extra factor of —1.

(0) Using Osborn’s rule, write down the formula for tanh(x + y) in terms of tanh(x), tanh(y).

Find the real and imaginary parts of the following complex numbers:

. s Qim 2l nm T AT
@) log [smh (2> + cosh (2)] (b) ; [tanh (4) — tanh (4 = 4)}

Letb > a > 0be fixed, and let 8 be a variable parameter. Find the Cartesian equations of the two parametric curves:
@ (x,y) = (acos(d),bsin(0)); (b) (x,y) = (acosh(),bsinh(0)), and sketch them in the plane. [This explains
why hyperbolic functions are called hyperbolic functions!]

Sketch the graphs of cosh(z), sinh(z) and tanh(z), noting any asymptotes. Hence, sketch the graphs of cosh ™! (z:),
sinh ™! (z) and tanh ! ().

Express cosh ™" (z), sinh ™! () and tanh ™" () as logarithms, justifying any sign choices you make.
Solve the equation cosh(z) = sinh(x) 4 2sech(z), giving the solutions as logarithms.

Find all solutions to the equations: (a) cosh(z) = 4; (b) sinh(z) = —2; (¢) tanh(z) = —i.

TProvided the arguments of all the circular trigonometric functions are homogeneous linear polynomials in the variables of interest.




