Part IA: Mathematics for Natural Sciences A Examples Sheet 5: Differential calculus, Riemann sums, and basic integrals

Please send all comments and corrections to jmm232@cam.ac.uk.

Limit definition of the derivative

- 1. Let $y \equiv y(x)$ be a function of x. Define the derivative dy/dx of y as a limit. Using the limit definition:
 - (a) show that differentiation is a linear operation;
 - (b) find the derivative of $y(x) = x^n$, for n = 0, 1, 2, 3, ...

Hence obtain the derivative of $ax + bx^2 \sin(\theta)$, where a, b, θ are real constants.

- 2. (a) Using only the limit definition, show that for a>0, the derivative of $y(x)=a^x$ is proportional to a^x .
 - (b) One definition of the number e is the value of a for which the proportionality constant in the previous part is 1. Using *only* this definition, show that the derivative of a^x is given by $\log(a)a^x$.

Rules of differentiation

- 3. State the chain rule, the product rule, the quotient rule, and the reciprocal rule, respectively. Make sure you know them off by heart!
- 4. Using the rules you derived in the previous question, compute the derivatives of:

(a)
$$\log(x)$$
, (b) 3^{x^2} , (c) $\frac{e^x}{x^3-1}$, (d) $x^3 \log(x^2-7)$, (e) $\sqrt{x^3-e^x\log(x)}$.

- 5. By writing each of the following trigonometric and hyperbolic functions in terms of exponentials, compute their derivatives: (a) $\cos(x)$; (b) $\sin(x)$; (c) $\cosh(x)$; (d) $\sinh(x)$; (e) $\tan(x)$; (f) $\tanh(x)$. Learn these derivatives off by heart.
- 6. Using: (i) the logarithmic formulae for the inverse hyperbolic functions you derived on Sheet 4; (ii) the reciprocal rule, compute the derivatives of: (a) $\cosh^{-1}(x)$; (b) $\sinh^{-1}(x)$; (c) $\tanh^{-1}(x)$. Learnt these derivatives off by heart.

7. If
$$y\equiv y(x)$$
 is a function of x , show that $\frac{d^3x}{dy^3}=-\left(\frac{dy}{dx}\right)^{-4}\frac{d^3y}{dx^3}+3\left(\frac{dy}{dx}\right)^{-5}\left(\frac{d^2y}{dx^2}\right)^2$. Verify this when $y=e^{2x}$.

8. What is *implicit differentiation*, and why is it called implicit? Using: (a) implicit differentiation; (b) the reciprocal rule, find dy/dx given $y+e^y\sin(y)=1/x$, and make sure that your answers agree.

Curve-sketching

9. State what it means for a function to be *even* and for a function to be *odd*, and explain the geometric significance of these definitions. Hence, decide whether the following functions are even, odd, both, or neither:

(a)
$$x$$
, (b) $\sin(x)$, (c) e^x , (d) $\sin(\frac{\pi}{2} - x)$, (e) $|x|\cos(x)$, (f) \sqrt{x} , (g) 2, (h) 0, (i) $\log\left|\frac{1+x}{1-x}\right|$.

- 10. Write down a list of things you should consider when sketching the graph of a function. Compare with your supervision partner before the supervision, and exchange ideas!
- 11. Sketch the graphs of the following functions, explaining your reasoning in each case:

(a)
$$(x-3)^3 + 2x$$
, (b) $\frac{x}{1+x^2}$, (c) $\frac{x^2+3}{x-1}$, (d) xe^x , (e) $\frac{\log(x)}{1+x}$, (f) $\frac{1}{1-e^x}$, (g) $e^x \cos(x)$.

1

Riemann sums and the definition of the integral

- 12. Explain what is meant by a Riemann sum for a function $f:[a,b] o \mathbb{R}$ using a partition $P=(x_0,...,x_n)$ (with $x_0 = a, x_n = b$) and tagging $T = (t_1, ..., t_n)$. By choosing appropriate partitions and taggings in each case, use sequences of Riemann sums to evaluate the definite integrals of the following functions on [0,1] from first principles:
 - (a) x.
- (b) x^2 , (c) x^3 ,
- (d) \sqrt{x} .
- (e) $\cos(x)$.

[Hint: For part (d), consider a non-uniform tagging. For part (e), consider the integral of $\operatorname{Re}(e^{ix})$ instead of $\cos(x)$.]

- 13. Using a non-uniform tagging, use a sequence of Riemann sums to evaluate the integral $\int_{-\infty}^{\infty} \frac{dx}{x^{1+\alpha}}$, where $\alpha > 0$.
- 14. Assuming standard integrals, show by considering Riemann sums that $\lim_{n\to\infty}\sum_{k=1}^n\frac{\sqrt{n^2-k^2}}{n^2}=\frac{\pi}{4}$.

Basic integrals

- 15. Write down the indefinite integrals of each of the following functions, where $a \neq 0$, $\alpha \neq -1$, and f is any (differentiable, non-zero) function:

- (a) $(ax+b)^{\alpha}$, (b) e^{ax+b} , (c) $(ax+b)^{-1}$, (d) $\sin(ax+b)$, (e) $\cos(ax+b)$,
- (f) $\sec^2(ax+b)$, (g) $\csc^2(ax+b)$, (h) $\sinh(ax+b)$, (i) $\cosh(ax+b)$, (j) $f'(x)f(x)^{\alpha}$,

(k) f'(x)/f(x).

Learn these integrals off by heart, and get your supervision partner to test you on them.

16. Using the results of the previous question, evaluate the definite integrals:

(a)
$$\int_{0}^{2} (x-1)^2 dx$$
,

(b)
$$\int_{0}^{\pi} e^{i\theta} d\theta$$

(c)
$$\int_{0}^{\pi} \cos(x) \, dx$$

$$\operatorname{(d)} \int_{-\pi/4}^{\pi/4} \sec^2(x) \, dx,$$

(a)
$$\int_{0}^{2} (x-1)^{2} dx$$
, (b) $\int_{0}^{\pi} e^{i\theta} d\theta$, (c) $\int_{0}^{\pi} \cos(x) dx$, (d) $\int_{-\pi/4}^{\pi/4} \sec^{2}(x) dx$, (e) $\int_{0}^{1} \frac{2x+4}{x^{2}+4x+1} dx$.

17. By writing $\cos(bx)$ as the real part of a complex exponential, determine the indefinite integral of $e^{ax}\cos(bx)$. Similarly, determine the indefinite integrals of $e^x(\sin(x) - \cos(x))$ and $e^x(\sin(x) + \cos(x))$.