
J. M. Moore, 2026

Part IA: Mathematics for Natural Sciences B
Examples Sheet 11: Linear ordinary differential equations

Please send all comments and corrections to jmm232@cam.ac.uk.

Questions marked with a (∗) are difficult and should not be attempted at the expense of the other questions.

Basic definitions

1. Consider the general linearnth-order ordinary differential equation:

αn(x)
dny

dxn
+ αn−1(x)

dn−1y

dxn−1
+ · · ·+ α1(x)

dy

dx
+ α0(x)y = f(x).

whereαn(x) ̸≡ 0.

(a) Give the definitions of the following terms: (i) homogeneous equation; (ii) coefficient functions; (iii) forcing.

(b) Define a complementary function for this equation. How many arbitrary constants feature in the complementary
function for this equation?

(c) Define a particular integral for this equation. Is a particular integral for this equation unique?

(d) Show that if yCF is the complementary function for this equation, and yPI is a particular integral, then the sum
y = yCF + yPI solves the equation.

(e) Suppose that we now seek a particular solution of this equation satisfying certain boundary conditions. How
many boundary conditions are needed to fully specify a particular solution?

2. By direct differentiation, verify that the following ordinary differential equations have the given complementary func-
tions:

(a) yCF = Ax+Bex is the complementary function for (x− 1)y′′ − xy′ + y = 0;

(b) yCF = A+B log(x) is the complementary function forxy′′ + y′ = cos(x)ex
2

;

(c) yCF = Ax+B sin(x) is the complementary function for (1− x cot(x))y′′ − xy′ + y = x;

(d) yCF = A+Bx+ Cex is the complementary function for y′′′ − y′′ = x.

3. By direct differentiation, verify that the following ordinary differential equations have the given particular integrals:

(a) yPI = cos(x) is a particular integral for−y′′ + y = 2 cos(x);

(b) yPI = x2 is a particular integral forxy′′ + y′ = 4x;

(c) yPI = ex
2

is a particular integral for y′′′ − 2xy′′ − 2y′ − y = (4x− 1)ex
2

;

(d) yPI = sin(x)/x is a particular integral forxy(4) + 4y(3) + xy(2) + 2y(1) + xy = sin(x).

4. Verify that the equation:
(3 + x)y′′ + (2 + x)y′ − y = x2 + 6x+ 6

has complementary function yCF(x) = Ae−x +B(x+ 2). Hence, by finding a particular integral of the form

yPI(x) = αx2 + βx+ γ,

determine the full solution to the equation subject to the boundary conditions y(0) = 0 and y′(0) = 1.
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Constant coefficient equations

5. Consider the linear second-order ordinary differential equation with constant coefficients:

α
d2y

dx2
+ β

dy

dx
+ γy = f(x),

whereα, β, γ are constants, withα ̸= 0.

(a) Show that the equation may be rewritten in the ‘factorised’ form:

α

(
d

dx
− ω1

)(
d

dx
− ω2

)
y = f(x),

whereω1, ω2 are the roots of the auxiliary equationαµ2 + βµ+ γ = 0.
(b) Deduce that the complementary function of this equation is:

yCF(x) =

Aeω1x +Beω2x, ifω1 ̸= ω2,

(A+Bx)eωx, ifω1 = ω2 = ω.

How does this result generalise to annth order differential equation of this form?
(c) (∗) Deduce also that we may construct an analytic particular integral, given by:

yPI(x) =
1

α
eω2x

x∫
x0

e(ω1−ω2)η

η∫
η0

e−ω1ξf(ξ)dξ

 dη,

where x0, η0 are arbitrary constants. By setting η0 = x0 and changing the order of integration in the double
integral, deduce the simpler form:

yPI(x) =



1

α(ω1 − ω2)

x∫
x0

(
eω1(x−ξ) − eω2(x−ξ)

)
f(ξ) dξ, ifω1 ̸= ω2,

1

α

x∫
x0

(x− ξ)eω(x−ξ)f(ξ) dξ, ifω1 = ω2 = ω.

[In practice, it is often just easier to guess a particular integral rather than use this formula, though!]

6. Determine the solutions of the following differential equations:

(a) y′′ + 6y′ + 5y = 0; (b) y′′ + 3y′ + 4y = 0;

(c) y′′ + 4y = x; (d) y′′ − 2y′ + 2y = 2x2;

(e) y′′ + y = |x|; (f) y′′ + 3y′ + 2y = e−x;

(g) y′′ − 2y′ + 5y = ex cos(2x); (h) y′′ + 2y′ + y = 2xe−x.

7. Determine the solutions of the following differential equations subject to the given constraints:

(a) y′′ − 4y′ + 13y = 0, subject to y(0) = π and y(−π/2) = 1;

(b) y′′ − 4y′ + 5y = 125x2, subject to y(0) = 1 and y
(
π
2

)
= 25π2

4 + 20π + 22;

(c) y′′ + 7y′ + 12y = 6, subject to y(0) = 0 and y
(
1
3

)
= 1−e−1

2 ;
(d) y′′ + 7y′ + 12y = 2e−3x, subject to y(0) = 1 and y′(0) = 0.
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8. Find the value of a for which the complementary function of the ODE:

d2y

dx2
+ 4

dy

dx
+ ay = 0,

is given by yCF = Axe−2x +Be−2x.

9. Find the general solution of the differential equation:

d2y

dx2
+ y = cos(kx),

where k is a real number.

10. The differential operatorL is defined by:

L =
d2

dx2
+
√
3
d

dx
+ 3.

Solve the equationLy = 0, and hence solve the equations:

(a) Ly = e−
√
3x;

(b) Ly = x.

Without further calculation, state the general solution of Ly = 2x+ e−
√
3x. Find also the solution of this equation

satisfying the boundary conditions:

y(0) = 0, y(π) =
e−

√
3π

3
− 2

3
√
3
.

Harmonic oscillators

11. Consider the constant coefficient linear second-order ordinary differential equation:

d2y

dt2
+ 2γ

dy

dt
+ ω2

0y = f(t),

modelling an oscillating system which depends on time t. The coefficients γ, ω0 are positive.

(a) What is the physical interpretation of the constant γ? What is the physical interpretation of the function f(t)?

(b) Find the complementary function of this equation. Discuss the different forms the complementary function can
take (in particular, defining the terms underdamping, critical damping, and overdamping), and how this relates to
the transient behaviour of the oscillator.

(c) In the underdamped case, find the long-term behaviour of the oscillator in the case of resonant forcing:

f(t) = e−γt sin

(
t
√
ω2
0 − γ2

)
.
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Coupled systems of differential equations

[This section is labelled ‘non-examinable’ in the lecture notes, but has appeared on Tripos papers - see e.g. 2023 Paper 2 or 2021 Paper 2.]

12. (a) Consider the system of differential equations:

dx

dt
= ax+ by + p,

dy

dt
= cx+ dy + q,

for the variablesx(t), y(t), where a, b, c, d, p, q are constants. Show that:

d2x

dt2
= (a+ d)

dx

dt
+ (bc− ad)x+ bq − pd.

(b) Hence:
(i) Find the general solution of the system:

dx

dt
= 4y + 2,

dy

dt
= x.

(ii) Solve the system:
dx

dt
= 3x− y,

dy

dt
= x+ y,

subject to the initial conditionsx(0) = 0 and y(0) = 1.
(iii) Solve the system:

dx

dt
= −3x+ y,

dy

dt
= −5x+ y,

subject to the initial conditionsx(0) = 1, y(0) = 1.

(∗) Equidimensional equations

[This section is not lectured, but is very useful if you choose to do Part IB Mathematics in second-year.]

13. Consider a linear second-order ordinary differential equation with non-constant coefficients:

αx2 d
2y

dx2
+ βx

dy

dx
+ γy = f(x),

where α, β, γ are constants, with α ̸= 0. This type of equation is called an equidimensional equation. If you are doing
Part IA Physics, suggest a reason for this name.

(a) Show that the equation may be written in the form:

α

(
x
d

dx
− ω1

)(
x
d

dx
− ω2

)
= f(x),

whereω1, ω2 are the roots of the auxiliary equationαµ(µ− 1) + βµ+ γ = 0.
(b) Deduce that the complementary function of this equation is:

yCF(x) =

Axω1 +Bxω2 , ifω1 ̸= ω2,

(A+B log(x))xω, ifω1 = ω2 = ω.

How does this result generalise to annth order differential equation of this form?

14. Using the results of Question 13, determine the solutions of the following differential equations:

(a) x2y′′ − 2xy′ + y = 0, subject to the initial data y(1) = 1, y′(1) = 0;
(b) x2y′′ − xy′ + y = x2, subject to the initial data y(1) = 2, y′(1) = 3;
(c) x2y′′ − xy′ + y = x log(x), subject to the initial data y(1) = 0, y′(1) = 1.
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