
J. M. Moore, 2025

Part IA: Mathematics for Natural Sciences B
Examples Sheet 12: Partial differentiation, differentials,

and the single-variable chain rule with multivariable functions
Please send all comments and corrections to jmm232@cam.ac.uk.

Questions marked with a (∗) are difficult and should not be attempted at the expense of the other questions.

Partial differentiation: definitions and basic examples

1. Let f ≡ f(x, y) be a function ofx and y.

(a) Define the partial derivatives ∂f/∂x and ∂f/∂y in terms of limits. Define also the gradient∇f(x, y).
(b) Determine the gradient of the following functions:

(i) f = x3 − 2x2y + 3xy3 − 4y3, (ii) f = exp(−x2y2), (iii) f = exp(−x/y), (iv) f = sin(x+ y).

(c) For each of the functions in part (b), compute the four possible second partial derivatives. Verify that in each
case we have symmetry of the mixed partial derivatives.

2. Show that the function:
w(x, y) =

1

360

(
15x4y2 − x6 + 15x2y4 − y6

)
is a solution of the equation:

∂2w

∂x2
+
∂2w

∂y2
= x2y2.

3. Show that the function:

ϕ(x, t) =
1√

4πσ2t
exp

(
− (x− x0)

2

4σ2t

)
,

where t > 0,x0, σ are real positive constants, andσ2 ̸= 0, is a solution of the equation:

∂ϕ

∂t
= σ2 ∂

2ϕ

∂x2
.

4. (∗) Show that the mixed partial derivatives of the function:

f(x, y) =


xy(x2 − y2)

x2 + y2
, for (x, y) ̸= (0, 0),

0, for (x, y) = (0, 0),

are not symmetric at the point (0, 0). Why is this allowed to occur here?

Integration and basic partial differential equations

5. Let f ≡ f(x, y) be a function ofx and y. Find the general solution of the following partial differential equations:

(a)
∂f

∂x
= xy2 + cos(x), (b)

∂f

∂y
= y2 − xey , (c)

∂2f

∂x2
+ y2f = x, (d)

∂2f

∂x∂y
= 0.

6. Let f ≡ f(x, y) be a function of x and y. Find the solution of the following partial differential equations, subject to
the given boundary conditions:

(a)
∂f

∂x
= xy2, where f(0, y) = y3, (b) y3

∂f

∂y
= x, where lim

y→∞
f(x, y) = ex.
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Differentials

7. In lectures, differentials are introduced as ‘infinitesimal quantities’; however, there is no need for this, and the concept
can easily be made mathematically precise. In real multivariable calculus, we can view the differential as alternative
notation for the gradient, df ≡ ∇f .1

(a) Using this definition, show that d(x2 + y2) = 2xdx+ 2ydy and d(x2y) = 2xydx+ x2dy.

(b) Generalising your argument, show that for any smooth function f(x, y), we have:

df =
∂f

∂x
dx+

∂f

∂y
dy,

as stated in lectures.

8. By computing the partial derivatives, determine the differentials of each of the following functions in terms of the
differentials ofx and y:

(a) exp(−1/(x+ y)), (b) sinh(x)/ sinh(y), (c)
√
x2 + y2, (d) arctan(y/x), (e)xy .

9. Letf, g be functions of (x, y), leta, bbe constants, and letF : R → Rbe any differentiable single-variable function.
Prove the following basic properties of differentials:

(a) d(af + bg) = adf + bdg, (b) d(fg) = fdg + gdf , (c) d(F (f)) = F ′(f)df .

Hence, without computing partial derivatives, show that if f(x, y) = log(xy2), we have:

df =
dx

x
+

2 dy

y
.

Now, verify that your result is correct by computing the partial derivatives of f(x, y).

10. The periodT of a simple pendulum can be approximated by the formula:

T = 2π

√
l

g
,

where l is the length of the pendulum, and g is gravitational acceleration.

(a) By taking logarithms, show that:
dT

T
=
dl

2l
− dg

2g
.

(b) Hence, estimate the percentage change in the period of a pendulum if: (i) the length is increased by 0.1%; (ii)
gravitational acceleration increased by 0.2%.

11. The magnitude of the gravitational force between two points massesm1,m2 which are separated by a distancer > 0
in three dimensional space is given by:

F (r,m1,m2) =
Gm1m2

r2
,

whereG is a positive constant. Find dF in terms of dr, dm1 and dm2. Hence compute the (approximate) fractional
change in distance if there is no change in the force, and the masses of both particles increase by 1%.

1It might seem a bit silly to have two notations for the same thing, the differential and the gradient. However, the concepts become different when you
start doing calculus on curved spaces instead of the ‘flat’ spaceR2. You will see this in the Relativity course in Part II Physics, should you take it.
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12. The energy,E(m, v), of a relativistic particle of rest massm and speed v is given by:

E =
mc2√

1− v2/c2
,

where c, the speed of light, is a constant.

(a) Find dE in terms of dm, dv.

(b) Two particles, A,B, have equal energy and move at 90% and 91% of the speed of light respectively. Particle
A has rest massmA. What is the (approximate) difference in the rest masses of the particles, in terms ofmA?
Which particle has the larger rest mass?

13. The differential of the volumeV of a geometrical figure is given by:

dV = 2πrhdr + πr2dh,

wherer andhare non-negative parameters and the volume vanishes when these parameters are zero. Find an expres-
sion for the fractional change in volume dV/V for fractional changes in the parameters dr/r and dh/h. Find dV/V
if r increases by 1% andh increases by 2%.

Multivariable Taylor series, and error propagation

14. Find, up to and including terms of quadratic order, the Taylor series of the functions:

(a) f(x, y) = sin(x+ 2y) about the point (x, y) = (π/2, 0);

(b) f(x, y) = ex cos(y) about the point (x, y) = (0, 0).

15. Let f(X,Y ) be a function of the independent random variablesX and Y , and let E[X] = µX , E[Y ] = µY . Using
properties of variance, and multivariable Taylor series, show that:

Var(f(X,Y )) ≈
(
∂f

∂X

)2

Var(X) +

(
∂f

∂Y

)2

Var(Y ),

where the partial derivatives are evaluated at the mean (X,Y ) = (µX , µY ). Deduce the standard formula for error
propagation (‘adding errors in quadrature’):

∆f(X,Y ) =

√(
∂f

∂X

)2

(∆X)2 +

(
∂f

∂Y

)2

(∆Y )2.

(∗) If you are taking Part IA Physics, check that this agrees with the results stated therein when f(X,Y ) = X + Y
and f(X,Y ) = X/Y .

16. (∗) If you are taking Part IA Physics, use the formula for propagation of error to determine the error in gravitational
acceleration as determined from the period of a simple pendulum when the relative error in the string length is0.1%
and the relative error in the period is 0.2%.
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The single-variable chain rule, with multivariable functions

17. Let z(x, y) be a function defined implicitly by the equation:

x− αz = ϕ(y − βz),

whereα, β are real constants, andϕ is an arbitrary differentiable function. Show thatz satisfies the partial differential
equation:

α
∂z

∂x
+ β

∂z

∂y
= 1.

[Hint: you can still use the normal single-variable chain rule here when taking each of the partial derivatives! Why?]

18. Consider the functionu(x, y) = xϕ(y/x), whereϕ is a differentiable function of its argument andx ̸= 0. Show that
u satisfies:

x
∂u

∂x
+ y

∂u

∂y
= u.

19. Ifu(x, y) = ϕ(xy) +
√
xyψ(y/x), whereϕ andψ are twice-differentiable functions of their arguments, show that

u satisfies the partial differential equation:

x2
∂2u

∂x2
− y2

∂2u

∂y2
= 0.

20. Consider the partial differential equation:

2y
∂u

∂x
− x

∂u

∂y
= xy(2y2 − x2).

(a) Show that u(x, y) = ϕ(x2 + 2y2) is a solution of the homogeneous version of this equation, where ϕ is an
arbitrary differentiable function.

(b) By consideringup(x, y) = Axmyn for some constantsA,m, n, find a particular integral for this equation.

(c) Hence, find the complete solution of the equation subject to the boundary conditionu(x, 1) = x2.

21. Consider the partial differential equation:
∂u

∂t
= λ

∂2u

∂x2
,

whereλ > 0.

(a) Show that u(x, t) = (t + a)−1/2v(y), where y = (t + a)−1/2(x + b), solves the equation (for appropriate
constants a, b, which you should determine) if and only if v satisfies the ordinary differential equation:

−1

2

(
v + y

dv

dy

)
= λ

d2v

dy2
. (∗)

(b) Verify that (∗) has a solution of the form v(y) = e−cy2

for appropriately chosen c.

(c) Using parts (a) and (b), find the solution of the original partial differential equation subject to the boundary
condition:

u(x, 0) = exp
(
−(x+ 1)2

)
+ exp

(
−(x− 1)2

)
.
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