Part IA: Mathematics for Natural Sciences B Examples Sheet 12: Partial differentiation, differentials, and the single-variable chain rule with multivariable functions

Please send all comments and corrections to jmm232@cam.ac.uk.

Questions marked with a (*) are difficult and should not be attempted at the expense of the other questions.

Partial differentiation: definitions and basic examples

- 1. Let $f \equiv f(x, y)$ be a function of x and y.
 - (a) Define the partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ in terms of limits. Define also the gradient $\nabla f(x,y)$.
 - (b) Determine the gradient of the following functions:

(i)
$$f = x^3 - 2x^2y + 3xy^3 - 4y^3$$
, (ii) $f = \exp(-x^2y^2)$, (iii) $f = \exp(-x/y)$, (iv) $f = \sin(x+y)$.

- (c) For each of the functions in part (b), compute the four possible second partial derivatives. Verify that in each case we have symmetry of the mixed partial derivatives.
- 2. Show that the function:

$$w(x,y) = \frac{1}{360} \left(15x^4y^2 - x^6 + 15x^2y^4 - y^6 \right)$$

is a solution of the equation:

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = x^2 y^2.$$

3. Show that the function:

$$\phi(x,t) = \frac{1}{\sqrt{4\pi\sigma^2 t}} \exp\left(-\frac{(x-x_0)^2}{4\sigma^2 t}\right),\,$$

where t>0, x_0,σ are real positive constants, and $\sigma^2\neq 0$, is a solution of the equation:

$$\frac{\partial \phi}{\partial t} = \sigma^2 \frac{\partial^2 \phi}{\partial x^2}.$$

4. (*) Show that the mixed partial derivatives of the function:

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & \text{for } (x,y) \neq (0,0), \\ 0, & \text{for } (x,y) = (0,0), \end{cases}$$

are not symmetric at the point (0,0). Why is this allowed to occur here?

Integration and basic partial differential equations

5. Let $f \equiv f(x,y)$ be a function of x and y. Find the general solution of the following partial differential equations:

(a)
$$\frac{\partial f}{\partial x} = xy^2 + \cos(x)$$
, (b) $\frac{\partial f}{\partial y} = y^2 - xe^y$, (c) $\frac{\partial^2 f}{\partial x^2} + y^2 f = x$, (d) $\frac{\partial^2 f}{\partial x \partial y} = 0$.

6. Let $f \equiv f(x,y)$ be a function of x and y. Find the solution of the following partial differential equations, subject to the given boundary conditions:

$$\text{(a) } \frac{\partial f}{\partial x}=xy^2 \text{, where } f(0,y)=y^3, \\ \text{(b) } y^3 \frac{\partial f}{\partial y}=x \text{, where } \lim_{y\to\infty}f(x,y)=e^x.$$

1

Differentials

- 7. In lectures, differentials are introduced as 'infinitesimal quantities'; however, there is no need for this, and the concept can easily be made mathematically precise. In real multivariable calculus, we can view the differential as alternative notation for the gradient, $df \equiv \nabla f$.¹
 - (a) Using this definition, show that $d(x^2 + y^2) = 2xdx + 2ydy$ and $d(x^2y) = 2xydx + x^2dy$.
 - (b) Generalising your argument, show that for any smooth function f(x, y), we have:

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy,$$

as stated in lectures.

8. By computing the partial derivatives, determine the differentials of each of the following functions in terms of the differentials of x and y:

(a)
$$\exp(-1/(x+y))$$
, (b) $\sinh(x)/\sinh(y)$, (c) $\sqrt{x^2+y^2}$, (d) $\arctan(y/x)$, (e) x^y .

9. Let f,g be functions of (x,y), let a,b be constants, and let $F:\mathbb{R}\to\mathbb{R}$ be any differentiable single-variable function. Prove the following basic properties of differentials:

(a)
$$d(af + bg) = adf + bdg$$
, (b) $d(fg) = fdg + gdf$, (c) $d(F(f)) = F'(f)df$.

Hence, without computing partial derivatives, show that if $f(x,y) = \log(xy^2)$, we have:

$$df = \frac{dx}{x} + \frac{2\,dy}{y}.$$

Now, verify that your result is correct by computing the partial derivatives of f(x, y).

10. The period T of a simple pendulum can be approximated by the formula:

$$T = 2\pi \sqrt{\frac{l}{g}},$$

where l is the length of the pendulum, and q is gravitational acceleration.

(a) By taking logarithms, show that:

$$\frac{dT}{T} = \frac{dl}{2l} - \frac{dg}{2g}.$$

- (b) Hence, estimate the percentage change in the period of a pendulum if: (i) the length is increased by 0.1%; (ii) gravitational acceleration increased by 0.2%.
- 11. The magnitude of the gravitational force between two points masses m_1, m_2 which are separated by a distance r > 0 in three dimensional space is given by:

$$F(r, m_1, m_2) = \frac{Gm_1m_2}{r^2},$$

where G is a positive constant. Find dF in terms of dr, dm_1 and dm_2 . Hence compute the (approximate) fractional change in distance if there is no change in the force, and the masses of both particles increase by 1%.

¹It might seem a bit silly to have two notations for the same thing, the differential and the gradient. However, the concepts become different when you start doing calculus on *curved* spaces instead of the 'flat' space \mathbb{R}^2 . You will see this in the Relativity course in Part II Physics, should you take it.

12. The energy, E(m, v), of a relativistic particle of rest mass m and speed v is given by:

$$E = \frac{mc^2}{\sqrt{1 - v^2/c^2}},$$

where c, the speed of light, is a constant.

- (a) Find dE in terms of dm, dv.
- (b) Two particles, A, B, have equal energy and move at 90% and 91% of the speed of light respectively. Particle A has rest mass m_A . What is the (approximate) difference in the rest masses of the particles, in terms of m_A ? Which particle has the larger rest mass?
- 13. The differential of the volume V of a geometrical figure is given by:

$$dV = 2\pi r h dr + \pi r^2 dh,$$

where r and h are non-negative parameters and the volume vanishes when these parameters are zero. Find an expression for the fractional change in volume dV/V for fractional changes in the parameters dr/r and dh/h. Find dV/V if r increases by 1% and h increases by 2%.

Multivariable Taylor series, and error propagation

- 14. Find, up to and including terms of quadratic order, the Taylor series of the functions:
 - (a) $f(x,y) = \sin(x+2y)$ about the point $(x,y) = (\pi/2, 0)$;
 - (b) $f(x,y) = e^x \cos(y)$ about the point (x,y) = (0,0).
- 15. Let f(X,Y) be a function of the independent random variables X and Y, and let $\mathbb{E}[X] = \mu_X$, $\mathbb{E}[Y] = \mu_Y$. Using properties of variance, and multivariable Taylor series, show that:

$$\operatorname{Var}(f(X,Y)) \approx \left(\frac{\partial f}{\partial X}\right)^2 \operatorname{Var}(X) + \left(\frac{\partial f}{\partial Y}\right)^2 \operatorname{Var}(Y),$$

where the partial derivatives are evaluated at the mean $(X,Y)=(\mu_X,\mu_Y)$. Deduce the standard formula for error propagation ('adding errors in quadrature'):

$$\Delta f(X,Y) = \sqrt{\left(\frac{\partial f}{\partial X}\right)^2 (\Delta X)^2 + \left(\frac{\partial f}{\partial Y}\right)^2 (\Delta Y)^2}.$$

- (*) If you are taking Part IA Physics, check that this agrees with the results stated therein when f(X,Y)=X+Y and f(X,Y)=X/Y.
- 16. (*) If you are taking Part IA Physics, use the formula for propagation of error to determine the error in gravitational acceleration as determined from the period of a simple pendulum when the relative error in the string length is 0.1% and the relative error in the period is 0.2%.

The single-variable chain rule, with multivariable functions

17. Let z(x, y) be a function defined implicitly by the equation:

$$x - \alpha z = \phi(y - \beta z),$$

where α, β are real constants, and ϕ is an arbitrary differentiable function. Show that z satisfies the partial differential equation:

$$\alpha \frac{\partial z}{\partial x} + \beta \frac{\partial z}{\partial y} = 1.$$

[Hint: you can still use the normal single-variable chain rule here when taking each of the partial derivatives! Why?]

18. Consider the function $u(x,y)=x\phi(y/x)$, where ϕ is a differentiable function of its argument and $x\neq 0$. Show that u satisfies:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = u.$$

19. If $u(x,y) = \phi(xy) + \sqrt{xy}\psi(y/x)$, where ϕ and ψ are twice-differentiable functions of their arguments, show that u satisfies the partial differential equation:

$$x^2 \frac{\partial^2 u}{\partial x^2} - y^2 \frac{\partial^2 u}{\partial y^2} = 0.$$

20. Consider the partial differential equation:

$$2y\frac{\partial u}{\partial x} - x\frac{\partial u}{\partial y} = xy(2y^2 - x^2).$$

- (a) Show that $u(x,y) = \phi(x^2 + 2y^2)$ is a solution of the homogeneous version of this equation, where ϕ is an arbitrary differentiable function.
- (b) By considering $u_p(x,y)=Ax^my^n$ for some constants A,m,n, find a particular integral for this equation.
- (c) Hence, find the complete solution of the equation subject to the boundary condition $u(x,1)=x^2$.
- 21. Consider the partial differential equation:

$$\frac{\partial u}{\partial t} = \lambda \frac{\partial^2 u}{\partial x^2},$$

where $\lambda > 0$.

(a) Show that $u(x,t) = (t+a)^{-1/2}v(y)$, where $y = (t+a)^{-1/2}(x+b)$, solves the equation (for appropriate constants a,b, which you should determine) if and only if v satisfies the ordinary differential equation:

$$-\frac{1}{2}\left(v+y\frac{dv}{dy}\right) = \lambda \frac{d^2v}{dy^2}.$$
 (*)

- (b) Verify that (*) has a solution of the form $v(y) = e^{-cy^2}$ for appropriately chosen c.
- (c) Using parts (a) and (b), find the solution of the original partial differential equation subject to the boundary condition:

$$u(x,0) = \exp(-(x+1)^2) + \exp(-(x-1)^2).$$