J. M. Moore, 2025

Part I1A: Mathematics for Natural Sciences B
Examples Sheet 13: The multivariable chain rule, exact differentials,
and applications in thermodynamics

Please send all comments and corrections to jmm232@cam.ac.uk.

Questions marked with a (x) are difficult and should not be attempted at the expense of the other questions.

The multivariable chain rule for first-order derivatives

1. letu = u(z,y),v = v(z,y) be functions of z,y, and let f = fu, (z,y) = fus(u,v) be a function which can
be written in terms of , y or in terms of u, v (so that f,,, represents the function f written in terms of z, 3, and f,
represents the function f written in terms of u, v).

(@) Usingthe limit definition of partial differentiation, show that:

Ofey _ Ofuw Ou | Ofun OV and Ofwy _ Ofuww Ou n O fuv OV
Or  Ou Oxr  Ov Ox’ dy  Ou Oy  Ov Oy

These formulae are called the multivariable chain rules. Learn them off by heart, and get your supervision partner
totestyouonthem. [Note: Normally, they are written without the subscripts and the dependence of f on (x, y) or (u, v)
isleft implicit! From now on, we will drop the coordinates - you can always write them in though, if you feel uncomfortable.]

(b) Hence, prove that the differentials satisfy df ., = dfy.. [In lectures, you showed that if this is true, the multivariable
chain rule follows. Hence, the multivariable chain rule is equivalent to the statement that ‘differentials are independent of
coordinate choice’]

2. Using the multivariable chain rule, show thatiif f(u,v) = u? + v% and u(z,y) = 23 — 2y, v(z,y) = 3y — 222,

we have: 5 5
% =2z (3z* — 6y — 6y + 42?) a—z =2 (13y — 62° — 22°) .
Check your results by writing f in terms of z, y first, then taking partial derivatives.
3. Let(z, y) be plane Cartesian coordinates, and let (r, 0) be plane polar coordinates. Let f = f(x, y) beamultivariable
function whose expression in terms of Cartesian coordinatesis f(x,y) = e~ %Y,

(@) Compute df/dzanddf/0y.

(b) Compute 9f/0r and 0f /06, by: (i) writing f in terms of polar coordinates; (i) using the multivariable chain
rule.

(c) Usingparts (a), (b), showdirectlyin this case that the differential, df , isindependent of coordinate choice. [Hint:
express dx and dy in terms of dr and df.]

4. The function f(z, y) satisfies the partial differential equation:

of  of _

By transforming to the coordinates (u, v) = (2% — 32, 2zy), find the general solution of the equation.
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The multivariable chain rule for second-order derivatives
5. Let f(u,v) = u?sinh(v),and letu = z,v = 2 + y.

(a) By differentiating with respect to u, compute 92 f /Ou?.
(b) Using the multivariable chain rule, show that:

Of_or _,o0r  9f
ou?  Ox2 0xdy = Oy?’
Hence compute the derivative in (a) by writing f in terms of z, y, differentiating, and using this relationship.

() Repeat this exercise for the derivatives 92 f /Ov? and 9% f / Oudv.

6. Let f(u,v) be a multivariable function of u(z,y) = 1 + 22 + 3%, v(z,y) = 1 + 22y>, where (z,y) are plane
Cartesian coordinates.

@) Calculate 0f/0x, 0f /0y, 02 f |0x2, 0% f |Oy?, 02 f | Oxdy in terms of the derivatives of f with respect tou, v.
(b) For f(u,v) = log(uv), find &2 f /0x0y by: (i) using the expression derived in part (a); (ii) first expressing f in
terms of x, y and then differentiating directly. Verify that your results agree.

7. Let (z,y) be plane Cartesian coordinates, and let (u, v) be plane Cartesian coordinates which are rotated an angle 6
anticlockwise about the origin relative to the (z, y) coordinates. Let f be an arbitrary multivariable function of either
(x,y) or (u,v). Show that:

O*f O f O f  O*f
0x?2  0y2  Ou?  Ov?’
() Comment on this result in relation to the Laplacian, V2 =V - V, where - is the scalar product of vectors.

8. Let(z,y) be plane Cartesian coordinates, and let (r, #) be plane polar coordinates. Let f be a multivariable function.

Show that: o2 52 52 5 o2
1 1
f L OF_0F 10 10
ox?  Oy?  Or2  ror 1?0602
Hence determine all solutions of the partial differential equation:
I
ox? = oy
which are rotationally symmetric about the origin.
9. Consider a function z(z, y) thatsatisfies z(Ax, \y) = A"z(z, y) for any real A and a fixed integer n. Show that:

0z 0z

Tor TVoy T
and ) o o2
2072 2072

Reciprocity and the cyclic relation

10. Threevariables x, y, z are related by the implicit equation f(z,y, 2) = O where f is some multivariable function.
oy (02 _
ox) \oy),
op\ (or\ (0:\ _
or ), \o=),\oy/),

(b) Verify that these relationships hold if: (i) f(x,y, 2) = zyz+ a3 +y*+ 25 (i) f(z,y, 2) = 2yz —sinh(z +2).

(a) Derive the reciprocity relation:

and the cyclic relation:
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Exact differentials, and exact ordinary differential equations
1. Letw = P(z,y)dz + Q(x, y)dy be a differential form.

(@) Whatdoes it mean to say thatw is exact? Define also a potential function for a given exact differential form.
(b) ShowthatOP/0y = 0Q/Ox is a necessary condition for w to be an exact differential form.
(©) (%) Isthe condition in part (b) sufficient for w to be exact?
12. Determine whether the following differential forms are exact or not. In the cases where the differential forms are
exact, find appropriate potential functions f.
9 xdy — ydx
(@) ydx + zdy, (b) ydx + x°dy, © (z+ y)dz + (z — y)dy, (d) (%) 2ty

13. Find all values of the constant a for which the differential form:
(y? sin(az) + zy® cos(az)) dz + 2zy sin(az)dy
is exact. Find appropriate potential functions in the cases where the differential form is exact.

14. Let P(z,y, z)dz + Q(z,y, z)dy + R(z,y, z)dz be a differential form in three dimensions. Show that:
oP _9Q  oP OR  0Q OR

oy Oz’ 9z 0z’ 0z Oy
is a necessary condition for the differential form to be exact. It turns out that this is also a sufficient condition, under

suitable criteria which you may assume hold. Hence, decide whether the following differential forms are exact or not,
and find appropriate potential functions in the cases where the forms are exact:

(@) zdx + ydy + zdz, (b) ydx + zdy + xdz, © 2z 24 dx + 322?24 dy + 4293 23dz.

15. Consider the first-order differential equation:

P(e,y) + QU v) 5L =0, (h

Using the multivariable chain rule, show that f(x, y(z)) = ¢, for cand arbitrary constant, is an implicit solution of
the equation ifand only if df = p - (Pdx + Qdy), for some multivariable function p(z, y), which is not identically
zero. [Hence, equation (T) can be solved implicitly if the differential Pdx + Qdy isexact (. = 1), or can be made exact through
multiplication by some ‘integrating factor'- note this is not the same type of integrating factor we dealt with earlier in the course.]

16. Show that each of the following first-order differential equations is exact, and hence find their general solution:

dy dy 5z +4y . . dy
2 Y y_ = b _—=— h ‘h —_— =
(@)2x+eY + (ze cos(y))dx 0, ( )dx 87 s’ () sinh(x) sin(y) + cosh(z) cos(y) o 0

17.  (a) Show thatthedifferential form Pdx + Qdy can be made exact through multiplication by the integrating factor

w(z)ifand only if:
1 (op _0Q
Q\ 0y Ox

(b) Hence, find a function p for which the differential form:

isindependent of y.

u[(cos(y) — tanh(z) sin(y))dx — (cos(y) + tanh(z) sin(y))dy]

is exact.
() Usingthe result of part (b), solve the differential equation:

dy _ cos(y) — tanh(x) sin(y)

dxr  cos(y) + tanh(z)sin(y)
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Applications in thermodynamics

[This section applies everything we have learned about partial derivatives to a topic that is important in both chemistry and physics.]

18. A thermodynamic system can be modelled in terms of four fundamental variables, pressure p, volume V', tempera-
ture T, and entropy S. Only two of these variables are independent, so that any pair of them may expressed as func-
tions of the remaining two variables. The fundamental thermodynamic relation tells us that for any given system, the
differential of the internal energy U of the system is related to the differentials of the entropy and volume via:

dU =TdS — pdV.

(@) Give a physical interpretation of each of the terms in the fundamental thermodynamic relation.
(b) From the fundamental thermodynamic relation, prove Maxwell’s first relation:

(), =~ (@s),

(c) Bydefininganappropriate thermodynamic potential, show that —SdT — pdV is an exact differential. Deduce

Maxwell’s second relation:
95\ _ (o
ov), \oT ),

(d) Through similar considerations, derive the remaining Maxwell relations:

@)= (), (5).~(x),

19. Aclassical monatomicideal gas has equations of state:

T3/2
pV =nRT, S =nRlog (V )

D
where n is the amount of substance in moles, which we consider constant, R is the gas constant, and @ is a constant
which depends on the type of gas.
(@) Usingthe fundamental thermodynamic relation, show that the internal energy of the gasisU = %nRT.
(b) Byappropriately expressing each pairof thermodynamicvariablesin terms of the remaining pair, verify Maxwell’s
relations for this thermodynamic system.

20. (a) Usingthe fundamental thermodynamic relation, and the Maxwell relations, prove that:

ou dp

—) =T(=) -»p

ov ), oT )y,
(b) InavanderWaals gas, the equation of state is:

_RT a
P=y = v

where a, b, R are constants. Using part (a), derive a formula for U in terms of V, T, assuming that U — ¢T’, for
some constantc,as T’ — oo.

21.  (a) Findanexpression for (gg)T — <g€)s in terms of (g{i)r[and (gi)v

(b) Hence, using the fundamental thermodynamic relation, show that:
Olog(p) \ _ (9log(p)\ _ (9(V)\ [p~'(0U/0V)r +1
0log(V) ) 2log(V) / o or )., (OU/dT)v '
(© Show that for a fixed amount of a classical monatomicideal gas, pV/5/2 is a function of S. Hence, verify that the
relation in part (b) holds for a classical monatomicideal gas.
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Part IA: Mathematics for Natural Sciences B
Lent Review Test 1

Please send all comments and corrections to jmm232@cam.ac.uk.

Complete this test without your notes. You should spend a total of one and a half hours on this test. Each question is worth
20 marks.

2024, Paper 2, Question 15: Second-order ordinary differential equations

(@) Considerthe second order differential equation:

Py | Ldy
< < — 0
dx? + Bdac T
where 3 and -y are real constants.
(i) When 3 = 4, find ~ such that the general solution is y(x) = Aze=2* + Be™2® where A and B are arbitrary
constants.
(i) Findallthe solutions fory(x) when 8 = 6and~y = 5.

(i) Find all the solutions fory(x) when 8 = 3and vy = 4.

(b) Consider the second order differential equation:

Py dy 2
—= — 42 4+ Hy = 125x”.
dx? dx +oy v

Find the particular solution subject to boundary conditions y(0) = 1 and:

T 2572
y(g)— T+ 20m+22.

2024, Paper1, Question 14: Partial derivatives, differentials and the multivariable chain rule

(@) Aright-angled triangle of area A has sides of length a, b and ¢, where ¢ is the hypotenuse. Small changes da and db
are made to the sides a and b, respectively. Find expressions for the fractional change of the hypotenuse de/cand the
fractional change in the area of the triangle dA/A in terms of a, b and their changes. Find the fractional change in
areaif a increases by 1% and b decreases by 2%.

(b) Consider a function z(z, y) defined implicitly by the equation:

z—az= ¢y — fz)
where «vand j3 are real constants and ¢ is an arbitrary differentiable function. Show that z(x, y) satisfies:
0z 0z
hded 1
or + Bay
(0) Consider a function z(z, y) that satisfies z(Az, A\y) = A"z(z,y) for an arbitrary real positive A and an integer n.
Show that:
0z n 0z
T +Yy-— =nz
ox yay
and ) ) )
0°z z 0°z
2 2 —
x32+2 y8z8y+ ﬁ—n(n—l)z
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2024, Paper1, Question 13: First-order differential equations and exact differentials

(@) Findthe general solution of the differential equation:

dy 4y2 2 2
dr = w2 Y

Determine the solution in each of the following cases:

0 y(1) =1,
(i) y(2) =0,

(b) Consider the following differential form,
(@) @y — 162 — 2%)da + p()(16 + 2)dy,
where () is an unknown real-valued differentiable function.

() Finda function p(z) for which this differential form is exact.

(i) Hence orotherwise, find in explicit form the general solution of the equation:

dy
— 16z — 2° 1 H=Z =o.
(zy — 16z x)—|—(6+x)dx 0




