
J. M. Moore, 2025

Part IA: Mathematics for Natural Sciences B
Examples Sheet 13: The multivariable chain rule, exact differentials,

and applications in thermodynamics
Please send all comments and corrections to jmm232@cam.ac.uk.

Questions marked with a (∗) are difficult and should not be attempted at the expense of the other questions.

The multivariable chain rule for first-order derivatives

1. Let u ≡ u(x, y), v ≡ v(x, y) be functions of x, y, and let f ≡ fxy(x, y) ≡ fuv(u, v) be a function which can
be written in terms of x, y or in terms of u, v (so that fxy represents the function f written in terms of x, y, and fuv
represents the function f written in terms ofu, v).

(a) Using the limit definition of partial differentiation, show that:

∂fxy
∂x

=
∂fuv
∂u

∂u

∂x
+

∂fuv
∂v

∂v

∂x
, and

∂fxy
∂y

=
∂fuv
∂u

∂u

∂y
+

∂fuv
∂v

∂v

∂y
.

These formulae are called the multivariable chain rules. Learn them off by heart, and get your supervision partner
to test you on them. [Note: Normally, they are written without the subscripts and the dependence off on(x, y)or(u, v)
is left implicit! From now on, we will drop the coordinates - you can always write them in though, if you feel uncomfortable.]

(b) Hence, prove that the differentials satisfy dfxy = dfuv . [In lectures, you showed that if this is true, the multivariable
chain rule follows. Hence, the multivariable chain rule is equivalent to the statement that ‘differentials are independent of
coordinate choice’.]

2. Using the multivariable chain rule, show that if f(u, v) = u2 + v2, and u(x, y) = x3 − 2y, v(x, y) = 3y − 2x2,
we have:

∂f

∂x
= 2x

(
3x4 − 6xy − 6y + 4x2

)
,

∂f

∂y
= 2

(
13y − 6x2 − 2x3

)
.

Check your results by writing f in terms ofx, y first, then taking partial derivatives.

3. Let (x, y)be plane Cartesian coordinates, and let (r, θ)be plane polar coordinates. Letf ≡ f(x, y)be a multivariable
function whose expression in terms of Cartesian coordinates is f(x, y) = e−xy .

(a) Compute ∂f/∂x and ∂f/∂y.

(b) Compute ∂f/∂r and ∂f/∂θ, by: (i) writing f in terms of polar coordinates; (ii) using the multivariable chain
rule.

(c) Using parts (a), (b), show directly in this case that the differential,df , is independent of coordinate choice. [Hint:
expressdx anddy in terms ofdr anddθ.]

4. The function f(x, y) satisfies the partial differential equation:

y
∂f

∂x
+ x

∂f

∂y
= 0.

By transforming to the coordinates (u, v) = (x2 − y2, 2xy), find the general solution of the equation.

1



J. M. Moore, 2025

The multivariable chain rule for second-order derivatives

5. Let f(u, v) = u2 sinh(v), and letu = x, v = x+ y.

(a) By differentiating with respect tou, compute ∂2f/∂u2.
(b) Using the multivariable chain rule, show that:

∂2f

∂u2
=

∂2f

∂x2
− 2

∂2f

∂x∂y
+

∂2f

∂y2
,

Hence compute the derivative in (a) by writing f in terms ofx, y, differentiating, and using this relationship.
(c) Repeat this exercise for the derivatives ∂2f/∂v2 and ∂2f/∂u∂v.

6. Let f(u, v) be a multivariable function of u(x, y) = 1 + x2 + y2, v(x, y) = 1 + x2y2, where (x, y) are plane
Cartesian coordinates.

(a) Calculate∂f/∂x,∂f/∂y,∂2f/∂x2,∂2f/∂y2,∂2f/∂x∂y in terms of the derivatives of f with respect tou, v.
(b) For f(u, v) = log(uv), find ∂2f/∂x∂y by: (i) using the expression derived in part (a); (ii) first expressing f in

terms ofx, y and then differentiating directly. Verify that your results agree.

7. Let (x, y) be plane Cartesian coordinates, and let (u, v) be plane Cartesian coordinates which are rotated an angle θ
anticlockwise about the origin relative to the (x, y) coordinates. Let f be an arbitrary multivariable function of either
(x, y) or (u, v). Show that:

∂2f

∂x2
+

∂2f

∂y2
=

∂2f

∂u2
+

∂2f

∂v2
.

(∗) Comment on this result in relation to the Laplacian,∇2 = ∇ · ∇, where · is the scalar product of vectors.

8. Let (x, y) be plane Cartesian coordinates, and let (r, θ) be plane polar coordinates. Let f be a multivariable function.
Show that:

∂2f

∂x2
+

∂2f

∂y2
=

∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2
∂2f

∂θ2
.

Hence determine all solutions of the partial differential equation:

∂2f

∂x2
+

∂2f

∂y2
= 0

which are rotationally symmetric about the origin.

9. Consider a function z(x, y) that satisfies z(λx, λy) = λnz(x, y) for any realλ and a fixed integern. Show that:

x
∂z

∂x
+ y

∂z

∂y
= nz,

and

x2 ∂
2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
= n(n− 1)z.

Reciprocity and the cyclic relation

10. Three variablesx, y, z are related by the implicit equation f(x, y, z) = 0where f is some multivariable function.

(a) Derive the reciprocity relation: (
∂y

∂x

)
z

(
∂x

∂y

)
z

= 1,

and the cyclic relation: (
∂y

∂x

)
z

(
∂x

∂z

)
y

(
∂z

∂y

)
x

= −1.

(b) Verify that these relationships hold if: (i)f(x, y, z) = xyz+x3+y4+z5; (ii)f(x, y, z) = xyz−sinh(x+z).
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Exact differentials, and exact ordinary differential equations

11. Letω = P (x, y)dx+Q(x, y)dy be a differential form.

(a) What does it mean to say thatω is exact? Define also a potential function for a given exact differential form.
(b) Show that ∂P/∂y = ∂Q/∂x is a necessary condition forω to be an exact differential form.
(c) (∗) Is the condition in part (b) sufficient forω to be exact?

12. Determine whether the following differential forms are exact or not. In the cases where the differential forms are
exact, find appropriate potential functions f .

(a) ydx+ xdy, (b) ydx+ x2dy, (c) (x+ y)dx+ (x− y)dy, (d) (∗)
xdy − ydx

x2 + y2
.

13. Find all values of the constant a for which the differential form:(
y2 sin(ax) + xy2 cos(ax)

)
dx+ 2xy sin(ax)dy

is exact. Find appropriate potential functions in the cases where the differential form is exact.

14. LetP (x, y, z)dx+Q(x, y, z)dy +R(x, y, z)dz be a differential form in three dimensions. Show that:

∂P

∂y
=

∂Q

∂x
,

∂P

∂z
=

∂R

∂x
,

∂Q

∂z
=

∂R

∂y

is a necessary condition for the differential form to be exact. It turns out that this is also a sufficient condition, under
suitable criteria which you may assume hold. Hence, decide whether the following differential forms are exact or not,
and find appropriate potential functions in the cases where the forms are exact:

(a)xdx+ ydy + zdz, (b) ydx+ zdy + xdz, (c) 2xy3z4dx+ 3x2y2z4dy + 4x2y3z3dz.

15. Consider the first-order differential equation:

P (x, y) +Q(x, y)
dy

dx
= 0. (†)

Using the multivariable chain rule, show that f(x, y(x)) = c, for c and arbitrary constant, is an implicit solution of
the equation if and only if df = µ · (Pdx+Qdy), for some multivariable function µ(x, y), which is not identically
zero. [Hence, equation (†) can be solved implicitly if the differentialPdx+Qdy is exact (µ = 1), or can be made exact through
multiplication by some ‘integrating factor’ - note this is not the same type of integrating factor we dealt with earlier in the course.]

16. Show that each of the following first-order differential equations is exact, and hence find their general solution:

(a)2x+ ey +(xey − cos(y))
dy

dx
= 0, (b)

dy

dx
=

5x+ 4y

8y3 − 4x
, (c) sinh(x) sin(y)+ cosh(x) cos(y)

dy

dx
= 0.

17. (a) Show that the differential formPdx+Qdy can be made exact through multiplication by the integrating factor
µ(x) if and only if:

1

Q

(
∂P

∂y
− ∂Q

∂x

)
is independent of y.

(b) Hence, find a functionµ for which the differential form:

µ[(cos(y)− tanh(x) sin(y))dx− (cos(y) + tanh(x) sin(y))dy]

is exact.
(c) Using the result of part (b), solve the differential equation:

dy

dx
=

cos(y)− tanh(x) sin(y)

cos(y) + tanh(x) sin(y)
.
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Applications in thermodynamics

[This section applies everything we have learned about partial derivatives to a topic that is important in both chemistry and physics.]

18. A thermodynamic system can be modelled in terms of four fundamental variables, pressure p, volume V , tempera-
ture T , and entropy S. Only two of these variables are independent, so that any pair of them may expressed as func-
tions of the remaining two variables. The fundamental thermodynamic relation tells us that for any given system, the
differential of the internal energyU of the system is related to the differentials of the entropy and volume via:

dU = TdS − pdV.

(a) Give a physical interpretation of each of the terms in the fundamental thermodynamic relation.
(b) From the fundamental thermodynamic relation, prove Maxwell’s first relation:(

∂T

∂V

)
S

= −
(
∂p

∂S

)
V

(c) By defining an appropriate thermodynamic potential, show that−SdT − pdV is an exact differential. Deduce
Maxwell’s second relation: (

∂S

∂V

)
T

=

(
∂p

∂T

)
V

(d) Through similar considerations, derive the remaining Maxwell relations:(
∂T

∂p

)
S

=

(
∂V

∂S

)
p

,

(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

.

19. A classical monatomic ideal gas has equations of state:

pV = nRT, S = nR log

(
V T 3/2

Φ0

)
wheren is the amount of substance in moles, which we consider constant,R is the gas constant, andΦ0 is a constant
which depends on the type of gas.

(a) Using the fundamental thermodynamic relation, show that the internal energy of the gas isU = 3
2nRT .

(b) By appropriately expressing each pair of thermodynamic variables in terms of the remaining pair, verify Maxwell’s
relations for this thermodynamic system.

20. (a) Using the fundamental thermodynamic relation, and the Maxwell relations, prove that:(
∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p.

(b) In a van der Waals gas, the equation of state is:

p =
RT

V − b
− a

V 2
,

wherea, b, R are constants. Using part (a), derive a formula forU in terms ofV, T , assuming thatU → cT , for
some constant c, asT → ∞.

21. (a) Find an expression for
(

∂p

∂V

)
T

−
(

∂p

∂V

)
S

in terms of
(
∂S

∂V

)
T

and
(
∂S

∂p

)
V

.

(b) Hence, using the fundamental thermodynamic relation, show that:(
∂ log(p)

∂ log(V )

)
T

−
(

∂ log(p)

∂ log(V )

)
S

=

(
∂(pV )

∂T

)
V

[
p−1(∂U/∂V )T + 1

(∂U/∂T )V

]
.

(c) Show that for a fixed amount of a classical monatomic ideal gas, pV 5/3 is a function ofS. Hence, verify that the
relation in part (b) holds for a classical monatomic ideal gas.
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Part IA: Mathematics for Natural Sciences B
Lent Review Test 1

Please send all comments and corrections to jmm232@cam.ac.uk.

Complete this test without your notes. You should spend a total of one and a half hours on this test. Each question is worth
20 marks.

2024, Paper 2, Question 15: Second-order ordinary differential equations

(a) Consider the second order differential equation:

d2y

dx2
+ β

dy

dx
+ γy = 0

whereβ and γ are real constants.

(i) When β = 4, find γ such that the general solution is y(x) = Axe−2x + Be−2x where A and B are arbitrary
constants. [3]

(ii) Find all the solutions for y(x)whenβ = 6 and γ = 5. [4]
(iii) Find all the solutions for y(x)whenβ = 3 and γ = 4. [5]

(b) Consider the second order differential equation:

d2y

dx2
− 4

dy

dx
+ 5y = 125x2.

Find the particular solution subject to boundary conditions y(0) = 1 and: [8]

y
(π
2

)
=

25π2

4
+ 20π + 22.

2024, Paper 1, Question 14: Partial derivatives, differentials and the multivariable chain rule

(a) A right-angled triangle of area A has sides of length a, b and c, where c is the hypotenuse. Small changes da and db
are made to the sidesa and b, respectively. Find expressions for the fractional change of the hypotenusedc/c and the
fractional change in the area of the triangle dA/A in terms of a, b and their changes. Find the fractional change in
area if a increases by 1% and b decreases by 2%. [6]

(b) Consider a function z(x, y) defined implicitly by the equation:

x− αz = ϕ(y − βz)

whereα andβ are real constants andϕ is an arbitrary differentiable function. Show that z(x, y) satisfies: [6]

α
∂z

∂x
+ β

∂z

∂y
= 1.

(c) Consider a function z(x, y) that satisfies z(λx, λy) = λnz(x, y) for an arbitrary real positive λ and an integer n.
Show that:

x
∂z

∂x
+ y

∂z

∂y
= nz

and [8]

x2 ∂
2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
= n(n− 1)z.
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2024, Paper 1, Question 13: First-order differential equations and exact differentials

(a) Find the general solution of the differential equation: [6]

dy

dx
=

4y2

x2
− x2y2.

Determine the solution in each of the following cases:

(i) y(1) = 1, [1]

(ii) y(2) = 0, [1]

(b) Consider the following differential form,

µ(x)(xy − 16x− x3)dx+ µ(x)(16 + x2)dy,

whereµ(x) is an unknown real-valued differentiable function.

(i) Find a functionµ(x) for which this differential form is exact. [6]

(ii) Hence or otherwise, find in explicit form the general solution of the equation: [6]

(xy − 16x− x3) + (16 + x2)
dy

dx
= 0.
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