
J. M. Moore, 2025

Part IA: Mathematics for Natural Sciences B
Examples Sheet 2: Further vector geometry, triple products,

vector area, and polar coordinate systems
Please send all comments and corrections to jmm232@cam.ac.uk.

Questions marked with a (∗) are difficult and should not be attempted at the expense of the other questions.

More on the equation of a line

1. (a) Explain why the line through the points with positions vectors a, b is(r−a)×(b−a) = 0. Show using properties
of the vector product that an equivalent representation of this line is r×(b−a) = a×b. What is the geometric
significance of the quantity |a × b|/|b − a| here?

(b) Express the line r = (1, 0, 1) + λ(3,−1, 0) in the form r × c = d.

2. (a) Show that the shortest distance between the point p and the line r = a + λb can be written as
∣∣∣b̂ × (p − a)

∣∣∣.

(b) (∗) Does this formula agree with the one you derived in terms of the scalar product in Question 10(c) of Sheet 1?
[Hint: Try squaring the formula in part (a), and using properties of the scalar triple product - see later in the sheet!]

(c) Find the shortest distance from a vertex of a unit cube to a diagonal excluding that vertex using both the formula
in (a), and the formula from Question 10(c) of Sheet 1, and check that your answers agree.

More on the equation of a plane

3. (a) Explain why the plane through the points with position vectors a, b, c is (r− a) · ((b− a)× (c− a)) = 0. Show
using properties of the vector product, and the result from Question 23 of Sheet 1, that this may equivalently be
written in the more symmetric form r · (a × b + b × c + c × a) = a · (b × c).

(b) Find an equation of the form (r − a) · n = 0 for the plane passing through (1, 1, 1), (1, 2, 3) and (0, 0, 4).

4. You need to drill a hole in a piece of metal starting at a right angle to a flat surface passing through the points A =
(1, 0, 0), B = (1, 1, 1) and C = (0, 2, 0), with the hole emerging at the point D = (2, 1, 0). How long a drill must
you use and where (in the planeABC) must you start drilling?

5. Determine whether:

(a) the points P1 = (0, 0, 2), P2 = (0, 1, 3), P3 = (1, 2, 3), P4 = (2, 3, 4) are coplanar;
(b) the points Q1 = (−2, 1, 1), Q2 = (−1, 2, 2), Q3 = (−3, 3, 2), Q4 = (−2, 4, 3) are coplanar.

Shortest distances

6. Without using a formula, find the shortest distance between the lines r1 = (1, 0, 1)+λ(2,−1, 3)and r2 = (0, 1,−2)+
µ(1, 0, 2), justifying the steps you take. [Sometimes, it is better to understand a method, than to quote a formula.]

7. So far, we have developed formulae for the shortest distance from points to lines, and from points to planes. Now,
using the scalar and vector products, establish formulae for the following:

(a) the shortest distance from the line r1 = v1 +λw1 to the line r2 = v2 +µw2, and the points on the lines where
this distance is attained; [Hint: Take care when the lines are parallel!]

(b) the shortest distance from the line r = v + λw to the plane (r − a) · b = 0, and the points on the line and the
plane where this distance is attained;

(c) the shortest distance from the plane (r1 − a1) · b1 = 0 to the plane (r2 − a2) · b2 = 0, and the points on the
planes where this distance is attained.
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The vector triple product, and vector equations

8. (a) By expanding in terms of the standard basis vectors, prove Lagrange’s formula for the vector triple product:

a × (b × c) = b(a · c)− c(a · b).

Think of a way of remembering this formula off by heart - it is very useful!
(b) Hence, construct an example of three vectors a, b, c such that a × (b × c) ̸= (a × b)× c.
(c) (∗) Prove the vector triple product using a geometric argument. [Hint: a × (b × c) is the projection of a into the

plane through the origin perpendicular to b × c, rotated by 1
2π, and scaled by the magnitude of b × c.]

9. Using the vector triple product, prove the Jacobi identity, a × (b × c) + b × (c × a) + c × (a × b) = 0.

10. Two vector operators, Pû : R3 → R3 and Rû : R3 → R3 are defined by Pû(r) = (r · û)û and Rû(r) = û × (r × û)
respectively. Interpret these operators geometrically, and hence explain whyPû(r) +Rû(r) = r for all vectors r. Also
explain whyP 2

û = Pû andR2
û = Rû.

11. Solve the following vector equations, and give geometric interpretations of their solutions:

(a) a × r + λr = c, whereλ ̸= 0, and a, c ∈ R3 are arbitrary 3-vectors;
(b) r × a = b, where a ∈ R3 is an arbitrary non-zero 3-vector;
(c) r = a + (b · r)c, where a, b, c ∈ R3 are arbitrary non-zero 3-vectors;
(d) 2r + n̂ × r + n̂(n̂ · r)2 = a, where n̂ is a unit vector, and n̂ · a = −1.

The scalar triple product, and non-orthonormal bases

12. Let a, b, c ∈ R3 be 3-vectors.

(a) Give the definition of the scalar triple product [a, b, c] of the 3-vectors a, b, c ∈ R3. Hence show that the volume
of the parallelepiped defined by the positions vectors a, b, c is |[a, b, c]|. Why is the modulus necessary?

(b) Using the relation between the scalar triple product and a parallelepiped, explain why:
(i) the scalar triple product is antisymmetric on odd permutations of its entries, and symmetric on even per-

mutations of its entries;
(ii) the condition [a, b, c] ̸= 0 implies that a, b, c are not coplanar, and thus form a basis.

(c) Compute the volume of a parallelepiped defined by the three position vectors a = (0, 1
2 ,

1
2 ), b = ( 12 , 0,

1
2 ),

c = ( 12 ,
1
2 , 0), and comment on whether these vectors form a basis.

13. Simplify the scalar triple products (a + b) · (b + c)× (c + a) and (a × b) · [(b × c)× (c × a)].

14. Let 0, a, b, c form the vertices of a tetrahedron, with a · (b × c) > 0. Write down conditions in terms of the scalar
triple product for the vector r to lie inside the tetrahedron.

15. Let a, b, c ∈ R3 be 3-vectors.

(a) If these vectors form an orthonormal basis, derive expressions for the coefficients α, β, γ in the formula d =
αa + βb + γc. Hence express (2, 3, 4) in terms of the basis {(1, 1, 0), (1,−1, 0), (0, 0, 1)}.

(b) If instead these vectors do not form an orthonormal basis, derive expressions for the coefficients α, β, γ in the
formula d = αa + βb + γc. [Hint: consider scalar triple products.] Hence express (1, 1, 1) in terms of the basis
{(1, 2, 1), (0, 0, 1), (2,−1, 1)}.

(c) We define the reciprocal vectors to a, b, c to be the vectors:

A =
b × c
[a, b, c]

, B =
c × a
[a, b, c]

, C =
a × b
[a, b, c]

.

Show that A · a = B · b = C · c = 1, and A · b = A · c = B · a = B · c = C · a = C · b = 0. Hence, by
comparing to part (b), explain how the reciprocal basis can be used to express a general vector d in terms of a
non-orthonormal basis {a, b, c}. Compute the reciprocal basis to the basis {(1, 2, 1), (0, 0, 1), (2,−1, 1)}.
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Vector area

16. (a) Define the vector area A of a surface composed of k flat faces with areasA1, ..., Ak and unit normals n̂1, ..., n̂k.
What are the conventions usually used when choosing the unit normal(s)?

(b) In terms of the position vectors a, b determine the vector areas of: (i) the parallelogram defined by a, b; (ii) the
triangle defined by a, b. Hence, given points O = (0, 0, 0), A = (1, 0, 0), B = (1, 1, 1), C = (0, 2, 0),
compute the vector area of the triangleOAB (with vertices taken in that order), and the vector area of the loop
OABC composed of straight-line segments (with vertices taken in that order).

17. (a) Give a very general explanation of how the idea of vector area could be extended to curved surfaces, and hence
explain why we expect the vector area of any closed surface to be 0.

(b) Compute the vector area of the square with vertices (0, 0, 0), (2, 0, 0), (2, 2, 0), (0, 2, 0), taken in that order.
Hence, compute the vector area of the pyramid extending this square with the point (1, 1, 1), excluding its
square face.

(c) Compute the vector area of a truncated hollow cone, bounded by a horizontal circle of radius 4 units and a hori-
zontal circle of radius 3 units at some height above the first (note the result is independent of the height!).

18. (a) Let S be the vector area of the surface S. Prove that the area of the projection of the surface S onto the plane
with unit normal m̂ is |S · m̂|. [Hint: consider joining the surface to its ‘shadow’ on the plane to create a closed surface.]

(b) Compute the vector area of the projection of the square with vertices (0, 0, 0), (2, 0, 0), (2, 2, 0), (0, 2, 0) onto
the plane with unit normal m̂ = (0,−1, 1)/

√
2.

(c) By projecting areas onto the yz, xz, and xy planes, compute the vector area of the loop with vertices O =
(0, 0, 0), A = (1, 0, 0), B = (1, 1, 1), C = (0, 2, 0), taken in that order. [Your answer should match your answer
to Question 17(b)!] What is the area of the loop projected onto: (i) the plane with normal (0,−1, 1); (ii) the plane
that maximises the projected area?

Polar coordinate systems

19. Draw (convincing) diagrams defining plane, cylindrical, and spherical polar coordinates. In each case, derive the coor-
dinate transform laws from polars to Cartesians, and from Cartesians to polars. Hence, find the cylindrical polar and
spherical polar coordinates of the point (3, 4, 5).

20. (a) In 2D Cartesian coordinates, a circle is specified by (x− 1)2 + y2 = 1. Find its equation in polar coordinates.
(b) In 3D Cartesian coordinates, a sphere is specified by (x − 1)2 + y2 + z2 = 1. Find its equation in spherical

polar coordinates.

21. Let a > 0 be a constant. Describe the following loci:

(a) (i)ϕ = a; (ii) r = ϕ, in plane polar coordinates.
(b) (i) z = a; (ii) r = a; (iii) r = a and z = ϕ, in cylindrical polar coordinates.
(c) (i) θ = a; (ii)ϕ = a; (iii) r = a; (iv) r = θ = a, in spherical polar coordinates.

22. Consider a point with position vector n̂ on the unit sphereS.

(a) Explain why n̂ = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)), where θ, ϕ are the spherical coordinates of n̂.
(b) Show that the vector areadS of a small patch near n̂, subtending a small angledθ in the θ direction, and a small

angle dϕ in theϕ direction, is given approximately by dS = n̂ sin(θ)dθdϕ.
(c) (∗) Hence, by integrating dS first over ϕ whilst keeping θ constant, then over θ, show that the vector area of the

sphere is zero. [Hint: what are the limits onϕ, θ?] You have now performed your first surface integral, a topic we
shall cover properly in Lent. In fact, it is possible to use surface integration to show that the vector area of any
closed shape is zero through a theorem called Stokes’ theorem, which we shall also see in Lent.

(d) (∗) Without computing it, what is the value of the surface integral
∫
S

n̂ · dS?
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