Part IA: Mathematics for Natural Sciences B Examples Sheet 3: Complex numbers and hyperbolic functions

Please send all comments and corrections to jmm232@cam.ac.uk.

Real and imaginary parts

1. Find the real and imaginary parts of the following numbers (where n is an integer):

$$\text{(a) } i^3, \qquad \text{(b) } i^{4n}, \qquad \text{(c) } \left(\frac{1+i}{\sqrt{2}}\right)^2, \qquad \text{(d) } \left(\frac{1-i}{\sqrt{2}}\right)^2, \qquad \text{(e) } \left(\frac{1+\sqrt{3}i}{2}\right)^3, \qquad \text{(f) } \frac{1+i}{2-5i}, \qquad \text{(g) } \left(\frac{1+i}{1-i}\right)^2.$$

2. If z = x + iy, find the real and imaginary parts of the following functions in terms of x and y:

(a)
$$z^2$$
, (b) iz , (c) $(1+i)z$, (d) $z^2(z-1)$, (e) $z^*(z^2-zz^*)$.

3. Define u and v to be the real and imaginary parts, respectively, of the complex function w=1/z. Show that the contours of constant u and v are circles. Show also that the contours of u and the contours of v intersect at right angles.

Factoring polynomials and solving equations

- 4. Factorise the following expressions: (a) $z^2 + 1$; (b) $z^2 2z + 2$; (c) $z^2 + i$; (d) $z^2 + (1-i)z i$. [Hint: you have already computed the two square roots of i in Question 1(c).]
- 5. Given that z=2+i solves the equation $z^3-(4+2i)z^2+(4+5i)z-(1+3i)=0$, find the remaining solutions.
- 6. Consider the polynomial equation $a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0 = 0$, where the coefficients $a_n, a_{n-1}, ..., a_0$ are real. Show that the solutions to this equation come in complex conjugate pairs. Deduce that if n is odd, there is at least one real solution.

Geometry of complex numbers

- 7. Using a diagram, explain the geometric meaning of the *modulus*, |z|, and *argument*, $\arg(z)$, of a complex number z. Find the moduli and (principal) arguments of: (a) $1 + \sqrt{3}i$; (b) -1 + i; (c) $-\sqrt{3} i/\sqrt{3}$.
- 8. For $z \in \mathbb{C}$, show that $|z|^2 = zz^*$. Hence prove that $|a+b|^2 + |a-b|^2 = 2(|a|^2 + |b|^2)$, where $a, b \in \mathbb{C}$, and interpret this result geometrically. [Hint: you don't need to split a, b into real and imaginary parts.]
- 9. By writing $z = |z|(\cos(\arg(z)) + i\sin(\arg(z)), w = |w|(\cos(\arg(w)) + i\sin(\arg(w)), \text{ compute the modulus})$ and argument of the product zw. Hence give the geometrical interpretation of multiplying one complex number by another complex number. Give also a geometrical interpretation of division of one complex number by another complex number, z/w.
- 10. Let $z_1 = 2 + i$, $z_2 = 3 + 4i$. Find $z_1 z_2$ by: (a) adding arguments and multiplying moduli; (b) using the rules of complex algebra. Verify that your results agree.
- 11. By considering multiplication of the complex numbers z=1+iA and w=1+iB, derive the arctangent addition formula:

$$\arctan(A) + \arctan(B) = \arctan\left(\frac{A+B}{1-AB}\right).$$

12. Give a geometrical interpretation (in terms of *vectors*) of the real and imaginary parts of the quantity $Q=z_1z_2^*$. Show also that Q is invariant under a rotation of z_1, z_2 about the origin, and confirm that this is consistent with your geometrical interpretation. [Hint: In Question 9, you showed that multiplying by a complex number u of unit modulus is equivalent to a rotation about the origin.]

1

Loci in the complex plane

13. (**Circles**) Describe the sets of points $z \in \mathbb{C}$ satisfying:

(a)
$$|z|=4$$
, (b) $|z-1|=3$, (c) $|z-i|=2$, (d) $|z-(1-2i)|=3$, (e) $|z^*-1|=1$, (f) $|z^*-i|=1$.

14. (**Transformations of circles**) Describe the set of points $z \in \mathbb{C}$ satisfying |z-2-i|=6. Without further calculation, describe the sets of points $u \in \mathbb{C}$, $v \in \mathbb{C}$, $w \in \mathbb{C}$ satisfying:

(a)
$$u = z + 5 - 8i$$
, (b) $v = iz + 2$, (c) $w = \frac{3}{2}z + \frac{1}{2}z^*$,

where |z - 2 - i| = 6.

- 15. (**Circles of Apollonius**) Let $a,b \in \mathbb{C}$. Show that the set of points satisfying $|z-a|=\lambda |z-b|$, where $\lambda \neq 1$, is a circle in the complex plane. [Hint: start by squaring the equation. You don't need to split z into real and imaginary parts.] Determine the centre and radius of the circle |z|=2|z-2|.
- 16. (**Lines and half-lines**) Describe the sets of points $z \in \mathbb{C}$ satisfying:

(a)
$$|z-2|=|z+i|$$
, (b) $|z-2|=|z^*+i|$, (c) $\arg(z)=\pi/2$, (d) $\arg(z^*)=\pi/4$.

- 17. (Lines and circles) Let $a \in \mathbb{R}$ and $b, c \in \mathbb{C}$. Without setting z = x + iy, describe the locus $azz^* + bz + b^*z^* + c = 0$ for different values of a, b, c. How does the locus change under the maps: (a) $z \mapsto \alpha z$ for $\alpha \in \mathbb{C}$; (b) $z \mapsto 1/z$?
- 18. (More complex figures) Sketch the sets of points $z \in \mathbb{C}$ satisfying:

$$\text{(a) } \mathrm{Re}(z^2) = \mathrm{Im}(z^2), \qquad \text{(b) } \frac{\mathrm{Im}(z^2)}{z^2} = -i, \qquad \text{(c) } |z^* + 2i| + |z| = 4, \qquad \text{(d) } |2z - z^* - 3i| = 2.$$

Exponential form of a complex number

- 19. State *Euler's formula* for the complex exponential $e^{i\theta}$. Hence provide a simpler derivation of the modulus-argument multiplication law proved in Question 9.
- 20. Find (a) the real and imaginary parts; (b) the modulus and argument, of:

$$\frac{e^{i\omega t}}{R+i\omega L+(i\omega C)^{-1}},$$

where ω, t, R, L, C are real, quoting your answers in terms of $X = \omega L - (\omega C)^{-1}$. (*) If you are taking IA Physics, can you think of what each of ω, t, R, L, C might represent?

- 21. Express each of the following in Cartesian form: (a) $e^{-i\pi/2}$; (b) $e^{-i\pi}$: (c) $e^{i\pi/4}$: (d) e^{1+i} : (e) $e^{2e^{i\pi/4}}$
- 22. Let a,b,ω be real constants. Show that $a\cos(\omega x)+b\sin(\omega x)=\mathrm{Re}((a-bi)e^{i\omega x})$, and hence, by writing a-bi in exponential form, deduce that $a\cos(\omega x)+b\sin(\omega x)=\sqrt{a^2+b^2}\cos(\omega x-\arctan(b/a))$.

Multi-valued functions: logarithms and powers

- 23. Explain why the complex logarithm $\log: \mathbb{C}\backslash\{0\} \to \mathbb{C}$ is a multi-valued function, and give its possible values. Using the complex logarithm, find all complex numbers satisfying: (a) $e^{2z}=-1$; (b) $e^{z^*}=i+1$.
- 24. Let the real and imaginary parts of the complex logarithm $\log(z)$ be u,v respectively. Sketch the contours of constant u,v in the complex plane, and show that they intersect at right angles.
- 25. Find the real and imaginary parts of the function $f(z) = \log(z^{1+i})$. Hence, sketch the locus $\operatorname{Re}(f(z)) = 0$.
- 26. Explain how the complex logarithm can be used to define complex powers, z^w , and hence describe the multi-valued nature of complex exponentiation. Compute all values of the multi-valued exponentials: (a) i^i ; (b) $i^{1/3}$.
- 27. Compute all possible values of $\left(i^{i}\right)^{i}$ and $i^{(i^{i})}$.

Roots of unity

- 28. Write down the solutions to the equation $z^n = 1$ in terms of complex exponentials, and plot the solutions on an Argand diagram. [Recall that the solutions are called the nth roots of unity.]
- 29. Find and plot the solutions to the following equations: (a) $z^3 = -1$; (b) $z^4 = 1$; (c) $z^2 = i$; (d) $z^3 = -i$.
- 30. If $\omega^n=1$, determine the possible values of $1+\omega+\omega^2+\cdots+\omega^{n-1}$, and interpret your result geometrically.
- 31. Show that the roots of the equation $z^{2n} 2bz^n + c = 0$ will, for general complex values of b and c and integral values of n, lie on two circles in the Argand diagram. Give a condition on b and c such that the circles coincide. Find the largest possible value for $|z_1 z_2|$, if z_1 and z_2 are roots of $z^6 2z^3 + 2 = 0$.

Trigonometry with complex numbers

- 32. Prove De Moivre's formula, $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$. Hence, solve the equation $16\sin^5(\theta) = \sin(5\theta)$ by expressing $\sin(5\theta)$ in terms of $\sin(\theta)$ and its powers.
- 33. Starting from Euler's formula, show that the trigonometric functions can be written in terms of complex exponentials as:

$$\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}, \qquad \cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}.$$

Learn these formulae off by heart. Hence, express $\sin^5(\theta)$ in terms of $\sin(\theta)$, $\sin(3\theta)$ and $\sin(5\theta)$.

- 34. Show that if $x, y \in \mathbb{R}$, the equation $\cos(y) = x$ has the solutions $y = \pm i \log (x + i\sqrt{1 x^2}) + 2n\pi$ for integer n.
- 35. Find the real and imaginary parts of the function $tan(z^*)$.

36. Let
$$\theta \neq 2p\pi$$
 for $p \in \mathbb{Z}$. Show that $\sum_{n=0}^{N-1} \cos(n\theta) = \frac{\cos((N-1)\theta/2)\sin(N\theta/2)}{\sin(\theta/2)}$. What happens if $\theta = 2p\pi$?

Hyperbolic functions

- 37. (a) Give the definitions of $\cosh(x)$ and $\sinh(x)$ in terms of exponentials.
 - (b) Hence, show that $\cos(x) = \cosh(ix)$ and $i\sin(x) = \sinh(ix)$. Deduce Osborn's rule: 'a hyperbolic trigonometric identity can be deduced from a circular trigonometric identity by replacing each trigonometric function with its hyperbolic counterpart except where sine enters quadratically, where we include an extra factor of -1.'
 - (c) Using Osborn's rule, write down the formula for $\tanh(x+y)$ in terms of $\tanh(x)$, $\tanh(y)$.
- 38. Find the real and imaginary parts of the following complex numbers:

(a)
$$\log \left[\sinh \left(\frac{i\pi}{2} \right) + \cosh \left(\frac{9i\pi}{2} \right) \right]$$
, (b) $\sum_{n=1}^{121} \left[\tanh \left(\frac{in\pi}{4} \right) - \tanh \left(\frac{in\pi}{4} - \frac{i\pi}{4} \right) \right]$.

- 39. Let $b \geq a > 0$ be fixed, and let θ be a variable parameter. Find the Cartesian equations of the two parametric curves: (a) $(x,y) = (a\cos(\theta),b\sin(\theta))$; (b) $(x,y) = (a\cosh(\theta),b\sinh(\theta))$, and sketch them in the plane. [This explains why hyperbolic functions are called hyperbolic functions!]
- 40. Sketch the graphs of $\cosh(x)$, $\sinh(x)$ and $\tanh(x)$, noting any asymptotes. Hence, sketch the graphs of $\cosh^{-1}(x)$, $\sinh^{-1}(x)$ and $\tanh^{-1}(x)$.
- 41. Express $\cosh^{-1}(x)$, $\sinh^{-1}(x)$ and $\tanh^{-1}(x)$ as logarithms, justifying any sign choices you make.
- 42. Solve the equation $\cosh(x) = \sinh(x) + 2\operatorname{sech}(x)$, giving the solutions as logarithms.
- 43. Find all solutions to the equations: (a) $\cosh(z) = i$; (b) $\sinh(z) = -2$; (c) $\tanh(z) = -i$.

¹Provided the arguments of all the circular trigonometric functions are homogeneous linear polynomials in the variables of interest.