
J. M. Moore, 2025

Part IA: Mathematics for Natural Sciences B
Examples Sheet 5: Infinite series and Taylor series

Please send all comments and corrections to jmm232@cam.ac.uk.

Questions marked with a (∗) are difficult and should not be attempted at the expense of the other questions. A section
marked with a (†) contains content that is unique to the Mathematics B course.

(†) Basics of infinite series

1. State clearly what it means for an infinite series to be: (i) convergent; (ii) absolutely convergent. If a series is absolutely
convergent, must it be convergent? Is the converse true?

2. By evaluating the partial sums, determine whether
∞∑

n=1

(√
n+ 1−

√
n
)

is convergent. Is it absolutely convergent?

3. By evaluating the partial sums, prove that the geometric series
∞∑

n=0

arn is absolutely convergent for−1 < r < 1.

(†) Tests for convergence

4. (a) Clearly state the comparison test for series convergence or divergence.
(b) Using the comparison test, prove that the harmonic series diverges. Hence, show that the following definition

of the Riemann zeta function:

ζ(p) :=

∞∑
n=1

1

np
,

with p real, converges if and only if p > 1. Is it absolutely convergent when p > 1?

5. (a) Clearly state, and prove, the alternating series test for series convergence or divergence.
(b) Hence, show that the following definition of the Dirichlet eta function:

η(p) :=

∞∑
n=1

(−1)n+1

np
,

with p real, converges if and only if p > 0. Is it absolutely convergent when p > 0?

6. Clearly state the ratio test for series convergence or divergence. Use it to show that the series:
∞∑

n=1

2n

n!

is absolutely convergent. To what value does it converge? [Hint: If you’re unsure, come back after studying Taylor series.]

7. Another test that was not lectured (but has come up in exams before!) is the integral test.

(a) Suppose that f : [k,∞) → R is a continuous, positive, decreasing function, where k is an integer. By drawing
a convincing diagram, show that:

∞∫
k

f(x) dx converges ⇒
∞∑

n=k

f(n) converges.

Show also that if the integral diverges, then the series diverges. This test is called the integral test.
(b) Using the integral test, reanalyse the convergence of the definition of ζ(p) given in Question 4.
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(†) Miscellaneous series

[This section contains a large collection of series from past papers for you to test convergence and absolute convergence. If you feel like you
are getting too much of a good thing, feel free to save some of them for us to do together in the supervision.]

8. Applying an appropriate test in each case, determine which of the following series are convergent, and which are ab-
solutely convergent:

(a)
∞∑

n=1

n2 + 1

3n2 + 4
; (b)

∞∑
n=1

n10

2n
;

(c)
∞∑

n=1

n10

n!
; (d)

∞∑
n=1

n!

10n
;

(e)
∞∑

n=1

5 · 8 · 11 · ... · (3n+ 2)

1 · 5 · 9 · ... · (4n− 3)
; (f)

∞∑
n=1

(−1)n+1

√
n

;

(g)
∞∑

n=1

(−1)n+1

(
2n+ 5

3n+ 1

)n

; (h)
∞∑

n=2

1

n log(n)
;

(i)
∞∑

n=1

n4

3n
; (j)

∞∑
n=1

(−1)n+1

(2n− 1)2
;

(k)
∞∑

n=2

1

n2 log(n)
; (l)

∞∑
n=1

n2 + 2n

n3 + 3n2 + 1
;

(m)
∞∑

n=0

1

1 + n2
; (n)

∞∑
n=0

a2n+1

2n+ 1
, where a > 0;

(o)
∞∑

n=1

np sin(ωp)whereω > 0, and p ∈ R; (p)
∞∑

n=1

cos((2n− 1)π)

n
;

(q)
∞∑

n=2

2n

n log(n)
; (r)

∞∑
n=1

sin(n)

n2
;

(s)
∞∑

n=1

n3

logn(2)
; (t)

∞∑
n=1

(√
n4 + a2 − n2

)
, for a > 0;

(u)
∞∑

n=1

n

2n − 1
; (v)

∞∑
n=1

(n!)3e3n

(3n)!
.

Taylor series

9. Carefully state Taylor’s theorem, giving Lagrange’s formula for the remainder term. Hence, obtain the first three non-
zero terms in the Taylor series of log(x) about x = 1 by direct differentiation. Using this expansion, together with
Lagrange’s form of the remainder, show that:

|log (3/2)− 5/12| ≤ 1/64,

and hence give an approximation of log(3/2) valid to one decimal place.

10. Write down the Taylor series aboutx = 0 for the following functions, finding their range of convergence by appropri-
ate tests in each case:

(a) ex, (b) log(1 + x), (c) sin(x), (d) cos(x), (e) sinh(x), (f) cosh(x), (g) (1 + x)a,

where in the final parta ∈ R is any real number (ignore endpoints of the range of convergence in the final case, where
convergence is subtle). What happens when a is a non-negative integer? Learn these series off by heart, and get your
supervision partner to test you on them.
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11. Without differentiating, find the first three terms in the Taylor series of the following functions. [Note: there are lots of
examples from past papers here to practise with, but if you are getting bored, we can do some in the supervision together. The
next few questions, 12-18, have more of a problem-solving element.]

(a)
1√
1 + x

aboutx = 0; (b)
1

(x2 + 2)3/2
aboutx = 0;

(c) tan(x) aboutx = 0; (d) log(cos(x)) aboutx = 0;

(e) arcsin(x) aboutx = 0; (f) arctan(x) aboutx = 1;

(g) (cosh(x))−1/2 aboutx = 0; (h) esin(x) aboutx = π/2;

(i)x sinh(x2) aboutx = 0; (j) log(1 + log(1 + x)) aboutx = 0;

(k) sin6(x) aboutx = 0; (l)
cosh(x)

cos(x)
aboutx = 0;

(m) cosh(log(x)) aboutx = 2; (n) log(2− ex) aboutx = 0;

(o)
sin(x)

sinh(x)
aboutx = 0; (p) sinh(log(x)) aboutx = 1;

(q) sin
(
πex

2

)
aboutx = 0; (r)

sinh(x+ 1)

x+ 2
aboutx = −1;

(s)
log(1 + x3)

cosh(x)
aboutx = 0; (t)

cosh(x)√
1 + x2

aboutx = 0;

(u)
e−x2

cosh(x)
aboutx = 0; (v)

log(2 + x)

2− x
aboutx = 0;

(w) log(cosh(x)) aboutx = 0; (x) cosh(
√
x) aboutx = 2;

(y)
sin(x)

(1 + x)2
aboutx = 0; (z)

x sin(x)

log(1 + x2)
aboutx = 0;

(a’) cos

(√
π2

16
+ x

)
aboutx = 0; (b’) log((2 + x)3) aboutx = 0.

12. Without differentiating, find the value of the thirty-second derivative of cos(x4) atx = 0.

13. Find the first three non-zero terms in a series approximation of log(1 + x+ 2x2)− log(x2) valid forx → ∞.

14. Let f(x) be a function which can be expanded as a Taylor series. Find the first two terms in the Taylor series of the
function log(1 + f(x)), taking all cases into account. [Hint: What happens iff(0) = 0, or f ′(0) = 0?]

15. Let f(x) = a0 + a1x + a2x
2 + a3x

3 + · · · be the Taylor series of f(x) about x = 0, with a0 ̸= 0. Find the first
three terms in the Taylor series of (a) 1/f(x) aboutx = 0; (b)

√
f(x) aboutx = 0.

16. (†) By considering a Taylor series expansion in each case, evaluate the limits:

(a) lim
x→0

tan(x)− tanh(x)

sinh(x)− x
, (b) lim

x→0

(
cosec(x)

x3
− sinh(x)

x5

)
.
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17. (a) Using the Taylor series for log(1 + x), show that 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− · · · = log(2).

(b) (∗) Hence, by an appropriate sequence of transformations of the series in part (a), show that:

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ · · · = 3

2
log(2).

(c) (∗) Comment on this result in relation to absolute convergence. [Look up the Riemann rearrangement theorem!]

18. (∗) Sketch the function f : R → R defined by f(x) = e−1/x2

for x ̸= 0, and f(0) = 0. Show that this function is
infinitely differentiable atx = 0, and find its Taylor series atx = 0. Comment on the general utility of Taylor series.

(†) Landau’s big-O notation

19. Give the formal definition of Landau’s big-O notation, ‘f(x) = O(g(x)) as x → x0’, including the cases where
x0 = ±∞. Decide which of the following statements are true, justifying your reasoning with careful proofs:

(a)x = O(x2) asx → 0, (b)x2 = O(x) asx → 0, (c)x = O(x2) asx → ∞, (d)x2 = O(x) asx → ∞.

20. Give the leading terms in an approximation to each of the following functions in the given limits, indicating the lead-
ing behaviour of the remainder in Landau’s big-O notation:

(a)
x3 + x

x+ 2
asx → 0, (b)

cos(x)− 1

x3
asx → 0, (c)

1 + 2x+ 2x2

3x+ 3
asx → ∞.

21. Show that (x3 + x2 + 1)1/3 − (x2 + x)1/2 = −1

6
+

1

72x
+O

(
1

x2

)
asx → ∞.

Newton-Raphson root finding

22. Give an explanation of the Newton-Raphson algorithm for root finding, including an appropriate sketch. Under what
general conditions is it guaranteed that Newton-Raphson will converge to the root of interest? Prove that, when it
converges to the root of interest, the Newton-Raphson method enjoys quadratic convergence.

23. (a) Find the value of the first iterate of Newton-Raphson iteration for the function f(x) = x − 2 + log(x) with a
starting guess ofx0 = 1.

(b) Find the value of the first and second iterates of Newton-Raphson iteration, valid to two decimal places, for the
function f(x) = x2 − 2with a starting guess ofx0 = 1.

[Both parts of this question are based on old (short) tripos questions, so try doing themwithout a calculator!]

24. [You may use a calculator for this question, but remember that you won’t be able to use a calculator in the exam. Newton-Raphson
questions will be more theoretical in the exams, like the next question, or involve easy calculations, like the previous question.]

(a) Sketch the graph of f(x) = x3− 3x2+2, indicating the coordinates of the turning points and the coordinates
of the intersections with thex-axis.

(b) Use Newton-Raphson with an initial guess of x0 = 2.5 to find an estimate of the largest root of the equation
f(x) = 0, accurate to 5 decimal places. Draw a sketch showing the progress of the algorithm.

(c) To which roots (if any) does the algorithm converge if we instead start at: (i)x0 = 1.5; (ii)x0 = 1.9; (iii)x0 = 2?

25. The real function f is defined by f(x) = x2 − 2ϵx − 1, where ϵ is a small positive parameter (0 < ϵ ≪ 1). Let xi

be the ith Newton-Raphson iterate, with a starting guess of x0 = 1, and let x∗ be the unique positive root satisfying
f(x∗) = 0. By Taylor expansion, show that |xi − x∗| ∝ ϵni , where: (a)n0 = 1; (b)n1 = 2; (c)n2 > 3.

26. (∗) Consider the cubic equation x3 − 2x + 2 = 0. Perform a numerical investigation (for example, by writing some
simple code) to determine the ranges in R which converge to the various roots, if any. Comment on the sensitivity of
Newton-Raphson to the choice of initial guessx0. [Afterwards, look up Newton fractals - it is particularly interesting to see
the behaviour of Newton-Raphson in the complex plane!]
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