Part IA: Mathematics for Natural Sciences B **Examples Sheet 6: Single-variable integration**

Please send all comments and corrections to jmm232@cam.ac.uk.

Questions marked with a (*) are difficult and should not be attempted at the expense of the other questions. A section marked with a (†) contains content that is unique to the Mathematics B course.

Riemann sums and the definition of the integral

1. Explain what is meant by a Riemann sum for a function $f:[a,b]\to\mathbb{R}$ using a partition $P=(x_0,...,x_n)$ (with $x_0 = a, x_n = b$) and tagging $T = (t_1, ..., t_n)$. By choosing appropriate partitions and taggings in each case, use sequences of Riemann sums to evaluate the definite integrals of the following functions on [0, 1] from first principles:

(b) x^2 , (c) x^3 , (d) \sqrt{x} ,

(e) $\cos(x)$.

[Hint: For part (d), consider a non-uniform tagging. For part (e), consider the integral of $\operatorname{Re}(e^{ix})$ instead of $\cos(x)$.]

- 2. Using a non-uniform tagging, use a sequence of Riemann sums to evaluate the integral $\int_{-\infty}^{\infty} \frac{dx}{x^{1+\alpha}}$, where $\alpha>0$.
- 3. Assuming standard integrals, show by considering Riemann sums that $\lim_{n\to\infty}\sum_{k=1}^n\frac{\sqrt{n^2-k^2}}{n^2}=\frac{\pi}{4}$.
- 4. (*) If a sequence of Riemann sums for a function $f:[a,b]\to\mathbb{R}$ converges, must the function be integrable?

Basic integrals

5. Write down the indefinite integrals of each of the following functions, where $a \neq 0$, $\alpha \neq -1$, and f is any (differentiable, non-zero) function:

(a) $(ax+b)^{\alpha}$, (b) e^{ax+b} , (c) $(ax+b)^{-1}$, (d) $\sin(ax+b)$, (e) $\cos(ax+b)$,

(f) $\sec^2(ax+b)$, (g) $\csc^2(ax+b)$, (h) $\sinh(ax+b)$, (i) $\cosh(ax+b)$, (j) $f'(x)f(x)^{\alpha}$,

(k) f'(x)/f(x).

Learn these integrals off by heart, and get your supervision partner to test you on them.

6. Using the results of the previous question, evaluate the definite integrals:

(a) $\int_{0}^{2} (x-1)^{2} dx$, (b) $\int_{0}^{\pi} e^{i\theta} d\theta$, (c) $\int_{0}^{\pi} \cos(x) dx$, (d) $\int_{-\pi/4}^{\pi/4} \sec^{2}(x) dx$, (e) $\int_{0}^{1} \frac{2x+4}{x^{2}+4x+1} dx$.

7. By writing $\cos(bx)$ as the real part of a complex exponential, determine the indefinite integral of $e^{ax}\cos(bx)$. Similarly, determine the indefinite integrals of $e^x(\sin(x) - \cos(x))$ and $e^x(\sin(x) + \cos(x))$.

Integration by substitution

8. By means of an appropriate substitution in each case, determine the indefinite integrals of the following functions:

(a) $\frac{1}{\sqrt{1-x^2}}$, (b) $\frac{1}{\sqrt{x^2-1}}$, (c) $\frac{1}{\sqrt{1+x^2}}$, (d) $\frac{1}{1+x^2}$, (e) $\frac{1}{1-x^2}$

1

Learn these integrals off by heart, and get your supervision partner to test you on them.

- 9. Using the results of the previous question, determine: (a) $\int \frac{dx}{\sqrt{x^2+x+1}}$; (b) $\int \frac{8-2x}{\sqrt{6x-x^2}} dx$.
- 10. By means of an appropriate substitution in each case, determine the indefinite integrals of the following functions:

(a)
$$x\sqrt{x+3}$$
, (b) $\tan(x)\sqrt{\sec(x)}$, (c) $\frac{e^x}{\sqrt{1-e^{2x}}}$, (d) $\frac{1}{x\sqrt{x^2-1}}$.

- 11. This question shows that any trigonometric integral can be turned into an algebraic integral through the use of the powerful half-tangent substitution.
 - (a) Show that if $t=\tan\left(\frac{1}{2}x\right)$, then $\sin(x)=2t/(1+t^2)$, $\cos(x)=(1-t^2)/(1+t^2)$ and $dx/dt=2/(1+t^2)$. Deduce that for any function f, we have:

$$\int f(\sin(x), \cos(x)) \ dx = \int f\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2dt}{1+t^2}.$$

(b) Using the method derived in (a), find the indefinite integrals of the following functions:

(i)
$$\csc(x)$$
, (ii) $\sec(x)$, (iii) $\frac{1}{2 + \cos(x)}$.

Partial fractions and rational functions

12. Explain the general strategy that one should adopt when integrating a rational function. Hence, determine the indefinite integrals of the following rational functions by decomposing into partial fractions:

(a)
$$\frac{1}{1-x^2}$$
, (b) $\frac{3x}{2x^2+x-1}$, (c) $\frac{x^4+x^2+4x+6}{3+2x-2x^2-2x^3-x^4}$.

Compare your answer to (a) with your answer to Question 7(e), where you evaluated the same integral using a substitution. Are your results compatible?

Integration by parts

13. Using integration by parts, determine the following integrals:

(a)
$$\int_{-\pi/2}^{\pi/2} x \sin(2x) \, dx$$
, (b) $\int_{0}^{\infty} x e^{-2x} \, dx$, (c) $\int_{0}^{1} x \log\left(\frac{1}{x}\right) \, dx$, (d) $\int_{0}^{\infty} x^{3} e^{-x^{2}} \, dx$.

- 14. By writing each of the following functions f(x) in the form $1 \cdot f(x)$, and using integration by parts, determine their indefinite integrals:
 - (a) $\log(x)$, (b) $\log^3(x)$, (c) $\cosh^{-1}(x)$, (d) $\tanh^{-1}(x)$, (e) $\sin(\log(x))$.

Reduction formulae

15. (a) Show that for n > 1, we have:

$$\int \sin^n(x) \, dx = -\frac{1}{n} \cos(x) \sin^{n-1}(x) + \frac{n-1}{n} \int \sin^{n-2}(x) \, dx + c,$$

where c is an arbitrary constant. Hence, evaluate $\int \sin^6(x) \, dx$.

(b) Using (a), show that the integral $I_n = \int_0^{\pi/2} \sin^n(x) dx$ satisfies $I_n = (n-1)I_n/n$. Hence, evaluate I_2 and I_4 .

16. Establish reduction formulae for each of the following parametric integrals:

(a)
$$I_n = \int\limits_0^\infty x^n e^{-x^2} \, dx$$
, (b) $J_n = \int\limits_0^\pi x^{2n} \cos(x) \, dx$, (c) $K_n = \int\limits_0^\infty x^{n-1} e^{-x} \, dx$, (d) $L_n = \int\limits_0^\infty \frac{dx}{(1+x^2)^n} \, dx$.

Hence: (i) evaluate I_3 , I_5 ; (ii) evaluate J_3 , J_5 ; (iii) establish a general formula for K_n ; (iv) evaluate L_4 . (*) Using part (c), suggest a reasonable definition of z! where z is a complex number. Will this work for all complex numbers?

Miscellaneous integrals

[This section contains a large collection of integrals from past papers for you to do. If you feel like you are getting too much of a good thing, feel free to save some of them for us to do together in the supervision.]

17. Evaluate the following integrals, using the most efficient method in each case:

Evaluate the following integrals, using the most efficient method in each case:
$$(a) \int_{4}^{9} \frac{dx}{\sqrt{x} - 1} \qquad \qquad (b) \int_{\pi/3}^{7/4} \frac{1 + \tan^{2}(x)}{(1 + \tan(x))^{2}} \, dx$$

$$(c) \int_{e^{2x} - 2e^{x}}^{e^{2x}} \, dx \qquad \qquad (d) \int_{\pi/3}^{1} \frac{dx}{1 + 3\cos^{2}(x)}$$

$$(e) \int_{2}^{3} \frac{2x + 1}{x(x + 1)} \, dx \qquad \qquad (f) \int_{2} \frac{1}{2\sqrt{x}} e^{\sqrt{x}} \, dx$$

$$(g) \int_{x^{3}}^{x^{3}} e^{-x^{4}} \, dx \qquad \qquad (h) \int_{x^{3}} \left(\frac{\sin(2x)}{\sin^{2}(x) + \log(x)} + \frac{1}{x(\sin^{2}(x) + \log(x))} \right) \, dx$$

$$(i) \int_{x^{3}}^{x} x \sqrt{3 - 2x} \, dx \qquad \qquad (j) \int_{\cos^{2}(x) - 5\cos(x) + 6}^{\sin(x)} \, dx$$

$$(k) \int_{\pi/3}^{\log(x)} \frac{\log(x)}{x^{4}} \, dx \qquad \qquad (l) \int_{x^{7/3}}^{5} x^{2} \log(x) \, dx$$

$$(l) \int_{\pi/3}^{x^{2}} x^{2} \log(x) \, dx$$

$$(l) \int_{e^{x}}^{x^{2}} \frac{1}{x^{2}} x \sin(3x) \, dx$$

$$(l) \int_{e^{x}}^{x^{2}} \frac{1}{x^{2}} x \sin(3x) \, dx$$

$$(l) \int_{e^{x}}^{x^{2}} x$$

The fundamental theorem of calculus

18. State both parts of the *fundamental theorem of calculus*. Use the fundamental theorem of calculus to evaluate the following derivatives:

(a)
$$\frac{d}{dx}\int\limits_{1}^{x}\frac{\log(t)\sin^{2}(t)}{t^{2}+7}\,dt,\quad \text{(b)}\ \frac{d}{dx}\left[\sum_{n=0}^{N}\binom{N}{n}\int\limits_{n}^{x}\sin(y^{2}+y^{6})\,dy\right],\quad \text{(c)}\ \frac{d}{dx}\left[\sin(x)\int\limits_{x}^{0}\sin(\cos(t))\,dt\right].$$

19. Without evaluating the integrals, determine the local extrema of the functions F_1 , F_2 defined by:

(a)
$$F_1(x) = \int_0^x t^2 \sin^2(t) dt$$
, (b) $F_2(x) = \int_{-\infty}^x e^{-t^2} dt$.

Hence, sketch the graphs of the functions F_1, F_2 . [Note: $F_2(x) \to \sqrt{\pi}$ as $x \to \infty$; see Question 23!]

(†) Leibniz's integral rule

20. Using the multivariable chain rule (we'll study it properly next term!), derive Leibniz's integral rule:

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,t) dt = f(x,b(x)) \frac{db}{dx} - f(x,a(x)) \frac{da}{dx} + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t) dt.$$

Give a geometric explanation for the rule in terms of changing areas. Verify that the rule holds in the following cases:

(a)
$$a(x) = 0$$
, $b(x) = 1 + x$, and $f(x, t) = t(x - t)$;

(b)
$$a(x) = \pi x^2$$
, $b(x) = x$, and $f(x, t) = 2x^2t + x\sin(t)$.

21. Evaluate the limit
$$\lim_{x\to\infty}\frac{d}{dx}\int_{\sin(1/x)}^{\sqrt{x}}\frac{2t^4+1}{(t-2)(t^2+3)}\,dt.$$

22. For all values of x, evaluate the integrals:

(a)
$$f(x) = \int_{0}^{1} \frac{t^{x} - 1}{\log(t)} dt$$
, (b) $g(x) = \int_{0}^{\infty} \frac{\log(1 + x^{2}t^{2})}{1 + t^{2}} dt$, (c) $h(x) = \int_{0}^{1} \frac{\sin(x \log(t))}{\log(t)} dt$,

by considering the derivatives f'(x), g'(x), h'(x). This method is sometimes called Feynman's trick for integration.

23. This question determines the Gaussian integral in a different way to the lectures (you will use a transformation to polar coordinates on the next sheet!). Define:

$$f(x) = \left(\int_{0}^{x} e^{-t^2} dt\right)^2$$
, and $g(x) = \int_{0}^{1} \frac{e^{-x^2(t^2+1)}}{1+t^2} dt$.

Show that f'(x)+g'(x)=0, and hence deduce that $f(x)+g(x)=\pi/4$. Conclude that $\int\limits_0^\infty e^{-t^2}\,dt=\frac{\sqrt{\pi}}{2}$.

(†) Integral inequalities

24. Using a sketch, show that $\sin(x) \ge 2x/\pi$ for $0 \le x \le \pi/2$. Hence show that $\int_0^{\pi/2} \frac{x^2}{1+\sin^2(x)} \, dx < \frac{\pi^3}{8} \left(1-\frac{\pi}{4}\right)$.

4

25. State and prove Schwarz's inequality for integrals. Use it to show that
$$\int\limits_{0}^{\pi/2} \frac{\sin(x)}{\sqrt{x^2+1}} \, dx < \sqrt{\frac{\pi}{4}\arctan\left(\frac{\pi}{2}\right)}.$$