
Part II: Applications of Quantum Mechanics - Revision

Lectures by David Tong, notes by James Moore

1 Scattering in 1D

1.1 Revision from Part IB

Recall that in 1D the wavefunctions for scattering from the
left and scattering from the right have the forms:

ψR(x) ∼

{
eikx + re−ikx as x→ −∞,
teikx as x→∞.

ψL(x) ∼

{
t′e−ikx as x→ −∞,
e−ikx + r′eikx as x→∞.

Definition: The probability current is defined by

J(x) = − i~
2m

(ψ′ψ∗ − ψ(ψ′)∗) ,

and can be derived from the equation

∂|ψ|2

∂t
+∇ · J = 0.

Theorem: |r|2 + |t|2 = 1.

Proof: Show that J is independent of x using the
Schrödinger equation, and then use compare asymptotic
behaviour at x =∞ and x = −∞.

Theorem: t′ = t, r′ = −r∗t/t∗.

Proof: Consider ψ∗R − r∗ψR (idea: try to get one
term in asymptotics as x → −∞). This solves the SE by
linearity. Writing out in full shows this is of the form ψL;
comparing coefficients and using |r|2 + |t|2 = 1 gives the
result.

1.2 The S-matrix

Definition: Define ingoing basis states by: IR(x) = eikx

as x→ −∞, IL(x) = e−ikx as x→ +∞, and 0 in the other
directions.

Similarly, define outgoing basis states by OR(x) = eikx as
x→ +∞, OL(x) = e−ikx as x→ −∞.

Writing ψR and ψL in this basis, we have:(
ψR
ψL

)
=

(
IR
IL

)
+

(
t r
r′ t′

)(
OR
OL

)
,

where the matrix is called the S-matrix.

Theorem: S is unitary.

Proof: Just verify S†S = I using |r|2 + |t|2 = 1 and
t′ = t, r′ = −r∗t/t∗.

1.3 The parity basis: diagonalising S

Since S is unitary, it can be diagonalised:

Definition: Define the parity basis by ψ+ = ψR + ψL and
ψ− = ψL − ψR. The transformation matrix taking us from
the left/right basis to the parity basis is given by:(

ψ+

ψ−

)
=

(
+1 +1
−1 +1

)(
ψR
ψL

)
.

The parity basis gets its name since for a symmetric
potential V (x) = V (−x), we have ψR(x) = ψL(−x),
which gives that ψ+ is an even function and ψ− is an odd
function.

Theorem: The ingoing/outgoing basis states in the
parity basis are given by:

I+ ∼ e−ik|x|

I− ∼ sign(x)e−ik|x|

O+ ∼ eik|x|

O− ∼ −sign(x)eik|x|.

Proof: Simply use the transformation matrix.

Theorem: The S-matrix in the parity basis is given
by:

SP =

(
t+ 1

2 (r + r′) 1
2 (r − r′)

1
2 (r′ − r) t− 1

2 (r + r′)

)
.

Proof: Let A be the transformation matrix. Then SP =
ASA−1 gives SP .
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For symmetric potentials, we have r = r′, hence the form
of SP reduces to: (

t+ r 0
0 t− r

)
.

Definition: Since SP is unitary, its eigenvalues have unit
modulus. Thus we write S++ = t + r = e2iδ+(k) and
S−− = t − r = e2iδ−(k) where δ±(k) are called the phase
shifts.

1.4 Bound states

Theorem: Poles of the S-matrix lying on the positive
imaginary axis correspond to bound states of the potential
V (x) (assumed symmetric). S++ and ψ+ give rise to
even parity states, and S−− and ψ− give rise to odd parity
states.

Proof: Recall that ψ+ = I+ + S++O+, so:

ψ+ =

{
eikx + S++e

−ikx as x→ −∞
e−ikx + S++e

ikx as x→∞.

Multiplying through by S−1
++ still gives a solution of the SE

by linearity, hence (relabelling ψ+):

ψ+ =

{
S−1

++e
ikx + e−ikx as x→ −∞

S−1
++e

−ikx + eikx as x→∞.

Setting S−1
++ = 0 and k = iλ for some λ > 0, it is clear we

have an even-parity bound state. Similarly for odd-parity
bound states.

1.5 Resonances

A quantum particle trapped in a potential well will have
some probability of escaping via tuneling.

Definition: We call a particle in such a potential well
a resonance or unstable state.

Theorem: Resonances occur at poles in the S-matrix in
the lower half-plane.

Proof: Let the pole occur at k = k0 − iγ, γ > 0.
This corresponds to a state with energy:

E =
~2k2

2m
= E0 −

iΓ

2
,

where

E0 =
~2

2m
(k2

0 − γ2), Γ =
2~2γk0

m

are the real and (negative twice the) imaginary parts of E.
Recall that

ψ+ =

{
eikx + S++e

−ikx as x→ −∞
e−ikx + S++e

ikx as x→∞,

and so multiplying through by S−1
++, we have (at the pole),

the solution of the SE (relabelling ψ+):

ψ+ =

{
e−ikx as x→ −∞
eikx as x→∞.

Inserting time-dependence from the the time-dependent
SE, we get:

ψ+ =

{
e−ikxe−iEt/~ as x→ −∞
eikxe−iEt/~ as x→ −∞.

Writing this out with E = E0 − iΓ/2 shows that the state is
a resonance, since its probability spreads out over time.

We can compute the speed with which the particle
escapes by writing the exponent in the form γ(x ± vt); we
find the speed is:

v =
Γ

2~γ
.

Definition: Γ is called the width of the resonance,
and τ = ~/Γ is called its half-life.

Note: A useful expression for S++ near a resonance
is:

S++ =
E − E0 − iΓ/2
E − E0 + iΓ/2

,

where we get the denominator because we need a pole,
and the numerator because we need S++ to be pure
phase.

2 Classical scattering in 3D

Consider a plane wave (i.e. a wall of particles) impacting
upon a potential:

2
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The incident cross-section is dσ = ( 1
2 (b+ db)2 − 1

2b
2)dφ =

bdφdb. This scatters into a solid angle dΩ = sin(θ)dθdφ
(same dφ for incoming and outgoing if potential is spheri-
cally symmetric). Hence we have:

Definition: The differential cross-section is defined
by: ∣∣∣∣ dσdΩ

∣∣∣∣ =
b

sin(θ)

∣∣∣∣dbdθ
∣∣∣∣ .

Interpretation: Physically, the differential cross-section is:

dσ

dΩ
=

# of scattered particles per unit time per solid angle
incident flux

.

Definition: The total-cross section is defined by

σT =

∫
dσ

dΩ
dΩ.

It is the total area of the beam that has been deflected.

3 Quantum scattering in 3D

3.1 The scattering amplitude

For quantum scattering, the asymptotic form of the wave-
function must be:

ψ ∼ eikx︸︷︷︸
incident

plane wave

+ f(θ)
eikr

r︸ ︷︷ ︸
scattered

radial wave

,

where f is some weighting function.

Definition: f(θ) is called the scattering amplitude.

Theorem: The differential cross-section for quantum
scattering is given by:

dσ

dΩ
= |f(θ)|2.

Proof: Recall that the probability current is:

J = − i~
2m

(ψ∗∇ψ − ψ(∇ψ)∗) .

Hence
Jincident =

~k
m

ẑ,

and Jscattered can be determined by first finding ∇ψscattered
up to O(1/r2):

∇ψscattered =
ikf(θ)eikr

r
r̂ +O

(
1

r2

)
⇒

Jscattered =
~k
m

|f(θ)|2

r2
r̂ +O

(
1

r3

)
.

Hence the incident flux is:

Jincident · ẑ =
~k
m
,

and the number of scatter particles per unit time per solid
angle is:

(Jscattered · r̂)dA︸ ︷︷ ︸
flux times

area

dΩ−1 =
~k
m
|f(θ)|2,

since dA = r2dΩ in the solid angle dΩ. The result follows.

Corollary: The total cross-section is given by:

σT =

∫
dσ

dΩ
dΩ =

∫
|f(θ)|2dΩ.

3.2 Partial waves

Definition: An expansion in partial waves is an expansion
of the form

∞∑
l=0

Rl(r)Pl(cos(θ)),

where the Pl are Legendre polynomials.

Theorem: The expansion of the quantum scattering
wavefunction

ψ ∼ eikz + f(θ)
eikr

r

in partial waves is:

ψ ∼
∞∑
l=0

(
2l + 1

2ik

)[
(−1)l+1 e

−ikr

r
+ (1 + 2ifl)

eikr

r

]
︸ ︷︷ ︸

Rl(r)

Pl(cos(θ)),

where the scattering amplitude f(θ) has partial wave ex-
pansion

f(θ) =

∞∑
l=0

2l + 1

k
flPl(cos(θ)).

Proof: Deal with f(θ)eikr/r first. Using the partial wave
expansion for f(θ), we have:

f(θ)
eikr

r
∼
∞∑
l=0

2l + 1

k

eikr

r
flPl(cos(θ)),

is the expansion in partial waves.

3
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Now we deal with eikz, which is harder. Let ρ = kr. Then
we have:

eikz = eiρ cos(θ) =

∞∑
l=0

(2l + 1)ul(ρ)Pl(cos(θ)),

and we must find the ul(cos(θ)). Use orthogonality of Pl
(note normalisation is 2/(2l + 1)). We have (with ω =
cos(θ)):

ul(ρ) =
1

2

1∫
−1

eiρωPl(ω)dω.

Integrate once by parts to get:

ul(ρ) =
1

2

[
eiρωPl(ω)

iρ

]1

−1

+
1

2iρ

1∫
−1

eiρω
dPl
dω

dω

︸ ︷︷ ︸
O(1/ρ2)

=
1

2iρ
(eiρ − (−1)le−iρ) +O

(
1

ρ2

)
using Pl(1) = 1 and Pl(−1) = (−1)l. Putting this all
together, we get the result.

3.3 Properties of the expansion

Definition: The S-matrix elements are Sl = 1 + 2ifl. The
phase shifts are the δl satisfying Sl = e2iδl . Hence

fl =
1

2i

(
e2iδl − 1

)
= eiδl sin(δl).

Theorem: We have:

σT =
4π

k2

∞∑
l=0

(2l + 1) sin2(δl).

Proof: We have

σT =

∫
|f(θ)|2dΩ

= 2π

1∫
−1

∣∣∣∣∣
∞∑
l=0

2l + 1

k
flPl(ω)

∣∣∣∣∣
2

dω

=
2π

k2

∞∑
l=0

(2l + 1)2|fl|2
1∫
−1

Pl(ω)2dω

=
4π

k2

∞∑
l=0

(2l + 1)|fl|2.

Since fl = eiδl sin(δl), the result follows.

3.4 The radial Schrödinger equation

Now we have written ψ is a convenient way, we need to
determine the Rl(r) in the expansion.

Theorem (Radial SE): The Rl(r) satisfy:(
d2

dr2
− l(l + 1)

r2
− U(r) + k2

)
(rRl(r)) = 0,

where U = 2mV/~2 and E = ~2k2/2m.

Proof: We substitute the expansion for ψ as

ψ ∼
∞∑
l=0

Rl(r)Pl(cos(θ))

into the Schrödinger equation. We need the facts that

∇2 = P 2
r +

L2

r2
,

Pr =
d

dr
+

1

r

and Pl is an L2 eigenstate with eigenvalue ~2l(l + 1).

3.5 The BIG picture

The important equations of scattering theory are:

Equations of 3D scattering theory:

The radial SE is:(
d2

dr2
− l(l + 1)

r2
− U(r) + k2

)
(rRl(r)) = 0.

where U = 2mV/~2, E = ~2k2/2m.

The asymptotic form of the wavefunction ψ is:

∞∑
l=0

(
2l + 1

2ik

)[
(−1)l+1 e

−ikr

r
+ (1 + 2ifl)

eikr

r

]
︸ ︷︷ ︸

Rl(r)

Pl(cos θ).

The steps to solving a 3D scattering problem are:

1. Solve the radial Schrödinger equation.

2. Compare the form ofRl(r) from the radial Schrödinger
equation with the asymptotic form of the wavefunction
to determine the fl, δl.

4
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3.6 Detailed example: the hard sphere

Consider

V (r) =

{
∞ for r ≤ a,
0 for r > a.

The radial Schrödinger equation is:(
d2

dr2
− l(l + 1)

r2
+ k2

)
(rRl(r)) = 0

for r > a. Defining ρ = kr, the equation reduces to(
d2

dρ2
− l(l + 1)

ρ2
+ 1

)
(ρRl(ρ)) = 0.

The solutions are spherical Bessel functions:

Rl(ρ) = Al(cos(αl)jl(ρ)− sin(αl)nl(ρ)).

Imposing Rl = 0 at r = a gives the condition
cos(αl)jl(ka) = sin(αl)nl(ka) which can be used to
determine αl.

We now wish to compare Rl to the expected asymp-
totic form. To do so, we take ρ → ∞ in the above form.
Using the asymptotics of the spherical Bessel functions,
we get:

Rl(ρ) ∼ 1

ρ
sin

(
ρ− 1

2
lπ + αl

)
.

The expected form is:

Rl(ρ) ∼ (−1)l+1 e
−iρ

ρ
+ e2iδl

eiρ

ρ

=
eiδleiπl/2

ρ

[
−e−i(ρ+δl−πl/2) + ei(ρ+δl−πl/2)

]
.

Hence αl = δl. The phase shifts can then be determined
from cos(δl)jl(ka) = sin(δl)nl(ka).

3.7 Scattering length

Definition: For low-momentum scattering, we have in
general δ0 ≈ −kas+O(k2), where we call as the scattering
length.

3.8 Bound states

Theorem: Poles in the S-matrix on the positive imaginary
axis correspond to bound states of the potential.

Proof: Same as 1D case.

Theorem: Divergence of the scattering length is due to
bound states in the potential.

Proof: Near a bound state, we have

S0(k) = e2iδ0 =
iλ+ k

iλ− k

since bound states are poles on the positive imaginary
axis. Hence

2iδ0 ≈ log(iλ+ k)− log(iλ− k)

= log

(
1 +

k

iλ

)
− log

(
1− k

iλ

)
=

2k

iλ
+O(k2)

Hence δ0 ≈ −k/λ near a bound state. Thus as ≈ 1/λ near
a bound state. A new bound state appears as λ increases
past 0 giving a divergent scattering length. As the bound
state passes λ = 0, it is said to be at threshold.

3.9 Resonances

As in 1D, resonances are poles in the S-matrix in the lower
half-plane.

Close to a pole, we may write

S0(E) = e2iδ0 ≈ E − E0 − iΓ/2
E − E0 + iΓ/2

Taking the real part, we have:

cos(2δ0) =
(E − E0)2 − Γ2/4

(E − E0)2 + Γ2/4
⇒ sin2(δ0) =

Γ2

4(E − E0)2 + Γ2
.

Hence

σT =
4π

k2
· Γ2

4(E − E0)2 + Γ2
.

This is called the Breit-Wigner distribution. Plotting, we
see that a small bump in the distribution corresponds to
the existence of a resonance. We now understand that we
call Γ the width because it is the characteristic width of the
bump.

5
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4 The Born approximation

4.1 The Lippmann-Schwinger equation

Theorem: The Schrödinger equation (H0 +V ) |ψ〉 = E |ψ〉
may be rewritten as

|ψ〉 = |φ〉+ (E −H0)−1V |ψ〉

where |φ〉 is such that H0 |φ〉 = E |φ〉.

Proof: Trivial.

To find (E − H0)−1 we seek the Green’s function G
obeying: (

E +
~2

2m
∇2

)
G(r, r′) = δ(r− r′).

Writing E = ~2k2/2m, we need

(∇2 + k2)G(r, r′) =
2m

~2
δ(r− r′). (∗)

Theorem: G can be chosen as:

G(r, r′) = −2m

~2

1

4π

eik|r−r′|

|r− r′|
.

Proof: By translational invariance, G(r, r′) = G(x) where
x = r− r′. Take Fourier transform of (∗) to get:

(−q2 + k2)G̃(q) =
2m

~2
⇒ G̃(q) = −2m

~2

1

q2 − k2
.

Take inverse Fourier transform:

G(x) = −2m

~2

∫
d3q

(2π)3

eiq·x

q2 − k2

= −2m

~2

1

(2π)3

2π∫
0

dφ

+1∫
−1

d(cos(θ))

∞∫
0

dq eiqx cos(θ)

q2 − k2

= − 2m

(2π~)2ix

∞∫
0

q

(
eiqx − e−iqx

q2 − k2

)
dq

= − 2m

(2π~)2ix

∞∫
−∞

qeiqx

q2 − k2
dq

To remove the singularities in the integrand, consider
∞∫
−∞

qeiqx

q2 − k2 − iε
dq

as ε → 0. Since ε → 0, we can factorise the denominator
as:

∞∫
−∞

qeiqx

(q − k − iε)(q + k + iε)
dq.

Now perform contour integral by closing in the upper half
plane. Contribution from arc is zero by Jordan’s Lemma.
By the residue theorem, we get the result.

4.2 Approximation scheme

Using the Green’s function, we can rewrite the Lippmann-
Schwinger equation as:

ψ(r) = eik·r − 2m

~2

∫
d3r′

eik|r−r′|

4π|r− r′|
V (r′)ψ(r).

So far, this is exact. To approximate, expand |r − r′| using
the binomial expansion to get:

|r− r′| =
√
r2 + r′2 − 2r · r′ = r − r · r′

r
.

This gives:

ψ(r) ∼ eik·r − 2m

~2

1

4π

(∫
d3r′e−ikr̂·r′V (r′)ψ(r′)

)
eikr

r

⇒ f(θ) = −2m

~2

1

4π

∫
d3r′e−ikr̂·r′V (r′)ψ(r′).

We still have the wavefunction on the right hand side. To
remove it, we take the first approximation to ψ(r) as eik·r.
This gives the Born approximation:

f(θ) ≈ −2m

~2

1

4π

∫
d3r′eiq·r

′
V (r′) = − m

2π~2
Ṽ (q),

where q = k − kr̂ (i.e. momentum loss). The differential
cross-section is given by:

dσ

dΩ
≈ m2

4π2~4
|Ṽ (q)|2.

Note: Ṽ is a 3D Fourier transform. We get an inte-
grand of the form eiq·r...r2 sin(θ)dθdφdr, so we write
q · r = qr cos(θ) in order to integrate.

6
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5 The variational method

5.1 Theory

Theorem: Let H |n〉 = En |n〉 with E0 ≤ E1 ≤ .... Then for
any normalised state |ψ〉, we have 〈ψ|H|ψ〉 ≥ E0.

Proof: Write
|ψ〉 =

∑
n

an |n〉 .

Then

〈ψ|H|ψ〉 =

∞∑
m,n=0

a∗man 〈m|H|n〉 =

∞∑
n=0

|an|2En.

Since
∑
|an|2 = 1 by normalisation, we have:

〈ψ|H|ψ〉 = E0 +
∞∑
n=0

|an|2 (En − E0)︸ ︷︷ ︸
> 0

≥ E0.

The variational method uses this theorem by taking a fam-
ily of states ψ(α) and minimising

E(α) =
〈ψ(α)|H|ψ(α)〉
〈ψ(α)|ψ(α)〉

.

By above, E(α) ≥ E0 for all α, so minimum is a good
approximation to E0 (though no way of telling how good).

5.2 Application: bound states

Bound states in a potential with V (x)→ 0 as |x| → ∞ have
E < 0. Thus if the variational method gives a negative
result, the ground state energy is negative, so there exists
a bound state.

For example:

Theorem: Let V (x) be such that V (x) = 0 for |x| > L.
Then there exists a bound state if

∞∫
−∞

V (x) dx < 0.

Proof: Use ψ(α) =
(
α
π

)1/4
e−αx

2/2 (i.e. normalised Gaus-
sian). This gives

E(α) =
~2α

4m
+

√
α

π

∞∫
−∞

V (x)e−αx
2

dx.

Let Q(α) = E(α)/
√
α. As α → 0+, Q(α) becomes nega-

tive. So there exists a small α with E(α) < 0.

5.3 Excited states energy

If the potential V (x) has definite parity, we can get an
estimate for E1. We choose |ψ(α)〉 such that 〈ψ(α)|0〉 = 0
for all α, by choosing |ψ(α)〉 to have opposite parity to |0〉.
The proof the procedure works is the same as above.

5.4 The virial theorem

From the variational method, it is easy to prove that E(α)
is stationary at energy eigenstates |ψ〉. This allows us to
prove:

Theorem: Let kinetic energy be T and potential energy
be V . Suppose that V (λx) = λnV (x) and that |ψ〉 is an
energy eigenstate. Then we have 2 〈ψ|T |ψ〉 = n 〈ψ|V ψ〉.

Proof: Let |ψ〉 have energy E. Then

E =

∞∫
−∞

ψ∗
(
− ~2

2m

∂2ψ

∂x2
+ V (x)ψ

)
dx

=

∞∫
−∞

− ~2

2m

∂ψ∗

∂x

∂ψ

∂x
dx+

∞∫
−∞

ψ∗V ψ dx (by parts)

= 〈ψ|T |ψ〉+ 〈ψ|V |ψ〉 .

Let ψ(x) 7→ α1/2ψ(αx) (the α1/2 is needed for normalisa-
tion). Then:

E(α) = α2 〈ψ|T |ψ〉+ α−n 〈ψ|V |ψ〉 .

Using E(α) stationary at energy eigenstates, we have that
when α = 1, ∂E∂α = 0, and the result follows.

5.5 Examples of variational method

When doing questions using the variational method, al-
ways try to write the Hamiltonian so that ψ(α) is an eigen-
state of part of the Hamiltonian. This dramatically eases
calculation.

7
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6 One-dimensional band structure

6.1 The tight-binding model in 1D

Assumptions of model:

• Assume electrons are bound at particular lattice sites
with state |n〉 at the nth site.

• Assume there is a non-negligible probability of jump-
ing to at furthest the two sites to the left and right.

• Periodically identify |1〉 = |N + 1〉 (put lattice on a cir-
cle).

Then the Hamiltonian is:

H = E0

N∑
n=1

|n〉 〈n| − t
N∑
n=1

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|) ,

where t is called the hopping parameter.

Solution of Schrödinger: Write

|ψ〉 =
∑
n

ψn |n〉 .

Substituting into H |ψ〉 = E |ψ〉, we get:

E0ψn − t(ψn+1 + ψn−1) = Eψn.

Solutions are of the form

ψn =
eikna√
N
,

where the lattice spacing is a and
√
N is included for

normalisation.

States are labelled by ka ∈ [−π, π), since n ∈ Z.
Thus k ∈ [−π/a, π/a).

Definition: [−π/a, π/a) is called the Brillouin zone.

Features of model:

• The energy is E(k) = E0 − 2t cos(ka), so energy lies
in a band.

• Periodicity implies eikNa = 1, hence

k ∈ 2πZ
Na

,

thus momentum is quantised.

• The number of states in the Brillouin zone is
length of zone

possible momenta
=

2π/a

2π/Na
= N.

• At low momenta, E(k) ≈ E0 − 2t + ta2k2. E0 − 2t
is an irrelevant constant. We can compare ta2k2 with
~2k2/2m to deduce the particle has an effective mass
m∗ = ~2/2ta2 in the presence of the lattice.

6.2 Nearly-free: perturbative approach

Assumptions of model:

• Electrons move on a continuous line.

• The potential is treated as a perturbation to a free
electron.

• The potential is assumed periodic with period a.

• We impose a periodic boundary condition by putting
the electron on a circle of circumference L. Then the
number of lattice sites is L/a.

Solution of Schrödinger: Solve via perturbation
theory. The unperturbed states are plane waves:

〈x|k〉 =
eikx√
L

with energies E0(k) = ~2k2/2m. By orthonormality, we
have:

〈k|k′〉 =
1

L

∞∫
−∞

ei(k
′−k)xdx = δk,k′ .

Since every state has degeneracy 2, we may need degen-
erate perturbation theory. To check, we investigate mixing
of the states |k〉 and |k′〉. We have:

〈k|V |k′〉 =
1

L

∞∫
−∞

∞∑
n=−∞

Vne
i(k′−k+2πn/a)x dx,

where Vn are the Fourier coefficients of V (x) (allowed
since Vn periodic with period a - also note V ∗n = Vn to
guarantee V (x) real). Hence

〈k|V |k′〉 =

∞∑
n=−∞

Vnδ(k−k′),2πn/a.

So we get mixing iff k − k′ = 2πn/a. Since degeneracy
only occurs for k′ = −k, we get mixing iff k = πn/a (i.e. k
is at the edge of the Brillouin zone).

Thus we get the following three cases:

Case 1 - |k| � π/a: We can use non-degenerate per-
turbation theory. We have:

E(k) =
~2k2

2m
+ 〈k|V |k〉︸ ︷︷ ︸

irrelevant
constant V0

+
∑
k′ 6=k

| 〈k′|V |k〉 |2

E0(k)− E0(k′)︸ ︷︷ ︸
non-zero iff k = k′ + 2πn/a

+... .

If k = k′+2πn/a, E0(k) and E0(k′) are far apart, so second
order term negligible (denominator large). Hence up to a
constant, spectrum unchanged - electron ‘doesn’t see’ the
lattice.
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Case 2 - k = nπ/a: We need degenerate perturbation the-
ory. The degenerate subspace is span{|k〉 , |k′〉 ≡ |−k〉};
we need to diagonalise H in this degenerate subspace.

The matrix of H in the degenerate subspace is:(
〈k|H|k〉 〈k|H|k′〉
〈k′|H|k〉 〈k′|H|k′〉

)
=

(
E0(k) + V0 Vn

V ∗n E0(k′) + V0

)
.

The eigenvalues obey (E0(k)+V0−E)2−|Vn|2 = 0, hence

E =
~2

2m

n2π2

a2
+ V0 ± |Vn|.

So we get a ‘jump’ in the energy spectrum when k = nπ/a.

Case 3 - k = nπ/a+ δ, |δ| � 1: This is the case when k is
‘close’ to the edge of the Brillouin zone. We again need
degenerate perturbation theory, since when states have
energy very close to one another, they mix.

The state |k〉 = |nπ/a+ δ〉 will mix with |−nπ/a+ δ〉.
Using the matrix from above, with k 7→ nπ/a + δ and
k′ 7→ −nπ/a+ δ, we get the eigenvalue equation

(E0(k) + V0 − E)(E0(k′) + V0 − E)− |Vn|2 = 0.

Solving for E, we have:

E =
~2

2m

(
n2π2

a2
+ δ2

)
+ V0 ±

√
|Vn|2 +

(
~2

2m
· 2nπδ

a

)2

.

Using the binomial expansion, we see the leading order
non-constant term is O(δ2), hence near the edge of the
Brillouin zone, the energy behaves quadratically.

Summary:

• The spectrum is virtually unchanged when |k| � π/a.

• The energy splits when k = nπ/a. The size of the gap
is 2|Vn|.

• The spectrum is quadratic at the edges.

Combining this information allows us to sketch the band
structure:

Definition: The region of k-space corresponding to the
nth band is called the nth Brillouin zone.

6.3 Nearly-free: Floquet matrix approach

This is another way of deriving the band structure for
nearly-free electrons.

Let ψ1(x) and ψ2(x) be two linearly independent so-
lutions of the SE with a periodic potential V (x) = V (x+a).
Since the equation is invariant under the translation
x 7→ x+ a, ψ1(x+ a) and ψ2(x+ a) must also be solutions
to the SE.

Definition: Let(
ψ1(x+ a)
ψ2(x+ a)

)
= F (E)

(
ψ1(x)
ψ2(x)

)
, (∗)

where F (E) is a matrix (this must be possible since ψ1(x)
and ψ2(x) are LI so form a basis for the solution space of
the equation). We call F (E) the Floquet matrix.

Theorem: The Floquet matrix has the following properties:

(i) det(F (E)) = 1;

(ii) tr(F (E)) is real.

Proof: To prove (i), differentiate (∗) with respect to x to get(
ψ′1(x+ a)
ψ′2(x+ a)

)
= F (E)

(
ψ′1(x)
ψ′2(x)

)
.

We can write this equation and (∗) together as a matrix
equation:

W (x+ a) = F (E)W (x),

where

W (x) =

(
ψ1(x) ψ′1(x)
ψ2(x) ψ′2(x)

)
.

We have that det(W ) is independent of x (show using
∂x det(W ) and the SE). Thus det(W (x)) = det(W (x + a))
so det(F (E)) = 1.

To prove (ii), simply note that we may always pick ψ1

and ψ2 to be real (simply take real parts and they remain
solutions to SE), hence F (E) has real entries, and
hence the trace is real. Similarity transformations pre-
serve the trace too if we want to pick ψ1 and ψ2 complex.

6.4 Using the Floquet matrix

From the above Theorem, the Floquet matrix has charac-
teristic equation λ2−(tr(F ))λ+1 = 0. There are two types
of solution to this equation:

1. If |tr(F )| < 2, then the roots λ± are complex and
have equal magnitude (since they are complex con-
jugates). Hence λ+ = eika and λ− = e−ika for
some k ∈ R, |k| < π/a. So the eigenstates obey
ψ±(x + a) = e±ikaψ±(x). These correspond to plane
wave states, spread throughout the lattice. These are
the bands in the spectrum.

9
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2. If |tr(F )| > 2, then the roots λ± are real an so
λ+ = eµa and λ− = e−µa for some µ. Thus ψ±(x) =
e±µaψ±(x). Thus there always exists a state that di-
verges as x → ∞ or x → −∞. Thus these states are
not normalisable and thus unphysical. This is where
the gaps in the spectrum occur.

Hence Floquet theory recovers the band structure.

Example: Suppose we want to find the eigenstates
of the potential

V (x) = −~2λ

m

∞∑
n=−∞

δ(x− na).

We use Floquet theory. Observe ψ1(x) = sinh(kx)
and ψ2(x) = cosh(kx) both solve the SE with energy
−~2k2/2m, in the region −a < x < 0.

We attempt to extend these solutions to 0 < x < a.
Writing

ψ1(x) =

{
sinh(kx) for − a < x < 0

A sinh(kx) +B cosh(kx) for 0 < x < a

and applying continuity and the jump condition gives A = 1
and B = 0. Similarly we can extend ψ2(x). This gives the
Floquet matrix:(

cosh(ka) sinh(ka)
− 2λ

k cosh(ka) + sinh(ka) − 2λ
k sinh(ka) + cosh(ka)

)
.

The condition for a band is |tr(F )|2 < 2, i.e.(
cosh(ka)− λ

k
sinh(ka)

)2

< 1.

6.5 Impurities and bound states

Suppose we modify the potential in the above example to

V (x) = −~2λ

m

∞∑
n=−∞,n6=0

δ(x− na)− ~2γ

m
δ(x),

i.e. we introduced an impurity at x = 0.

For x > 0, nothing has changed. So the Floquet
matrix still takes us from 0 < x < a, to a < x < 2a, etc.
Thus we seek an eigenvector of F with eigenvalue c such
that |c| < 1, so that ψ(x+ a) = cψ(x) for all x > 0. We can
use parity to extend to x < 0, then match at the origin.

From the theory, we know such an eigenvalue c ex-
ists if |tr(F )|2 > 2. Let its eigenstate on 0 < x < a be
ψ = Aeµx +Be−µx. Extend to −a < x < 0 as follows.

We write

ψ(x) =

{
Aeµx +Be−µx for 0 < x < a,

Ae−µx +Beµx for − a < x < 0,

by parity. Continuity at x = 0 is automatically satisfied.
Using the jump condition at x = 0, we find (A − B)µ =
−γ(A + B). WLOG A = µ − γ (it’s a normalisation con-
stant), so B = µ+ γ. Thus

ψ ∝

{
(µ− γ)eµx + (µ+ γ)e−µx for 0 < x < a,

(µ− γ)e−µx + (µ+ γ)eµx for − a < x < 0.

Recall that since this is an eigenstate for F (E) on 0 < x <
a, we must have:

F (E)

(
µ− γ
µ+ γ

)
= c

(
µ− γ
µ+ γ

)
.

Conversely, if this condition holds, all the matching condi-
tions at x = 0 hold. So this is a necessary and sufficient
condition for the existence of a bound state.

6.6 Bloch’s Theorem in 1D

Definition: Define the translation operator by
Tlψ(x) = ψ(x+ l).

Theorem: The translation operator obeys:

(i) Tl is unitary;

(ii) {Tl} forms an Abelian group;

(iii) Tl = eilp̂/~.

Proof: For (i), we have

(φ, Tlψ) = 〈φ|Tl|ψ〉 =

∫
dx φ∗Tlψ =

∫
dx φ∗(x)ψ(x+ l)

=

∫
dx φ(x− l)∗ψ(x) =

∫
dx(T−lφ)∗ψ = (T−lφ, ψ).

by a simple substitution. Hence T †l = T−l = T−1
l . So done.

(ii) is obvious. (iii) is just Taylor’s theorem,

eilp̂/~ψ(x) =

(
1 + l

∂

∂x
+
l2

2

∂2

∂x2
+ ...

)
ψ(x) = ψ(x+l).

Definition: A system is called invariant under dis-
crete translations if [H,Tl] = 0 for all l = na, n ∈ Z, for
some a.

This is distinct from translational symmetry, when
[H,Tl] = 0 for all l, i.e. [H, p̂] = 0.

10



J. M. Moore, 2018

Theorem: If a system has discrete translational sym-
metry (say period a), we can label eigenstates by some
k ∈ [−π/a, π/a).

Proof: Since we have discrete translational symme-
try, we can simultaneously diagonalise H and Ta. Since
Ta is unitary, all its eigenvalues are phases eθ(a), for some
θ(a), dependent on a.

We have that Tna has eigenvalue eiθ(an) and Tna has
eigenvalue eiθ(a)n; these must be the same to respect the
group structure. Choosing θ(a) = ak for some k fulfils that
requirement.

Based on this, we can label eigenstates by k:

Taψk(x) = ψk(x+ a) = eikaψk(x).

Because eika is a phase, k is defined only up to 2π/a, i.e.
k ≡ k + 2π/a. Thus we can restrict k to lie in the range
k ∈ [−π/a, π/a), i.e. the Brillouin zone, as required.

Theorem (Bloch’s Theorem): In a periodic poten-
tial, V (x) = V (x+a), all energy eigenstates can be written
as

ψk(x) = eikxuk(x),

where uk(x) is periodic, uk(x + a) = uk(x), and
k ∈ [−π/a, π/a).

Proof: Take ψk(x) to be an eigenstate of Ta. Then
Taψk(x) = ψk(x + a) and Taψk(x) = eikaψk(x), so that
ψk(x+ a) = eikaψk(x).

Define uk(x) = e−ikxψk(x). Then uk(x) is certainly
periodic with period a: uk(x + a) = e−ik(x+a)ψk(x + a) =
e−ikxψk(x) = uk(x). So we’re done.

Slogan: A lattice only affects plane wave states eikx

by multiplying them by a periodic function.

Definition: p = ~k is called the crystal momentum.
It is conserved modulo 2π/a, e.g. if particles collide their
initial and final momentum can only differ by 2πn/a.

Also, our revision of the range of k means we change the
way we draw the nearly-free electron bands; we now use
the reduced zone scheme:

7 3D lattices

7.1 Bravais lattices

Definition: A Bravais lattice is a periodic array of points
defined by integer sums of linearly independent basis vec-
tors, ai, i.e.

Λ = {r = n1a1 + n2a2 + n3a3|ni ∈ Z}.

The vectors ai are called primitive unit vectors. A primitive
unit cell is a region of space which, when translated by
the primitive lattice vectors, tessellates all of space.

Theorem: All primitive unit cells have volume
V = |a1 · (a2 × a3)|.

Proof: We can relate two choices of primitive lat-
tice vectors a′i and ai by a transformation matrix M ,
i.e. a′i = Mai. Since the a′i must be integer com-
binations of the ai and vice-versa, M and M−1 are
matrices of integers. Hence det(M),det(M−1) ∈ Z. But
det(M) det(M−1) = det(MM−1) = 1, so |det(M)| = 1.
So preserves volume.

Definition: The Wigner-Seitz cell for the lattice Λ
is

Γ = {x : |x| < |x− r| for all r ∈ Λ\{0}}.
It is the collection of all points closer to the origin than to
any of the other lattice points.

The important lattices in nature are:

Cubic lattice: a1 = ax̂, a2 = aŷ, a3 = aẑ. The Wigner-Seitz
cell is also a cube, of volume a3, centred on some lattice
point.

Body-centred cubic lattice: a1 = ax̂, a2 = aŷ,
a3 = 1

2a (x̂ + ŷ + ẑ). Equivalently, a1 = 1
2a(−x̂ + ŷ + ẑ),

a2 = 1
2a(x̂ − ŷ + ẑ), a3 = 1

2a(x̂ + ŷ − ẑ). This is a
cube with an extra point in the middle. The volume of its
Wigner-Seitz cell is V 3/2.

Face-centred cubic lattice: a1 = 1
2a(ŷ + ẑ), a2 = 1

2a(x̂ + ẑ),
a3 = 1

2a(x̂ + ŷ). This is a cube with an extra point on the
centre of each face. The Wigner-Seitz cell has volume
V = a3/4.
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7.2 Reciprocal lattices

Definition: The reciprocal or dual lattice of Λ is

Λ∗ = {k =
∑

nibi : ni ∈ Z},

where the bi satisfy ai · bj = 2πδij . Since dimensionally
we have [ai] = L⇒ [bj ] = L−1, Λ∗ is a momentum-space
lattice.

Theorem: In 3D, we have

bi =
2π

V
· 1

2
εijkaj × ak,

where V is the volume of the primitive unit cell. Conversely,

ai =
2π

V ∗
· 1

2
εijkbj × bk,

where V ∗ is the volume of the reciprocal primitive unit cell.

Proof: Consider just b1. We have a2 · b1 = a3 · b1 = 0. So
b1 is orthogonal to both a2 and a3. Hence it lies along the
line parallel to a2 × a3, i.e. b1 = K a2 × a3.

We now just need to find K. We need b1 · a1 = 2π,
hence KV = 2π. Thus K = 2π/V .

The remaining relationships follow by symmetry. In
particular, we need the 1

2εijk because the εijk picks up
both aj × ak and −ak × aj = aj × ak.

Theorem: We have eik·r = 1 for all r ∈ Λ and k ∈ Λ∗.

Proof: For integers ni and mj we have:

exp (i(n1b1 + n2b2 + n3b3) · (m1a1 +m2a2 +m3a3))

= exp(i(n1m1 + n2m2 + n3m3) · 2π) = 1.

Definition: The Brillouin zone is the Wigner-Seitz
cell of the reciprocal lattice. The nth Brillouin zone is the
set of points in the reciprocal lattice for which the origin is
the nth closest point.

Theorem: The nth Brillouin zone can be mapped
into the first zone, without overlap except on the bounding
surfaces, to completely cover the first zone.

Proof: Define the map θ from the nth Brillouin zone
to the first Brillouin zone by θ(k) = k− qk, where qk is the
closest element of Λ∗ to k.

We need to show: (i) this maps into the first Brillouin
zone; (ii) the map is surjective; (iii) the map is injective,
with overlap only on the boundaries.

To show (i), let θ(k) = k−qk. Let q be the closest element
of Λ∗ to k − qk. By periodicity, q is the closest dual lattice
vector to k, translated by −qk, i.e. q = qk − qk = 0. So
θ(k) is in the first Brillouin zone.

For (ii), let k be in the first Brillouin zone, and let q
be the nth closest dual lattice point to k (choosing q from
a selection if necessary). Then q + k has closest dual
lattice point q by periodicity, so θ(q + k) = k.

Finally, for (iii), suppose that θ(y) = θ(z) = x. Let
θ(y) = y − u = x and θ(z) = z − v = x, and define
w = v− u ∈ Λ∗. Then w = z− y⇒ z = y + w.

Now let yn be the nth closest dual lattice point to y.
By periodicity, yn + w is the nth closest dual lattice point
to z. Since both y and z are in the nth Brillouin zone, their
nth closest point must be 0 or a vector equidistant to 0.

8 3D band structure

8.1 The tight-binding model in 3D

The 3D tight-binding Hamiltonian is

H = E0

∑
r∈Λ

|r〉 〈r| −
∑
r∈Λ

∑
a

ta (|r〉 〈r + a|+ |r + a〉 〈r|) ,

where ‘a’ are the nearest-neighbour sites to the origin (be
careful not to double count - if we include a, we mustn’t
use −a). This is solved by

|ψ(k)〉 =
1√
N

∑
r∈Λ

eik·r |r〉 ,

which gives the spectrum as

E(k) = E0 − 2
∑

a

ta cos(k · a).

8.2 Bloch’s Theorem in 3D

Theorem (Bloch’s Theorem): An electron moving in a
periodic potential V (x) with the periodicity of the lattice Λ
has energy eigenstates of the form

ψk(x) = eik·xuk(x),

where uk has the periodicity of the lattice.

Proof: Same as in 1D. Introduce the translation op-
erator Tr. We have [Tr, H] = 0 for all r ∈ Λ, so they
are simultaneously diagonalisable. Choose ψk(x) to be
an eigenstate of Tr with eigenvalue eik·r. The proof then
proceeds as in 1D.
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8.3 Fourier transforms for lattices

We want to study the nearly-free electron model in 3D. We
will need the Fourier transform:

Ṽ (k) =

∫
d3x e−ik·xV (x).

Theorem: Ṽ (k) = 0 unless k ∈ Λ∗.

Proof: We have:

Ṽ (k) =
∑
r∈Λ

∫
Γ

d3x e−ik·(x+r)V (x + r)

=
∑
r∈Λ

e−ik·r︸ ︷︷ ︸
∆(k)

∫
Γ

d3x e−ik·xV (x),

where Γ is the Wigner-Seitz cell.

For any r0 ∈ Λ, we also have:

∆(k) =
∑
r∈Λ

eik·(r−r0) = e−ik·r0
∑
r∈Λ

eik·r = e−ik·r0∆(k).

Hence ∆(k) = 0 unless e−ik·r0 for all r0 ∈ Λ, i.e. k ∈ Λ∗.

Theorem (Stronger version): We can write

Ṽ (k) =

V ∗ ∑
q∈Λ∗

δ(k− q)


︸ ︷︷ ︸

∆(k)

∫
Γ

d3x e−ik·xV (x)

︸ ︷︷ ︸
S(k)

.

where V ∗ is the volume of the Brillouin zone, and Γ is the
Wigner-Seitz cell. S(k) is called the structure factor.

Proof: We follow the same proof as above, but this
time we try to determine the explicit form of ∆(k). Write
k =

∑
kibi and r =

∑
niai where the ni are integers and

ki are not necessarily integers. Then

∆(k) =
∑
r∈Λ

e−ik·r = σ(k1)σ(k2)σ(k3)

where

σ(k) =

∞∑
n=−∞

e−2πikn.

Expand the Dirac comb function in a Fourier series:

∞∑
n=−∞

δ(k − n) =

∞∑
n=−∞

cne
−2πikn.

Then

∞∑
n=−∞

1/2∫
−1/2

δ(k − n)e2πikmdk = cm ⇒ cm = 1.

Hence we have found σ(k) explicitly. Thus ∆(k) is non-
vanishing if and only if the ki are integers, i.e. k ∈ Λ∗. So
we have:

∆(k) = σ(k1)σ(k2)σ(k3) = V ∗
∑

q∈Λ∗

δ(k− q).

We can invert this above Fourier transform to get:

V (x) =
1

(2π)3

∫
d3k eik·x∆(k)S(k) =

∑
q∈Λ∗

eiq·xVq,

for constants Vq, i.e. a Fourier series for V (x). We are
now ready to analyse the nearly-free electron model in 3D.

8.4 Nearly-free electrons in 3D

As in 1D, treat V (x) as a perturbation to free electrons with
wavefunction

〈x|k〉 = eik·x,

and energy E = ~2k2/2m. We now decide whether to use
degenerate perturbation theory by computing 〈k|V |k′〉.

Theorem: 〈k|V |k′〉 = 0 unless k− k′ ∈ Λ∗.

Proof: We have:

〈k|V |k′〉 =

∫
d3x ei(k′−k)·xV (x) = Ṽ (k− k′),

hence done by earlier work.

As in 1D, we get cases:

Case 1 - far from edge of Brillouin zone: For |k| small,
|k〉 and |k + q〉 have wildly different energy for q ∈ Λ∗.
Hence non-degnerate perturbation theory is valid. As in
1D, we find the spectrum unchanged, i.e. E ≈ ~2|k|2/2m.

Case 2 - close to edge of Brillouin zone: Suppose |k〉
and |k + q〉 have the same energy. Then |k|2 = |k + q|2
which implies 2k · q + |q|2 = 0. This is satisfied for
k = − 1

2q + k⊥, where k⊥ · q = 0, i.e. when k is on the
perpendicular bisector of the origin and the lattice point,
i.e. on the edge of the Brillouin zone as expected.

The result is that a band opens up in the spectrum
at the edge of the Brillouin zone. Energies at the edges of
the first Brillouin zone are slightly lower than they should
be, and energies at the edges of the second Brillouin zone
that touch the first are slightly higher than they should be.
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8.5 Example: 2D square lattice

Consider a 2D square lattice of spacing a and potential

V = 2A(cos(γx) + cos(γy)),

where γ = 2π/a. One state on the edge of the Brillouin
zone is k = (γ/2, 0). The states (−γ/2, 0), (0, γ/2) and
(0,−γ/2) all have the same energies in the absence
of the perturbation. However, only k = (γ/2, 0) and
k′ = (−γ/2, 0) differ by a dual lattice vector.

In this degenerate subspace, we have(
〈k|H|k′〉 〈k|H|k′〉
〈k′|H|k〉 〈k′|H|k′〉

)
=

(
Ek + V(0,0) V(γ,0)

V(−γ,0) Ek′ + V(0,0)

)
.

This gives energies:

E =
~2γ2

8m
±A,

showing that a gap has opened up. We can perform a
similar analysis at the corners. We get a diagram that
looks like:

8.6 Number of states in the Brillouin zone

Theorem: Consider a finite lattice Λ with N lattice sites.
The number of states in the Brillouin zone is N .

Proof: Consider a lattice r =
∑
niai, with 0 ≤ ni ≤ Ni.

For Ni very large, N ≈ N1N2N3. Imposing periodic
boundary conditions on the wavefunction, we have
ψ(x +Niai) = ψ(x).

Without loss of generality, let ψ be a Bloch state.
Then ψ(x +Niai) = eiNiai·kψ(x). Hence periodicity forces:

eiNiai·k = 1 ⇒ k =
∑
i

mibi
Ni

,

where mi ∈ Z and bi are reciprocal lattice vectors.

Thus for k to be in the first Brillouin zone, need
mi ∈ {0, 1, ...Ni − 1}, i.e. there are N1N2N3 ≈ N
possible states in the first Brillouin zone.

9 Scattering off a lattice

9.1 The Laue condition

The wavefunction for scattering at the origin is

ψ(r) ∼ eik·r + f(k; k′)
eikr

r
,

where we have an incident wave of momentum k and
scattering amplitude f (k′ = kr̂ is momentum of outgoing
wave).

Shift the potential so it is now localised at R. Then:

ψ(r) ∼ eik·(r−R) + f(k; k′)
eik|r−R|

|r− R|

≈ e−ik·R
(
eik·r + f(k; k′)e−i(k′−k)·R e

ikr

r

)
,

where we have expanded |r − R| =
√
r2 +R2 − 2r · R ≈

r − r̂ · R, and used k′ = kr̂.

For a lattice localised at multiple R, we get a total
scattering amplitude:

fΛ = f(k; k′)
∑
R∈Λ

eiq·R,

where q = k − k′. Hence there is zero scattering unless
q ∈ Λ∗. This is the Laue condition.

9.2 The Bragg condition

Suppose that Q = k − k′ ∈ Λ∗, i.e. there is scattering.
Let k · k′ = k2 cos(θ). Taking the square of the condition
Q = k− k′ gives:

k2 + k′2 − 2k · k′ = Q2 ⇒ 2k2(1− cos(θ)) = Q2

⇒ 2k sin

(
1

2
θ

)
= Q.

Define the Bragg planes of the lattice Λ by the set of a ∈ Λ
such that a · Q = 2πn for n an integer. Let the distance
between successive planes be d = 2π/Q. Let λ = 2π/k
be the incoming wavelength. Then we have derived the
condition:

nλ = 2d sin (θ/2) .

This is called the Bragg condition for scattering.

Interpretation: Suppose two waves scatter off two
consecutive Bragg planes, as shown in the figure below.
The extra distance that one has to travel compared to the
other is 2x = 2d sin(θ/2). So the Bragg condition states:
the extra distance travelled must be the wavelength, or
waves must interfere constructively for scattering to occur.
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10 Electron dynamics in solids

We now study bulk behaviour of many electrons. We
ignore all interactions between electrons.

10.1 Fermi definitions

Electrons are fermions, so by the Pauli exclusion principle,
no two electrons may occupy the same state.

Consider putting electrons in a box. Their energy is
E = ~2|k|2/2m. Filling up energy levels from the bottom,
the first electron can be put in state k = 0 and spin up, the
second can put in state k = 0 and spin down, the third can
be put in state k = (1, 0, 0) and spin up, etc.

Definition: As this procedure goes on, we fill up a
ball in momentum space. This is called the Fermi sea.
The boundary of the Fermi sea is called the Fermi surface.
States on the Fermi surface are said to have Fermi
momentum ~kF and Fermi energy E = ~2k2

F /2m.

10.2 Metals and insulators

In the presence of a lattice, we know:

• The energy levels split into bands.

• Each band accommodates 2N electrons (2 from spin,
number of states in Brillouin zone is N ).

• Each atom donates Z electrons called valence elec-
trons. Z is called the valency. So in total we have ZN
electrons.

We consider the two cases of Z = 1 and Z = 2. We have:

Case 1 - Z = 1: There are N electrons. They fill up
half of the Brillouin zone. The Fermi sea looks like:

The existence of a Fermi surface in the first Brillouin
zone means that if the system is perturbed slightly (e.g.
an electric field is applied) the electrons can respond by
moving into unoccupied states at little energy cost.

Definition: Materials with a Fermi surface are called
metals.

Case 2 - Z = 2: There are now 2N electrons. We
spill over into the first Brillouin zone for weak lattices:

For strong lattices, i.e. when the minimum energy
Emin in the second Brillouin zone is greater than the
maximum energy Emax in the first Brillouin zone, we get
the case:

There is now no Fermi surface. Hence there is a
large energy gap everywhere to the next available state
- so electrons don’t move when small perturbations are
applied.

Definition: Materials with no Fermi surface are called
insulators.
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11 The semi-classical equations

11.1 Velocity, currents and effective mass

Theorem: The velocity of electrons in a lattice is

v =
1

~
∂E

∂k
.

Proof: The velocity is given by

v =
1

m
〈ψ| − i~∇|ψ〉 .

From Bloch’s Theorem, ψk(x) = eik·xuk(x) for k in the Bril-
louin zone. The SE gives Hψk = E(k)ψk, so Hkuk =
E(k)uk, where

Hk =
~2

2m
(−i∇+ k)2 + V (x).

Consider Hk+q for small q. Then

Hk+q = Hk +
∂Hk

∂k
· q + ... .

View this as a small perturbation of Hk. Then from first
order perturbation theory, the change in energy is:

∆E = 〈uk|
∂Hk

∂k
· q|uk〉 .

This must agree with the exact result:

E(k + q) = E(k) +
∂E

∂k
· q + ... .

Hence we have

∂E

∂k
= 〈uk|

∂H

∂k
|uk〉

=
~2

m
〈uk|(−i∇+ k)|uk〉 =

~2

m
〈ψk| − i∇|ψk〉 = ~v.

Theorem: A filled band carries no electric current,
J = −ev, or heat current.

Proof: The total electric current is (2 included for
spin degeneracy):

j = −2e

~

∫
Γ

d3k
(2π)3

∂E

∂k
= 0,

since this is a total derivative, and Γ, the Brillouin zone, is
a torus.

Similarly, the total heat current is given by

jE = 2

∫
Γ

d3k
(2π)3

Ev︸︷︷︸
energy
carried

=
2

2~

∫
Γ

d3k
(2π)3

∂(E2)

∂k
= 0.

Definition: The effective mass tensor is defined to be

m∗ij = ~2

(
∂2E

∂ki∂kj

)−1

.

For isotropic systems, this reduces to

m∗ = ~2

(
∂2E

∂k2

)−1

.

This comes from expanding around the minimum energy
of a band, E = Emin + (~2/2m)|k− kmin|2.

11.2 The semi-classical equations

In the semi-classical approximation we work with average
momentum k and average position x. We assume that
when we apply an external force, F = −∇U(x), the energy
is E = E(k) + U(x).

Theorem: We have Newton’s equation,

~
dk
dt

= −∇U = F.

Proof: Differentiate E(k)+U(x) wrt to t; the result must be
zero by energy conservation. We get:

0 =
∂E

∂k
· dk
dt

+
∂U

∂x
· dx
dt

⇒ 0 = v ·
(
dk
dt

~ +∇U
)
.

Theorem: Newton’s equation may be written as

m∗
dv
dt

= F.

Proof: We have:

m∗
dv
dt

=
m∗

~
d

dt

(
∂E

∂k

)
=
m∗

~
dk
dt
· ∂
∂k

(
∂E

∂k

)
= ~

dk
dt

= F,

using the definition of effective mass.

In summary:

The semi-classical equations:

v =
1

~
∂E

∂k
,

~
dk
dt

= −∇U = F,

m∗
dv
dt

= −∇U = F.
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11.3 Example: motion in a magnetic field

Consider electrons of charge −e and energy E(k) moving
in a constant magnetic field B. The semi-classical equa-
tions give:

~
dk
dt

= −ev× B, v =
1

~
∂E
∂k

.

We can show that k ·B is constant using the semi-classical
equations, so the k-space orbits are in a plane perpendic-
ular to B.

We can also show that E is constant, hence the k-
space trajectories are surface of constant energy; we
conclude the orbits in momentum space are around Fermi
surfaces in planes perpendicular to B.

To get the orbits in real space, we note B̂ × ~k̇ =
−eB̂× (ṙ×B) = −eBṙ⊥, via a vector identity for the vector
triple product, where r⊥ = r− (r · B̂)B̂.

Theorem: The time taken to orbit the Fermi surface
is

T =
~2

eB

∂A(E)

∂E

∣∣∣∣
k·B
,

where A(E) is the cross-sectional area of the Fermi
surface with Fermi energy E.

Proof: The time taken to go between k1 and k2 is:

t2 − t1 =

k2∫
k1

1

|k̇|
dk =

~2

eB

k2∫
k1

∣∣∣∣∂E∂k ⊥

∣∣∣∣−1

dk,

by the real-space equation of motion above. Consider a
second orbit at a higher energy, with difference in energy
∆E given by:

∆E =

∣∣∣∣∂E∂k ⊥

∣∣∣∣∆(k).

The time taken to traverse the orbit is

t2 − t1 =
~2

eB

1

∆E

k2∫
k1

∆(k) dk,

where the integral is the area of the strip between the two
orbits. As ∆E → 0, we recover the result.

11.4 Holes

If we have a completely filled band, and remove one
electron, the vacancy acts like a particle in its own right.

Definition: This particle is called a hole.

The energy of a hole is Ehole(k) = −E(k) where E(k) is
the energy of the electron with the same momentum as
the hole. Taylor-expanding, we get m∗hole = −m∗.

Finally, the momentum of the hole if khole = −k, and the
hole velocity is

vhole =
1

~
∂Ehole

∂khole
=

1

~
∂E

∂k
= +v.

Substituting these into the semi-classical equations of mo-
tion, we get:

m∗hole
dvhole

dt
= −F = +eE,

for a hole in an electric field, say. Thus holes look like
positive charge carriers.

12 Phonons

12.1 Monatomic lattices

Consider a 1D lattice with spacing a where atoms are free
to move, say with position xn. Assume the potential is∑

n

V (xn − xn−1).

Taylor expand about xn = na (the equilibrium position),
writing un = xn − na for the small deviation. Then to sec-
ond order the Hamiltonian is:

H =
∑
n

p2
n

2m
+
λ

2

∑
n

(un − un−1)2.

This gives the equations of motion:

mün = −λ(2un − un−1 − un+1).

Trial un = Ae−i(ωt+kna), with k ∈ [−π/a, π/a) and impose
the periodic boundary condition un+N = un. We find the
dispersion relation:

ω = 2

√
λ

m

∣∣∣∣sin(ka2
)∣∣∣∣ .

At small k, we get ω ≈ ak
√
λ/m, i.e. the speed of sound

in the crystal is cs = a
√
λ/m.

12.2 Diatomic lattices

Consider a chain of atoms of alternating masses m and
M , spacing a. As before, we find the equations of motion:

Mü2n = −λ(2u2n − u2n−1 − u2n+1),

mü2n+1 = −λ(2u2n+1 − u2n − u2n+2).

Trial u2n = Ae−iωt−2ikna and u2n+1 = Be−iωt−2ikna (2’s
in exponent next to a now since effectively periodic with
period 2a). Substituting into the equations of motion, we
obtain the eigenvalue problem:(

mω2 − 2λ λ(1 + e−2ika)
λ(1 + e2ika) Mω2 − 2λ

)(
A
B

)
=

(
0
0

)
.
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Solve by requiring the determinant of the matrix to be zero.
This gives two dispersion relations,

ω2
± =

λ

mM

(
m+M ±

√
(m−M)2 + 4mM cos2(ka)

)
.

The + branch is called the optical branch and the −
branch is called the acoustic branch.

These names come from the eigenvectors associ-
ated to these eigenvalues - the acoustic branch has
eigenvector (1, 1) so atoms oscillate in sync (longitudinal),
whilst the optical branch has eigenvector (M,−m) so the
atoms oscillate out of phase (transverse).

13 Particles in a magnetic field

13.1 Gauge fields

Recall from Part IB Electromagnetism that:

E = −∇φ− ∂A
∂t
, B = ∇× A

where φ and A are called gauge fields. Recall that A and
φ are not unique; under a gauge transformation:

φ 7→ φ− ∂α

∂t
, A 7→ A +∇α,

the electric and magnetic fields remain unchanged. This is
a redundancy in our description of the system. Only quan-
tities which are gauge invariant are physically meaningful.

Notice that the canonical momentum, p = mẋ + qA,
is unphysical, as it is altered under a gauge transforma-
tion p 7→ q∇α. However, the mechanical momentum,
πππ = p− qA is gauge invariant.

13.2 The Schrödinger equation

From the classical theory, we know that the Hamiltonian for
a particle of charge q moving in an electromagnetic field is:

H =
1

2m
(p− qA)2 + qφ.

Hence the Schrödinger equation is:

i~
∂ψ

∂t
=

1

2m
(−i~∇− qA)

2
ψ + qφψ.

Theorem: Provided ψ 7→ eiqα/~ψ under a gauge transfor-
mation, the Schrödinger equation is gauge invariant.

Proof: Define covariant derivatives by:

Dtψ =
∂ψ

∂t
+
iq

~
φψ,

Diψ =
∂ψ

∂xi
− iq

~
Aiψ.

An exercise in differentiation shows Dtψ 7→ eiqα/~Dtψ
under a gauge transformation, and Diψ 7→ eiqα/~Diψ too.
In particular, Di(Diψ) 7→ eiqα/~Diψ, since Diψ transforms
like the wavefunction under gauge transformation.

In terms of the covariant derivatives, the Schrödinger
equation may be written

i~Dtψ = − ~2

2m
D2ψ,

which is manifestly gauge invariant by the above.

13.3 Landau levels

Consider the SE in a constant magnetic field B = (0, 0, B).

Definition: Landau gauge is defined by A = (0, Bx, 0).

Working in Landau gauge, the Hamiltonian becomes:

H =
1

2m
(p̂2
x + (p̂y − qBx̂)2 + p̂2

z).

Solution via wavefunctions: Trial ψ = eikyy+ikzzχ(x) in
the SE. Since p̂yψ = ~kyψ and p̂zψ = ~kzψ, we get:

Hψ =
1

2m

(
(~ky − qBx̂)2 + ~2k2

z + p̂2
x

)
ψ = Eψ.

In particular, the z direction decouples, and we can instead
consider the problem:

H̃χ(x) =

(
E − ~2k2

z

2m

)
χ(x),

where

H̃ =
1

2m
p̂2
x +

mω2
B

2
(x̂− kyl2B)2,

with l2B = ~/qB (the magnetic length squared) and
ωB = qB/m (the cyclotron frequency ).

This is simply a harmonic oscillator (albeit not centred at
the origin). So the energy spectrum is:

En = ~ωB
(
n+

1

2

)
+

~2k2
z

2m
,

for n = 0, 1, 2... .

Definition: The levels ~ωB (n+ 1/2) are called Lan-
dau levels.
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The associated wavefunctions come from the harmonic
oscillator:

ψn,ky,kz ∼ eikyy+ikzzHn(x− kyl2B)e−(x−kyl2B)/2l2B ,

and hence the wavefunctions are localised near kyl2B in
the x-direction. This allows us to show:

Theorem: The number of states in an area A is
qBA

2π~
.

Proof: Set kz = 0 and restrict to a finite part of the plane
of width Lx and length Ly, both finite.

Since Ly is finite, momentum ky is quantised in units
2π/Ly. Since Lx is finite, the wavefunctions may only be
localised near 0 ≤ kyl2B ≤ Lx.

Hence the number of states is:

N =

∫ Lx/l
2
B

0

dk︸ ︷︷ ︸
possible space

/
2π

Ly︸︷︷︸
space ky
takes up

=
LxLy
2πl2B

=
qBA

2π~
.

Solution via raising and lowering operators: We
define raising and lowering operators via:

a =
1√

2q~B
(πx + iπy), a† =

1√
2q~B

(πx − iπy).

These obey the commutation relation [a, a†] = 1. Also, we
may write

H =
q~B
m

a†a− q~B
2m

+
p2
z

2m
,

and after decoupling the z-direction, we can solve for
the spectrum via the standard method for a harmonic
oscillator.

13.4 The Arahonov-Bohm effect

Consider a particle moving on a fixed circle around a
solenoid, at fixed radius r. Although B = 0 on the circle,
we have A 6= 0 on the circle, by Part IB Electromagnetism:∮

A · dx =

∫∫
B · dS = Φ,

the total magnetic flux through the solenoid. Choose
gauge with Ar = 0, Az = 0 and

Aφ =
Φ

2πr
.

The Hamiltonian becomes

H =
1

2m
(pφ − qAφ)2 =

1

2mr2

(
−i~ ∂

∂φ
− q Φ

2m

)2

.

The energy eigenstates are

ψ =
1√
2πr

einφ,

where n ∈ Z so that ψ is single-valued. The corresponding
eigenvalues are:

E =
1

2πr2

(
~n− qΦ

2π

)2

=
~2

2mr2

(
n− Φ

Φ0

)2

,

where Φ0 = 2π~/q is called the quantum of flux. Note
that if Φ/Φ0 is an integer, the spectrum is unchanged;
however, if it is not, we can always detect the fractional
part - even though there is no magnetic field outside of the
solenoid!

Interpretation: The particle knows about non-local in-
formation because it is a quantum particle. Namely, it
‘knows about’: ∮

A · dx,

which is a gauge-invariant quantity, and hence physical.

13.5 Spin in a magnetic field

For particles in a magnetic field with spin, we get the cou-
pling term in the Hamiltonian:

− gq

2m
S · B,

where g is a dimensionless number, approximately equal
to 2. This is derived in Quantum Field Theory.

Example: For a particle of charge e and spin 1/2,
with g = 2 moving in the magnetic field B = (0, 0, B), we
can write the Hamiltonian as:

H =
1

2m
Q2,

where Q = πxσx + πyσy, where σσσ are the Pauli matrices.
This is easiest to see by working backwards from the re-
sult, and recalling σxσy = −iσz, σyσx = iσz, and evaluat-
ing the commutator

[πx, πy] = i~qB.
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