
Part II: Asymptotic Methods - Revision

Lectures by David Stuart, notes by James Moore

1 Definitions and basic properties

1.1 Definitions

Definition: We say f(x) = O(g(x)) as x → x0 if there
exist M > 0, δ > 0 such that |x − x0| ≤ δ implies
|f(x)| ≤M |g(x)|.

Definition: We say f(x) = o(g(x)) as x → x0 if
|f(x)/g(x)| → 0 as x→ x0.

Definition: A sequence of functions {φk(x)}∞k=1 is called
an asymptotic sequence as x → x0 if φj+1 = o(φj(x)) for
all j. We say that a function f has an asymptotic expan-
sion with respect to the asymptotic sequence {φk(x)}∞k=1,
written

f(x) ∼
∞∑
j=0

ajφj(x) as x→ x0,

if for all N , ∣∣∣∣∣∣f(x)−
N∑
j=0

ajφj(x)

∣∣∣∣∣∣ = o(φN (x)).

1.2 Operations on asymptotic expansions

Theorem: The following operations on asymptotic expan-
sions are possible:

(a) If f(x) ∼
∑
ajφj(x) and g(x) ∼

∑
bjφj(x) as x→ x0,

then f(x) + g(x) ∼
∑

(aj + bj)φj(x) as x→ x0.

(b) If f(x) ∼
∑
ajφj(x) and g(x) ∼

∑
bjφj(x) as x→ x0,

then

f(x)g(x) ∼
∞∑
j=0

(
n∑
k=0

an−kbk

)
φj(x) as x→ x0.

(c) Let f(x) ∼
∑
ajx

j as x→ x0. Define

F (x) =

x∫
0

f(t)dt.

Then F (x) ∼ a0x + 1
2a1x

2 + 1
3a2x

3... as x → x0, i.e.
we can integrate asymptotic expansions term by term.

Proof: (a) and (b) are trivial. For (c), we note:∣∣∣∣∣∣F (x)−
∞∑
j=0

ajx
j+1

j + 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x∫

0

f(t)dt−
N∑
j=0

x∫
0

ajt
jdt

∣∣∣∣∣∣
≤

x∫
0

∣∣∣∣∣∣f(t)−
N∑
j=0

ajt
jdt

∣∣∣∣∣∣
Now let ε > 0. Then if |x| is sufficiently small, we have∣∣∣∣∣∣f(t)−

N∑
j=0

ajt
j

∣∣∣∣∣∣ ≤ ε|t|N ,
and so

x∫
0

∣∣∣∣∣∣f(t)−
N∑
j=0

ajt
jdt

∣∣∣∣∣∣ ≤ ε
x∫

0

tN dt ≤ ε|x|N+1

N + 1
.

1.3 Uniqueness of asymptotic expansions

Theorem: If a function admits an asymptotic expansion
using the asymptotic sequence xj as x → 0, the coeffi-
cients of the expansion are unique.

Proof (constructive): By definition, we have

f(x) =

N∑
n=0

anx
n + o(xN )

as x → 0, for all N . For N = 1, we have f(x) = a0 + o(1),
hence f(x) → a0 as x → 0, so a0 determined uniquely.
When N = 1, f(x) = a1x + a0 + o(x) ⇒ f(x)/x − a0 =
a1 + o(x)/x. Hence as x→ x0, we have f(x)/x− a0 → a1,
so a1 determined uniquely. Proceed inductively.

1.4 Stokes’ phenomenon

Definition: Stokes’ phenomenon is the change in asymp-
totic behaviour of a function defined in the complex plane
across specific rays called Stokes’ lines.

Example: Consider sinh (1/z) near 0. We have

sinh

(
1

z

)
=

1

2

(
e(cos(θ)−i sin(θ))/r − e(− cos(θ)+i sin(θ))/r

)
.

Hence sinh(1/z) ∼ 1
2e

1/z as z → 0 for arg(z) ∈ (−π/2, π/2)

and sinh(1/z) ∼ − 1
2e
−1/z as z → 0 for arg(z) ∈

(π/2, 3π/2).
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2 Integration by parts

Often asymptotic expansions can be obtained simply by
integrating by parts.

Example: The asymptotics of

E1(x) =

∞∫
x

e−t

t
dt,

as x→∞ can be found by repeatedly integrating by parts,
giving the result:

E1(x) ∼ e−x
(

1

x
− 1

x2
+

2

x3
− 6

x4
+

24

x5
...

)
.

3 Watson’s Lemma

Theorem (Watson’s Lemma): Let α > −1, and let g be
a continuous function satisfying |g(t)| ≤ Keβt, t ≥ 0, for
some constants β andK. Suppose that g has asymptotics:

g(t) ∼
∞∑
j=0

ajt
rj ,

as t→ 0+, for some r > 0. Then
∞∫
0

tαg(t)e−xt dt ∼
∞∑
j=0

ajΓ(α+ rj + 1)

xα+rj+1
,

as x→∞.

Proof: By definition, ∃R > 0 such that

g(t) = a0 + a1t
r + ...+ aN t

rN + RemN (t),

where |RemN (t)| = o(trN ) as t → 0+. Now split up the
integral into three parts:

I(x) =

N∑
j=0

aj

∞∫
0

tα+rje−xt dt

︸ ︷︷ ︸
(a) - first N terms

+

R∫
0

RemN (t)tαe−xt dt

︸ ︷︷ ︸
(b) - can bound, since
|RemN (t)| = o(trN )

+

∞∫
R

g(t)−
N∑
j=0

ajt
rj

 tαe−xt dt

︸ ︷︷ ︸
(c) - need small

.

Term (a) is just a sum of gamma-style integrals. They can
be evaluated to get:

N∑
j=0

aj

∞∫
0

tα+rje−xt dt =

N∑
j=0

ajΓ(α+ rj + 1)

xα+rj+1
.

Now consider (c). By the growth assumption on g, we have
|g(t)tαe−xt| ≤ Keβt+α log(t)−xt. As x → ∞, we can say
Keβt+α log(t)−xt ≤ Ke− 1

2xt, say, if x sufficiently large. Sim-
ilarly, we do the same for the sum:∣∣∣∣∣∣

N∑
j=0

ajt
rj

∣∣∣∣∣∣ |tαe−xt| ≤ De− 1
2xt,

for some D, for x sufficiently large. This bounds term (c)
as
∞∫
R

(D +K)e−
1
2xt dt =

2(D +K)e−
1
2xR

x
= o(x−Ne−

1
2xR),

so these terms are sub-dominant. Finally term (b) can be
bounded:

R∫
0

RemN (t)tαe−xt dt ≤
R∫
0

Ctr(N+1)+αe−xt dt

≤ C
∞∫
0

tr(N+1)+αe−xt dt = o(x−α−r(N+1)−1),

by evaluating this gamma-style integral.

4 Laplace’s method

4.1 Theory

Principle (Laplace localisation): The asymptotic expan-
sion of

b∫
a

f(t)exφ(t) dt

as x → ∞ is determined entirely by contributions of
arbitrarily small neighbourhoods of the points {tµ} at
which φ attains its maximum value.

General procedure:

1. Draw a sketch of φ(t) and determine where it attains
its maxima, {tµ}.

2. State that the contribution from tµ is the same as in
an arbitrarily small neighbourhood of tµ, and consider
the integral from −ε + tµ to ε + tµ (or variants if near
end-points).

3. Change variables so that we are expanding in pow-
ers of x. This allows us to see which terms are most
important in the expansion.

4. Series expand near tµ.

5. Extend ε to∞, and integrate.

2
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4.2 Examples

Example 1: Consider

I(x) =

3π/2∫
0

ex sin2(t) dt.

The maxima of sin2(t) occur at π/2 and 3π/2, as can be
seen from a quick sketch. Near t = π/2, the contribution
is:

π/2+ε∫
π/2−ε

ex sin2(t) dt =

+ε∫
−ε

ex sin2(π/2+u) du.

Now expand sin2(π/2 + u) ≈ 1 − u2 + 1
4u

4 + ..., so the
integral becomes

ex
+ε∫
−ε

e−xu
2+xu4+... du.

Now let v =
√
xu, to remove the x dependence from the

first term in the exponent. This helps to order the terms.
We are left with (relabelling ε):

ex√
x

+ε∫
−ε

e−v
2+ 1

xv
4+... du =

ex√
x

+ε∫
−ε

e−v
2

(
1 +

1

x
v4 + o(x−2)

)
du.

Now extend ε → ∞ and evaluate. A similar method
applies at the other maximum.

Example 2: Consider

1∫
0

ex(2t
2−1)2

(
sin(t)

t(1− t)

)
dt.

We have φ(t) = (2t2 − 1)2, which has maxima at t = 0
and t = 1. Taylor expansion shows that f is singular at
t = 1 which magnifies the contribution from this maximum.
Writing u = 1− t, we have:

f(t) ∼ u−1 sin(1) + u(sin(1)− cos(1)) + ...

Using this expansion, the contribution at t = 1 is given by:∫
1− ε1exφ(t)f(t) dt

=

ε∫
0

ex(2(1−u)
2−1)2(u−1 sin(1) + u(sin(1)− cos(1)) + ...) du.

Changing variables to remove x from the lowest power of
u in the exponent, we can then just continue as usual.

4.3 The general case

Higher order maxima: Consider

b∫
a

f(t)exφ(t) dt,

and suppose that φ(t) has a maximum at c ∈ (a, b) with
φ′(c) = 0, φ′′(c) = 0, ... φ(s−1)(c) = 0, and φ(s) < 0.
Suppose f is smooth at c. Carrying out the local expansion
leads to an integral of the form

exφ(c)
c+ε∫
c−ε

f(t)e−x|φ
(s)(t)|·(t−c)s/s!+... dt,

which leads to a contribution (by Taylor expanding f(t),
making substitution to make a gamma integral):

2exφ(c)f(c)Γ(1/s)(s!)1/s

sx1/s|φ(s)(c)|1/s
.

Slogan: A maximum of order s typically contributes a term
exφ(c)/x1/s to the asymptotics; that is, the flatter it is, the
more it contributes.

Endpoints: At an endpoint a or b, we generically
have φ′(a) 6= 0, φ′(b) 6= 0. If there is a maximum at a, and
f is smooth there, the contribution is:

a+ε∫
a

f(t)exφ(t) dt ∼ −f(a)exφ(a)

xφ′(a)
.

Slogan: Endpoint maxima typically contribute terms of the
form exφ(a)/x.

Singular f : The above analysis does not apply at
points where f is singular. The presence of singularities
in f at maxima magnifies the contribution, which can be
seen from Watson’s Lemma:

g(t) ∼
∑

ajt
rj ⇒

∫
tαg(t)e−xt dt ∼

∑ ajΓ(α+ rj + 1)

xα+rj+1
.

4.4 Optimal truncation

To actually calculate with an asymptotic expansion, we use
the optimal truncation rule: keep all the terms in the expan-
sion up to the one before the smallest.
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5 Oscillatory integrals

5.1 A useful integral

Theorem: We have:
∞∫
0

tγeixt
p

dt =
1

p

(
1

x

) γ+1
p

Γ

(
γ + 1

p

)
exp

(
iπ(γ + 1)

2p

)
,

provided x > 0, −1 < γ < 0 and p ≥ 1. Taking the complex
conjugate of the whole equation also gives another useful
integral.

Proof: First change variables to u = tp. Then use a
quarter-circle contour integral in the first quadrant.

5.2 The method of stationary phase

Principle (Stationary phase): The asymptotic expansion
of the integral

I(x) =

b∫
a

f(t)eixφ(t) dt

is completely determined by the points of stationary
phase, i.e. points tµ for which φ′(tµ) = 0, and endpoints a,
b.

5.3 Stokes’ problem

Application of the method of stationary phase is almost
identical to that of Laplace integrals. Consider the exam-
ple:

∞∫
0

cos(x(t3 − t)) dt =
1

2

∞∫
−∞

eix(t
3−t) dt,

as x → ∞ (sine is odd so cancels, so really equality
above). We have φ(t) = t3 − t, so the points of stationary
phase are t = ±1/

√
3. The method then proceeds the

same as when studying Laplace integrals.

5.4 The Riemann-Lebesgue Lemma

Often to justify use of the method of stationary phase
(or more likely, integration by parts used on a stationary
phase-type integral), we need:

Theorem (Riemann-Lebesgue Lemma): If F is ab-
solutely integrable, we have:

lim
ω→∞

∞∫
−∞

F (t)eiωt dt = 0.

Proof: Non-examinable.

5.5 Endpoint contributions

From an endpoint for an oscillatory integral, we generically
expect a contribution O(eixφ(a)/x), for exactly the same
reason as Laplace integrals. Again this can be magnified
by the presence of singularities.

Often integration by parts can be the easiest way to
proceed near endpoints.

6 The method of steepest descent

6.1 Description of method

We now consider integrals of the form

I(k) =

∫
C

f(z)ekh(z) dz.

where C is a contour in the complex plane, and f(z), h(z)
are holomorphic functions, as k →∞.

Procedure:

1. Find the saddle points, i.e. points where h′(z) = 0.

2. Find the paths of steepest ascent/descent through the
saddle points and the end points, i.e. those paths
where the imaginary part of h(z) is constant. So if zµ
is a saddle point or an end point, the paths of steepest
ascent/descent through zµ are Im(h(z)) = Im(h(zµ)).
The best way to do this is to write z = x + iy or
z = reiθ.

3. Decide which paths are ascent paths and which are
descent paths. This can be achieved by considering
Re(h(z)) along the steepest ascent/descent paths.

4. Sketch the paths in the complex plane, along with the
original contour C. Decide how we can deform C so
that it passes along steepest ascent/descent paths as
appropriate.

5. Linearise the paths going through the saddle points
and endpoints. Then proceed to use Laplace’s
method to find the asymptotic contributions at each
of these points.

4
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6.2 Example of steepest descent

Consider
1∫

0

eixt
3

dt,

for x → ∞. First we find the saddle points:
h(t) = it3 ⇒ h′(t) = 3it2, so only saddle point is at
0 which is also an end point.

Now we find the paths of steepest descent/ascent through
the end points and the saddle points. The paths are given
by Im(h(t)) = Im(h(0)) and Im(h(t)) = Im(h(1)). In the
first case it is best to write z = reiθ, whence the paths are
r3 cos(3θ) = 0 ⇒ cos(3θ) = 0. In the second case, we
linearise to get paths looking like y ≈ ±

√
3x. Considering

the real part gives the paths of steepest descent, which
we integrate along instead.

6.3 Asymptotics of the Airy functions

Airy’s equation is given by y′′−xy = 0. By using the kernel
method for ODEs (see FCM) we can derive the integral
representations of the solutions. Deforming the contours
of integration of these solutions appropriately, we find the
two independent solutions of Airy’s equation:

Ai(x) =
1

2π

∞∫
−∞

cos

(
s3

3
+ xs

)
ds,

Bi(x) =
1

π

∞∫
0

(
exp

(
xt− t3

3

)
+ sin

(
xt+

t3

3

))
dt.

Using the method of steepest descent, it is possible to de-
rive the asymptotics of these functions as x → ∞ and
x→ −∞.

7 The Liouville-Green/WKB method

7.1 Liouville-Green approximations

We study equations of the form

ε2y′′ = Q(x)y(x)

where ε � 1. A general second-order equation with a
y′ term can be reduced to this form by the substitution
y(x) = u(x)v(x) and choosing v so that u′ terms vanish.

Method: We aim to find solutions which look (for-
mally) like exp

(
1
εS0 + S1 + εS2 + ...

)
by substituting this

form directly into the equation and equating coefficients
of powers of ε. In general, this allows us to derive the
Liouville-Green approximate solutions, by retaining terms
up to ε1 when we substitute our guess in. For Q(x) < 0,
we have:

y(x) ≈ |Q(x)|−1/4
(
A+ exp

 i

ε

x∫
|Q|1/2

+

A− exp

−i
ε

x∫
|Q|1/2

)

and for Q(x) > 0, we have:

y(x) ≈ |Q(x)|−1/4
(
a+ exp

1

ε

x∫
|Q|1/2

+

a− exp

−1

ε

x∫
|Q|1/2

)

7.2 Eigenvalue problems

An application of this method is to find eigenvalues. Con-
sider ε2y′′ = Q(x)y with y(0) = y(1). Assume Q(x) < 0.
Then

y(x) ≈ |Q(x)|−1/4
(
α+ cos

1

ε

x∫
0

|Q|1/2
+

α− sin

1

ε

x∫
0

|Q|1/2
)

by changing the constants in the above. The condition
y(0) = 0 forces α+ = 0, and the condition y(1) = 0 gives
the spectrum:

sin

1

ε

1∫
0

|Q(x)|1/2
 = 0 ⇒ εn =

1

nπ

1∫
0

|Q(x)|1/2.

5
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7.3 The connection problem

We have two separate formulae for Q(x) > 0 and
Q(x) < 0, but what happens when we cross a point where
Q(x) = 0? Rewrite q(x) = −Q(x) so that we are studying
ε2y′′ + q(x)y = 0. Suppose that q(x) > 0 for x < 0 and
q(x) < 0 for x > 0. Suppose q(0) = 0 (see the diagram).

Away from the origin, the following Liouville-Green
approximations hold:

y(x) = |q|− 1
4

a+ exp

 x∫
|q| 12 /ε

+ a− exp

− x∫
|q| 12 /ε

 ,

for x < 0 and

y(x) = |q|− 1
4

(
D cos

 x∫
|q| 12 /ε+

π

4


+E sin

 x∫
|q| 12 /ε+

π

4

),
for x > 0.

Now, in a neighbourhood of the origin, suppose that
q(x) ≈ q(0) − kx, where k > 0. Then the equation is
approximated by ε2y′′ = kxy, i.e. a scaled version of the
standard Airy equation. By substituting u =

(
k
ε2

)1/3
x, it is

clear that the general solution is:

y(x) = αAi

((
k

ε2

)1/3

x

)
+ βBi

((
k

ε2

)1/3

x

)
.

Now we hope that large asymptotics (in particular those
in the region ε2/3 � |x| � 1, where |x|/ε2/3 � 1) should
match with the Liouville-Green solutions in the other re-
gions. Using the asymptotics for the Airy function, we
have:

y(x) ∼ ε1/6α

2
√
πk1/12x1/4

exp

(
−2

3

(
k

ε2

)1/2

x3/2

)
+

ε1/6β√
πk1/12x1/4

exp

(
2

3

(
k

ε2

)1/2

x3/2

)
,

when x > 0, and

y(x) ∼ ε1/6α

2
√
πk1/12|x|1/4

sin

(
−2

3

(
k

ε2

)1/2

|x|3/2 +
π

4

)
+

ε1/6β√
πk1/12|x|1/4

cos

(
2

3

(
k

ε2

)1/2

|x|3/2 +
π

4

)
,

when x < 0. Putting q = −kx in the Liouville-Green solu-
tions in the other regions and comparing coefficients, we
arrive at the connection formulae:

a+ = E, 2a− = D.

7.4 The WKB approximation

The WKB approximation is used to approximate the energy
levels of a quantum system. Consider the problem:

− ~2

2m
y′′ + V y = Ey.

Rewrite as ~2y′′ = −2m(E − V )y and treat ~ as the small
parameter. There are two turning points A and B (which
are points when Q(x) = 0), occuring when V (x) = E (see
diagram).

For x > B we use Liouville-Green, but are forced to
pick the decaying solution:

y(x) =
c1

|2m(E − V )|1/4
exp

−1

~

x∫
B

(2m(E − V ))1/2 dx

 .

By the connection formulae, this forces the solution in A <
x < B to be:

y(x) =
2c1

|2m(E − V )|1/4
sin

1

~

B∫
x

(2m(E − V ))1/2 dx+
π

4

 .

Similarly for x < A we need a decaying Liouville-Green
solution, which by the connection formulae forces the so-
lution in A < x < B to be:

y(x) =
2c2

|2m(E − V )|1/4
sin

1

~

x∫
A

(2m(E − V ))1/2 dx+
π

4

 .

6
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Thus in the region, we have that these two solutions are
proportional, and so:

sin

1

~

x∫
A

(2m(E − V ))1/2 dx+
π

4

 ∝
sin

1

~

B∫
x

(2m(E − V ))1/2 dx+
π

4

 .

Rewriting the right hand side, we have:

sin

1

~

B∫
x

(2m(E − V ))1/2 dx+
π

4

 =

− sin

1

~

x∫
B

(2m(E − V ))1/2 dx− π

4

 =

− sin

(
1

~

x∫
A

(2m(E − V ))1/2 dx+

π

4
−

1

~

B∫
A

|2m(E − V )|1/2 dx+
π

2

),
from which it follows that(

n+
1

2

)
π~ =

B∫
A

√
2m(En − V (x)) dx,

for n ∈ Z. This is the Bohr-Sommerfeld quantisation
condition.
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