
Part III: Classical and Quantum Solitons - Revision

Lectures by Nick Manton, notes by James Moore

1 Kinks

1.1 Definitions

Convention: The Minkowski metric in this course is
mostly negative.

Definition: The Lagrangian of a theory in 1 + 1 di-
mensions is

L =

∞∫
−∞

(
1

2
∂µφ∂

µφ− U(φ)

)
dx.

We can separate this into kinetic and potential energy via:

T =

∞∫
−∞

1

2
φ̇2 dx, V =

∞∫
−∞

(
1

2
φ′

2
+ U(φ)

)
dx.

The action is the time integral of the Lagrangian. As
usual, extremising the action gives the Euler-Lagrange
equations:

∂µ∂
µφ+

dU

dφ
= 0.

Definition: A static solution φ(x, t) = φ(x) is one which is
time independent, i.e. solves

d2φ

dx2
=
dU

dφ
.

1.2 The Bogomolny equations

Definition: A kink is a particle-like solution to the field
equation connecting two vacua.

To generate kinks, we minimise the energy.

Theorem: Minimising the energy

E =

∞∫
−∞

(
1

2
φ̇2 +

1

2
(φ′)2 + U(φ)

)
dx

gives the Bogomolny equations φ′ = ±dW
dφ

, where W is

defined through U(φ) =
1

2

(
dW

dφ

)2

. The minimum values

of the energy are ±(W (φ(∞))−W (φ(−∞)) respectively.

Remark: Clearly the energy is positive. Thus we must
consider both signs throughout, but pick only the one
giving a positive energy as a physical solution.

Proof: Complete the square in E. This is called the
Bogomolny rearrangement. With the given W definition,
the energy is:

E =
1

2

∞∫
−∞

(
φ′

2
+

(
dW

dφ

)2
)
dx

=
1

2

∞∫
−∞

(
φ′ ∓ dW

dφ

)2

dx±
∞∫
−∞

dW

dφ

dφ

dx
dx.

Doing the second integral immediately gives the result.

Theorem: A solution of the Bogomolny equations is
a solution of the field equations.

Proof: Simply note

d2φ

dx2
= ± d

dx

(
dW

dφ

)
= ±dφ

dx

(
d2W

dφ2

)
=
dW

dφ

(
d2W

dφ2

)
=
dU

dφ
.

Theorem: A kink may only connect adjacent vacua.

Proof: Restrict to the case of quadratic vacua. Near
a quadratic vacuum φ0, we have

U(φ) ≈ U(φ0) +
1

2
(φ− φ0)2U ′′(φ0).

where U ′′(φ0) > 0. The field equation φ′′ = U ′(φ) then
gives

φ′′(x) = (φ− φ0)U ′′(φ0).

Integrating, we get

φ(x) = φ0 + C1e
x
√
U ′′(φ0) + C2e

−x
√
U ′′(φ0).

For any finite x, we have φ 6= φ0. It follows that φ can only
equal a vacuum value at x = ±∞, and hence can connect
only adjacent vacua (φ cannot pass through another
vacuum value at some finite x).
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1.3 φ4 kinks

Example: Consider normalised φ4 theory, i.e. U(φ) =
1
2 (1− φ2)2. There are two vacua (i.e. minima of the poten-
tial) at ±1; consider a kink that goes from −1 at x = −∞
to +1 at x =∞. This gives

W (φ) = φ− 1

3
φ3.

Our choice of sign means W (φ(∞)) = W (1) = 2/3 and
W (φ(−∞)) = W (−1) = −2/3, so that E = 4/3 is the
energy (or mass by energy-mass equivalence) of the kink.
Hence we chose the right sign for W .

Since we want a kink with φ′ > 0 (i.e. increasing
from one vacuum to the next), the Bogomolny equation for
the kink’s shape is

dφ

dx
= 1− φ2,

which has solution φ(x) = tanh(x − a), where a is a
constant of integration. There’s a clear symmetry φ 7→ −φ,
x − a 7→ a − x about a, implying that a is the centre of the
kink (this is harder to define when there is no symmetry).

The anti-kink is a separate solution linking the vacua
from 1 at x = −∞ to +1 at x = ∞. This has the opposite
sign in the Bogomolny equations since we want the kink
to be decreasing. The solution is φ(x) = − tanh(x − a). It
also has energy 4/3.

Definition: The parameter a is called the modulus
or collective coordinate of the kink solution. The moduli
space of the solution is the set of all possible a, which in
this case is R.

1.4 Derrick’s Theorem

Derrick’s Theorem: Work in d + 1 dimensions, and sup-
pose our field theory has a kink solution. Then if T is the
kinetic energy and V is the potential energy, we have

(2− d)T − dV = 0.

Proof: Let φ(x) be a kink solution minimising E. Consider
rescaling φ(x) 7→ φ(λx). Then

E = T + V 7→ E′(λ) = λ2−dT + λ−dV,

by a trivial calculation. But φ(x) minimises E, hence we
must have a minimum of E′(λ) when λ = 1. Differentiating
and setting λ = 1 gives the required condition.

In d = 1 dimensions, Derrick’s Theorem reduces to
T = V , i.e.

1

2

∞∫
−∞

φ̇2 dx =
1

2

∞∫
−∞

φ′
2
dx.

In particular, the energy/mass of the kink is
M = E = 1

2T = 1
2V in 1 + 1 dimensions.

Another use of Derrick’s Theorem is ruling out soli-
ton solutions. In d = 2 dimensions, the Theorem gives
V = 0, which tells us the potential energy of any soliton
solution in 2 dimensions must be zero.

In d = 3 dimensions, we find −T = 3V . Since T , V
are both positive, this implies T = V = 0. So there are no
soliton solutions. Similarly for d ≥ 4.

However we can evade Derrick’s Theorem by intro-
ducing additional fields with their own energy terms that
have different scaling behaviours. When we study vor-
tices we introduce a gauge field kinetic term, which allows
solitons with non-zero potential energy in 2+1 dimensions.

1.5 The moduli space approximation

Let’s now consider adding dynamics to the theory. Since
the theory is Lorentz invariant, we need only Lorentz boost:

φ(x, t) = tanh(γ(x− vt)),

where γ = (1− v2)−1/2 as usual.

It’s sometimes useful to view this adiabatically, that
is for v � 1. In general, we can achieve this by making the
modulus time-dependent. This is called the moduli space
approximation to the motion.

Theorem: For an approximate dynamic kink
φ(x, t) = tanh(x − a(t)), where a(t) is a dynamic
modulus, we have a(t) = vt.

Proof: Note we have

φ̇ = −da
dt
φ′.

Substitute this into the kinetic and potential energies to
find:

T =
1

2
M

(
da

dt

)2

, V = M.

where M = 4/3 is the mass (energy) of the kink (note
we’ve used Derrick’s Theorem here to evaluate the inte-
gral of φ′2 in the kinetic and potential energies). Thus the
effective Lagrangian describing the kink’s motion is

L =
1

2
Mȧ2 −M.

This is why a is called a collective coordinate. It reduced
all field dynamics to a 1D particle problem. The equation
of motion of this Lagrangian is Mä = 0, which gives a = vt
(plus arbitrary constant relating to starting position).

2



J. M. Moore, 2019

Theorem: The momentum of a φ4 kink in the moduli
space approximation is P = Mȧ.

Proof: Computing the energy momentum tensor of
the theory, we find:

P = −
∞∫
−∞

φ̇φ′ dx.

In the moduli space approximation, φ̇ = −φ′ȧ as above,
and hence doing the integral over φ′2 to get mass M (as
per Derrick’s Theorem), we get the result.

1.6 Quantisation of kinks

Quantisation is easy in the moduli space approximation.
The Lagrangian is L = 1

2Mȧ2 as we calculated before, so
the Hamiltonian is

H = P ȧ− L =
P 2

2M
.

Quantising simply gives P 7→ −i~∂a, i.e.

H = − ~2

2M

∂2

∂a2

Stationary states are of the form ψ(x) = eiκa, with eigen-
values P = ~κ, H = ~2κ2/(2M).

Quantisation of the full field theory is very difficult.
We end up seeing two particles: kinks and mesons.
Mesons are quantised waves around the vacuum. The
mesons also interact with the kink.

1.7 φ6 kinks

Example: Let U(φ) = 1
2 (1 − φ2)φ2. There are now

three vacua, but we know we can only connect adjacent
vacua, so there are two types of kinks (and two types of
anti-kinks).

For the kink from φ = 0 to φ = 1, the suitable root
for W is W (φ) = 1

2φ
2 − 1

4φ
4. The Bogomolny equation is

dφ

dx
= (1− φ2)φ,

which gives solution φ(x) = (1 + e−2(x−a))−1/2. The
energy/mass of the kink is 1/4.

Notice this kink is antisymmetric because the vacua
have slightly different local behaviour. φ = ±1 are
symmetric vacua, but φ = 0 and φ = 1 are not.

1.8 The sine-Gordon soliton

Example: Sine-Gordon theory has U(φ) = 1 − cos(βφ).
This has infinitely many vacua, but we can only connect
adjacent ones. By periodicity, all vacua are the same and
thus the kinks are symmetric about their centres.

Solving the Bogomolny equations in this instance gives

φ =
4

β
arctan (exp (±β(x− a))) .

(Note we must integrate cosec(x), which has integral
− log(cot( 1

2x)).)

The kink solution connecting the vacua at φ = 0,
x = −∞ and φ = 2π/β, x = ∞ turns out to give the plus
sign. The energy of the kink is 8/β.

Restrict to the case β = 1. Since φ is an angular
coordinate in sine-Gordon theory, it is useful to identify
φ ∼ φ + 2π. We then think of φ as a compact variable
φ : R→ S1, i.e. a map into the circle.

There is now a single vacuum at φ = 0 modulo 2π,
which means our boundary conditions become φ = 0
when x→ ±∞. Since we have boundary conditions which
are periodic at x = ±∞, we may identify φ as a map:

φ : S1
∞ → S1,

where S1
∞ is the compactification of R, identifying x = ±∞.

1.9 Topology of the sine-Gordon soliton

Now φ : S1
∞ → S1 is a map from a circle to a circle. As φ

goes once around S1
∞, how many times does it go round

S1?

Definition: If φ(−∞) = 2nLπ (must be an integer
multiple of 2π since φ = 0 modulo 2π at −∞) and we
go round the infinite circle once. Suppose we arrive at
φ(∞) = 2nRπ. Then the winding number is

Q = nR − nL.

Example: For the soliton solution above joining 0 to 2π,
the winding number is 1.

We should think of a winding number Q = n as the
superposition of n kinks, as shown below.

3
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For a single anti-kink, Q = −1. So we should interpret Q
as

Q = number of kinks − number of anti-kinks

We can also obtain Q from Noether’s Theorem.

Theorem: The current

jµ =
1

2π
εµν∂νφ

is conserved, and its associated charge is Q.

Proof: We have:

∂µj
µ =

1

2π
εµν∂µ∂νφ = 0.

By Noether’s Theorem, the associated charge is

1

2π

∞∫
−∞

∂xφ dx =
1

2π
(φ(∞)− φ(−∞)) = Q.

This current does not come from a symmetry of the
theory, and hence it is strange that it is conserved with
non-trivial consequences (e.g. (1, 2) is clearly a vector
that is conserved, but this tells us nothing). It’s thus called
a topological current.

Finally, we can obtain Q through a differential geom-
etry perspective. Consider φ : S1

∞ → S1. Both spaces are
compact, and are of the same dimension, so there is a
notion of the degree of the map (see later).

Definition: The degree of this map is the integral
over S1

∞ of the pullback of any normalised volume form on
S1.

Theorem: The degree of φ is Q, the winding num-
ber.

Proof: A normalised volume form on S1 is 1
2πdφ.

The pullback is just like ‘changing coordinates’:

1

2π
dφ =

1

2π

dφ

dx
dx.

Integrating this from −∞ to∞, we get precisely the earlier
characterisation of Q.

1.10 The dynamic sine-Gordon kink

Example: The 2-kink dynamical solution to the sine-
Gordon equation is

φ(x, t) = 4 arctan

(
v sinh(γx)

cosh(γvt)

)
.

We can sketch this to see it is a pair of kinks that come in
from∞, approach and then repel, and return to∞.

To establish the distance of closest approach, write the so-
lution as

φ(x, t) = 4 arctan
(
eγ(x−a(t)) − e−γ(x+a(t))

)
= 4 arctan(eγ(x−a(t)))− 4 arctan(e−γ(x+a(t))).

where

a(t) =
1

γ
log

(
2

v
cosh(γvt)

)
.

We’ve also used

arctan(x) + arctan(y) = arctan

(
x+ y

1− xy

)
.

It’s now clear that this is two kinks together, and we can
identify their centres as ±a(t). Thus they are closest when

2a(t) =
2

γ
log

(
2

v
cosh(γvt)

)
is minimised. Hyperbolic cosine is minimised when t = 0.
Assuming small v, we have closest approach distance
2 log(2/v).

2 Vortices

2.1 The Abelian-Higgs model

Definition: The Abelian-Higgs model has Lagrangian

L = −1

4
fµνfµν +

1

2
(Dµφ)∗Dµφ− λ

8
(1− φ∗φ)2,

where fµν = ∂µaν − ∂νaµ for some gauge field aµ and
some scalar field φ. The covariant derivative is Dµφ =
∂µφ − iaµφ. The theory is U(1) gauge invariant under the
infinitesimal transformations

φ 7→ φ+ iαφ, aµ 7→ aµ + ∂µα,

or alternatively the finite transformations:

φ 7→ Uφ, aµ 7→ UaµU
−1 − i(∂µU)U−1.

We think of a as a one form and fµν as the components of
a two form:

f = da = (∂1a2 − ∂2a1)dx1 ∧ dx2 = f12dx
1 ∧ dx2.

Definition: B = f12 is the magnetic field.

Theorem: The field equations are:

∂µf
µν =

1

2
i((Dνφ)∗φ− φ∗Dνφ),

DµD
µφ =

1

2
λ(1− φ∗φ)φ.

Proof: Quick calculation.

4
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The Abelian Higgs model is relevant as a description of
superconductors. If λ > 1, we get Type II behaviour,
where vortices repel one another. They form a vortex
lattice.

If λ < 1, we get Type I behaviour, where vortices at-
tract. They coalesce to form one giant structure.

We will be interested in critical coupling at λ = 1.

2.2 Transformation to polars

It will be useful to work in polar coordinates. Use x1 =
r cos(θ) and x2 = r sin(θ), implying:

dx1 = cos(θ)dr − r sin(θ)dθ, dx2 = sin(θ)dr + r cos(θ)dθ.

Theorem: In polar coordinates, r =
√
x12 + x22 and θ =

arctan(y/x), we have

ar =
a1x

1 + a2x
2

r
, aθ = −a1x

2 + a2x
1,

frθ = rf12 = rB.

Proof: Write a = a1dx
1 + a2dx

2 formally, and expand in
terms of the above. Also write f = frθdr ∧ dθ and expand
in terms of the above.

2.3 Vortex topology

Before constructing explicit solutions, consider properties
of vortices.

First, we ask what the boundary conditions are. As
in the kink case, the boundary conditions should force us
to tend to the vacuum solution at∞. Since the energy is

E =

∫
d2x

(
1

2
B2 +

1

2
(Dµφ)∗(Dµφ) +

λ

8
(1− φ∗φ)2

)
.

to ensure E → 0 asymptotically, we require B → 0,
|φ| → 1 and Dφ→ 0 as r →∞.

Definition: The field at infinity is written φ∞(θ), and
is defined by

φ∞(θ) = lim
r→∞

φ(r, θ).

We require |φ∞(θ)| = 1 by the above, so we write
φ∞(θ) = eiχ(θ) where χ(θ) is the phase at infinity.

We now see that χ is a map χ : S1 → S1, so as
usual it has a winding number.

Definition: Let φ∞(0) be the value of the field at in-
finity at angle 0. Rotate around to θ = 2π and consider
φ∞(2π). Since the field is single-valued, we must have
χ(θ) changing only by 2πN for some integer N ; we call N
the winding number of the field.

Theorem: The winding number has the following proper-
ties:

(i) N is gauge-invariant;

(ii) N is a topologically conserved quantity;

(iii) N =
1

2π

∫
R2

B d2x;

(iv) N is the number of isolated zeroes of φ counted with
multiplicity.

Proof: (i) Let φ 7→ eiα(r,θ)φ be a gauge transforma-
tion. Then α(r, θ) is a map from S1 to S1

∞ for fixed r,
hence it has some winding, say Nα(r), dependent on
the fixed radius. Thus gauge transformations transform
N 7→ N +Nα(∞).

Note that Nα is an integer, since it is a winding num-
ber, hence under continuous deformations it cannot
change. Thus Nα(0) = Nα(∞). But clearly no winding on
a circle which is just a point so Nα(0) = 0.

(ii) N is an integer so is invariant under continuous
deformations of the fields, including time evolution.

(iii) We note that Dθφ → 0 at infinity. Hence
∂θφ∞ = ia∞θ φ∞. It follows from the definition of χ
that a∞θ = ∂θχ.

Now transform to a gauge where ar = 0 by making
the gauge transformation:

ar 7→ ar − ∂r

r∫
0

ar(r, θ) dr = ar − ar = 0,

i.e. take α = −
∫ r

0

ar(r, θ) dr. Then

∫
R2

B d2x =

∫
R2

f =

∞∫
0

2π∫
0

frθ drdθ =

2π∫
0

a∞θ dθ =

∞∫
0

∂θχ dθ.

This is equal to χ(2π)−χ(0) = 2πN , and the result follows.

(iv) By diagram. On a circle around an isolated zero
Xi, φ’s argument changes by 2πni where ni is called the
multiplicity of the zero. Now draw a big circle with some
smaller circles coming off it:

It’s then clear that N is the sum of the multiplicities
of the isolated zeroes.

5
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2.4 The basic vortex

As we say in the above Theorem, we can always set
ar = 0. Assuming we have a circularly symmetric solution
then, aθ = f(r) and φ = h(r)eiθ.

This ansatz implies that the phase at infinity is χ(θ) = θ.
Hence using aθ = ∂θχ, we get the boundary condition
f(∞) = 1. We also use the boundary condition f(0) = 0.

For h, the boundary conditions come from the limit-
ing behaviour of φ at ∞. We also put a zero at the origin
by construction, giving h(∞) = 1, h(0) = 0.

Theorem: With the above ansatz, the basic vortex
solution is given by the equations:

d2h

dr2
+

1

r

dh

dr
− 1

r2
(1− f)2h+

λ

2
(1− h2)h = 0,

d2f

dr2
− 1

r

df

dr
+ (1− f)h2 = 0.

Proof: In polar coordinates, the metric is

g =

(
1 0
0 r2

)
.

Hence remembering to use the inverse metric to raise in-
dices, we have:

1

4
fµνf

µν =
1

2r2

(
∂aθ
∂r

)2

.

Similarly, we find

1

2
(Dµφ)∗Dµφ =

1

2
|∂rφ|2 +

1

2r2
|∂θφ− iaθφ|2 .

Hence substituting in the ansatz, we have E =∫ (
1

2r2
(f ′)2 +

(h′)2

2
+

h2

2r2
(1− f)2 +

λ(1− h2)2

8

)
rdrdθ.

Computing the variational equations, we get the result.

These can be solved numerically, and give profiles
like:

We can generalise this to N vortices by setting
φ = h(r)eiNθ instead. This gives a single, big vortex
at the zero with multiplicity N (i.e. they have all coa-
lesced). They are unstable when λ > 1 (i.e. the regime
where vortices repel).

2.5 Bogomolny vortices

In the critical case λ = 1, it’s possible to derive Bogomolny
equations for vortices (as opposed to direct method used
above for basic vortex).

Lemma: We have

(i) The covariant Leibniz rule:

∂2(φ∗D1φ) = (D2φ)∗D1φ+ φ∗D2D1φ.

(ii) The commutator : [D1, D2]φ = −iBφ = −if12φ.

Proof: Both can be verified by direct calculation.

Theorem: For λ = 1, minimising the energy gives
rise to the Bogomolny equations:

B − 1

2
(1− φ∗φ) = 0,

D1φ+ iD2φ = 0.

We also find the Bogomolny bound E ≥ π|N |.

Proof: Perform a Bogomolny rearrangement. Focus
on one sign that gives vortices, for clarity: E =

1

2

∫
R2

((
B − 1

2
(1− |φ|2)

)2

+ |D1φ+ iD2φ|2
)
d2x

+
1

2

∫
R2

(B(1− φ∗φ) + i((D2φ)∗D1φ− (D1φ)∗D2φ)) d2x.

We must compute the second integral. Using the covariant
Leibniz rule (backwards) and the commutator we have that

B(1− |φ|2) + i((D2φ)∗D1φ− (D1φ)∗D2φ)

= B + i∂2(φ∗D1φ)− i∂1(φ∗D2φ).

Integrating the last two terms by parts, and using
D1φ,D2φ → 0 as r → ∞, we see that they vanish. So
we’re left with the surface term

1

2

∫
R2

B d2x = πN.

The Bogomolny equations follow from the first integral,
and the Bogomolny bound follows from the leftover term
(note we’d get −N for antivortices, hence the modulus).

Theorem: If the Bogomolny equations are satisfied,
the field equations are satisfied.

Proof: By differentiating the Bogomolny equations,
whence constructing the field equations.

6
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2.6 Taube’s equation and theorem

We can decouple the Bogomolny equations above by
eliminating the gauge fields.

Theorem: If φ = e
1
2u+iχ, and the zeroes of the field

φ are simple (all multiplicity 1) and are at X1, X2, ... , XN ,
we have Taube’s equation:

∇2u− eu + 1 =

N∑
r=1

4πδ2(x− Xr),

with boundary condition u→ 0 as |x| → ∞ from |φ| → 1.

Proof: Substituting into the second Bogomolny equa-
tion, we get

∂1(
1

2
u+ iχ)− ia1 + i∂2(

1

2
u+ iχ) + a2 = 0.

Compare real and imaginary parts and subsitute into the
first equation, finding

B = ∂1a2 − ∂2a1 = −1

2
∇2u,

which gives the result apart from the delta functions.

Where φ = 0, u → −∞ logarithmically (as u = log |φ|2).
Hence need delta functions on RHS at zeroes of φ. Near
a zero, u ≈ 2 log |x − X|, and quoting the Green’s function
of the Laplacian, we find

∇2u = 4πδ2(x− X)

near one of the zeroes. The result follows.

Taube’s Theorem: Taube’s equation has a unique
solution for any choice of Xi, N .

Proof: Not in course.

2.7 Properties of Bogomolny vortices

Theorem: We have the following properties of Bogomolny
vortices:

(i) the field B is maximised at the vortex centres;

(ii) a single vortex has area 4π;

(iii) u is everywhere non-positive, implying |φ| ≤ 1 every-
where.

Proof: (i) φ = 0 at vortex centres, then use Bogomolny.

(ii) One vortex has flux 2π from integral of B giving
2πN for N vortices. Now area = flux/B, so at centre, get
area 4π.

(iii) By the maximum principle of the Laplacian. Where u
has a local maximum, ∇2u ≤ 0. Taube’s equation then
implies eu ≤ 1, and hence u ≤ 0.

A typical u looks like:

What is the moduli space for vortices? They are
completely described by N zeros in R2 so naïvely looks
like R2N . However...

Theorem: The N -vortex solution has moduli space
MN = R2N/SN .

Proof: Just notice that permuting the zeroes has no
effect on the solution.

On the other hand...

Theorem: R2N/SN ∼= R2N as manifolds.

Proof: Let Zi = X1
i + X2

i be the complex coordinates of
Xi. Defined the polynomial

P (z) = (z − Z1)(z − Z2)...(z − ZN ).

Choose instead to parametrise the moduli space by the
coefficients of this polynomial. But they are symmetric
functions of the roots, so quotient already accounted for.

Example: Consider the two-vortex solution given by
the complex polynomial

P (z) = (z − Z1)(z − Z2) = z2 − (Z1 + Z2)z + Z1Z2.

Here, Z1 and Z2 are good moduli.

In centre of mass coordinates, we can write Z1 = Z
and Z2 = −Z. Then P (z) = z2 − b, where b = Z2. The
vortices are at±Z = ±

√
b, and hence b is a good modulus.

The fields evolve smoothly with b, but not with Z as
a result. Indeed, if b hits zero, then there is a non-smooth
result for Z. This effect can result in vortex scattering:

To obtain this, we have made b dynamical. The vor-
tices have kinetic energy 1

2g(b)ḃ2 for some function g(b).
This emphasises that the dynamics depend smoothly on
b, but not on Z.

7
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2.8 Bogomolny vortices on curved spaces

On a curved surface Σ, the energy of the field theory at
critical coupling is:

E =

∫
Σ

(
1

4
fijfklg

ikgjl +
1

2
(Diφ)∗(Djφ)gij

+
1

8
(1− φ∗φ)2

)√
det(g)dy1dy2,

where the metric is g. If there is a boundary of the surface
Σ, we use the condition |φ| → 1 as we approach the
boundary as before.

Theorem: On any surface, we can find isothermal
coordinates y1, y2 in which the metric is

ds2 = Ω(y1, y2)((dy1)2 + (dy2)2),

Proof: Not required.

In isothermal coordinates, the area element becomes
Ωd2y = Ωdy1dy2.

Thus the energy becomes:

E =
1

2

∫
Σ

(
Ω−1B2 + |D1φ|2 + |D2φ|2 +

Ω

4
(1− φ∗φ)2

)
dy1dy2.

The Bogomolny rearrangement is identical to the planar
one, giving:

Theorem: The energy is minimised when the Bogo-
molny equations are satisfied:

D1φ+ iD2φ = 0,

B − Ω

2
(1− |φ|2) = 0.

We also have the Bogomolny bound E ≥ π|N |, where N
is defined by

N =
1

2π

∫
Σ

f =
1

2π

∫
Σ

Bd2y.

N is called the first Chern number. It no longer has
the interpretation of a winding number, since we’re on
an abstract surface (e.g. could be on a sphere with no
boundary!), however it is possible (and beyond the scope
of the course) to show it is still an integer.

Proof: As for planar Bogomolny case.

Taube’s equation also has a natural generalisation to
curved surfaces:

Theorem: If |φ|2 = eu, we have Taube’s equation
when E is minimised:

∇2u− Ωeu + Ω = 4π

N∑
r=1

δ2(y− Yr),

where the Yr are the zeroes of φ. This equation has a
unique solution as in the planar case.

Proof: Not required.

2.9 The Bradlow bound

The Bradlow Bound: Let N be the number of vortices on
a closed surface Σ. Then N ≤ A/4π, where A is the area
of the surface.

Proof: Integrating the second Bogomolny equation
directly, we have

2

∫
Σ

B d2y +

∫
Σ

Ω|φ|2 d2y =

∫
Σ

d2y.

By the definition of N , we have 4πN ≤ A immediately.

This gives credence to the notion that any vortex
takes up an area 4π. It turns out it is possible to squish
more vortices into a surface, but they turn out not to
minimise energy, and are thus not Bogomolny.

If 4πN = A, the vortices dissolve:∫
Σ

Ω|φ|2 d2y = 0,

implying φ = 0 everywhere, the vacuum.

2.10 Baptista’s equation

Definition: The Gaussian curvature of a surface is

κ = − 1

2Ω
∇2Ω.

Definition: The vortex-modified metric is defined by

d̃s
2

= Ω̃((dy1)2 + (dy2)2),

where Ω̃ = Ω|φ|2 = Ωeu.

Theorem: Let κ̃ be the Gaussian curvature on a
surface with the vortex-modified metric. Then we have the
Baptista curvature equation:(

κ̃+
1

2

)
d̃s

2
=

(
κ+

1

2

)
ds2.

Proof: Just compute κ̃ directly using Taube’s equation to
evaluate ∇2u. We find that(

κ̃+
1

2

)
eu = κ+

1

2
.

Multiplying both sides by ds2, the standard metric, we get
the result.

Note that when κ = −1/2, we have that κ̃ = −1/2
(since neither metric can vanish)!

8
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2.11 Solutions in the hyperbolic plane

Definition: The Poincaré disk is a model of the hyperbolic
plane in which the metric is

ds2 =
8

(1− y2
1 − y2

2)2

(
(dy1)2 + (dy2)2

)
.

Theorem: The Poincaré disk has curvature −1/2.

Proof: Use ∇2 in polar coordinates, i.e.

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

and then this is easy to verify.

It’s often convenient to use a complex coordinate
z = y1 + iy2 so that

ds2 =
8dzdz̄

(1− |z|2)2

We can then consider how to get a possible Ω.

Note that the vortex-modified metric is the metric of
a surface with curvature −1/2 by Baptista’s curvature
equation, hence it is the metric of the hyperbolic plane.

Consider a conformal map f : H2 → H2 (a map be-
tween two copies of the hyperbolic plane), from z-space,
the initial space, to w-space, the vortex-modified space
preserving the unit circle (the boundary).

Then the metric on w-space is

d̃s
2

=
8

(1− |w|2)2
dwdw̄ =

8

(1− |f(z)|)2

df

dz

df

dz
dzdz̄.

Here, we have used the fact that

dw̄ = d(f(z)) =
df

dz
dz̄.

Hence we identify

Ω̃ =
8

(1− |f(z)|2)2

∣∣∣∣ dfdz
∣∣∣∣2 , Ω =

8

(1− |z|2)2
.

By the definition of the vortex-modified metric then, we
have

|φ|2 =
Ω̃

Ω
=

(1− |z|2)2

(1− |f(z)|2)2

∣∣∣∣ dfdz
∣∣∣∣2 .

Thus up to a choice of gauge we have:

Theorem: For any conformal map f : H2 → H2 pre-
serving |z| = 1, a vortex solution on the hyperbolic plane
is given by

φ =
1− |z|2

1− |f(z)|2
df

dz
.

Proof: By the above work.

Example: Consider f(z) = zn. This gives:

φ =
n|z|n−1

1 + |z|2 + ...+ |z|2n−2
,

the simplest multi-vortex solution in the hyperbolic plane.
Note that this map preserves the unit circle, so preserves
boundary conditions between the spaces.

How many vortices are there? Because we differen-
tiated zn once, we ended up with a power of zn−1. Note
zn−1 winds around∞ with winding number n− 1, and the
only zeroes of φ are at 0 (note generally the zeroes, i.e.
the centres, of the vortices occur at f ′(z) = 0).

Hence there are n − 1 vortices at zero for this solu-
tion.

Example: The most general conformal function f
mapping |z| = 1 to |w| = 1 is given by

f(z) =

n∏
i=1

(
z − ci
1− ciz

)
,

where |ci| < 1 and ci is constant. This is called a Blaschke
product.

Example: Consider f(z) = z2. This gives the solu-
tion:

φ =
2|z|

1 + |z|2
=

2r

1 + r2

In polar coordinates. Note that as r → 1 (the edge of
the Poincaré disk), we get φ → 1, and so the boundary
condition is satisfied.

2.12 Cone singularities

Notice that the metric ds2 is smooth but d̃s
2

vanishes
at the vortex centres. This implies that d̃s

2
has conical

singularities.

The reason is as follows. A vortex of multiplicity 1
has φ increasing linearly away from its centre (as above).
Hence

d̃s
2
∼ r2((dy1)2 + (dy2)2) = r2(dr2 + r2dθ2).

Changing coordinates to v = 1
2r

2 we find

d̃s
2

= dv2 + 4v2dθ2.

Finally changing coordinates to an angle β ∈ [0, 4π], we
get the standard flat metric d̃s

2
= dv2 + v2dβ2, albeit with

a non-standard angle.

9
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This non-standard angle is interpreted as the cone angle.
For angles less than 2π, this corresponds to cutting
a wedge out of the plane and gluing the pieces back
together:

Our angle cannot be interpreted in this way, but it is
the same principle. It takes us two loops to go around the
plane once.

2.13 Popov vortices

If we change the sign of |D1φ|2 in the Abelian Higgs La-
grangian, we find that we get the Bogomolny equations:

D1φ+ iD2φ = 0,

B +
1

2
Ω(1− |φ|2) = 0.

That is, the only thing that has changed is a sign in front
of Ω.

The Baptista curvature argument goes through as
before, but this time we get:(

κ̃− 1

2

)
d̃s

2
=

(
κ− 1

2

)
ds2

Thus we can construct explicit Bogomolny vortices for this
new problem (similar to Abelian Higgs) on surfaces with
curvature 1/2 - this surface is a sphere.

ASIDE: STEREOGRAPHIC COORDINATES
Throughout the rest of the course, it will be very useful
to convert between coordinates on the 2-sphere and
coordinates in the plane. We can do this by introducing
stereographic coordinates.

The standard stereographic projection used in this
course has the Riemann 2-sphere centred on the of the
plane, and of unit radius. We identify the top point, (0, 0, 1)
with 0 and the bottom point, (0, 0,−1) with −∞, as below:

We use a complex coordinate z in the plane, and we
use coordinates (θ, φ) on the sphere. The coordinate
φ is the angle in the plane, and the coordinate θ is the
inclination between the vector (0, 0,−1) and our position
on the sphere.

Theorem: The complex coordinate z corresponding to
coordinates (θ, φ) is z = tan( 1

2θ)e
iφ.

Proof: Clearly the argument of our complex number
z is φ, so write z = |z|eiφ. Draw a diagram to get the
modulus:

Use isosceles triangles and sine rule to finish.

Theorem: The sphere coordinate (θ, φ) correspond-
ing to the complex plane coordinate z is given by

(θ, φ) =

(
arccos

(
1− |z|2

1 + |z|2

)
, arccos

(
z + z

2|z|

))
Proof: Write z = tan( 1

2θ)e
iφ as above. Then

|z|2 =
sin2( 1

2θ)

cos2( 1
2θ)

=
1− cos(θ)

1 + cos(θ)
.

Rearrange and invert to get θ. Similarly, notice that

z

z
= e2iφ ⇒ cos(2φ) =

1

2

(
z

z
+
z

z

)
=

1

2

(
z2 + z2

|z|2

)
.

Now use cos(2φ) = 2 cos2(φ)− 1 to get result.

It is also useful to be able to convert between Carte-
sian coordinates for the sphere and their corresponding
complex coordinates.

Theorem: The complex z coordinate corresponding
to the point (x1, x2, x3) on the 2-sphere is:

z =
x1 + ix2

1 + x3
.

Proof: Note that φ = arctan(x2/x1) and θ = arccos(x3). So
substituting in z = tan(1

2θ)e
iφ, we get the result. Best to

use

tan2

(
1

2
θ

)
=

1− cos(θ)

1 + cos(θ)
=

1− x3

1 + x3
.

and also x2
1 + x2

2 + x2
3 = 1.

Theorem: The sphere coordinates (x1, x2, x3) corre-
sponding to the complex coordinate z are given by

(x1, x2, x3) =
1

1 + |z|2
(
z + z,−i(z − z), 1− |z|2

)
Proof: Use (x1, x2, x3) = (sin θ cosφ, sinφ sin θ, cos θ) and
result above giving (θ, φ) in terms of z.

10
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We are now ready to do geometry on the sphere. Using
the above calculations to substitute into

ds2 = 2(dθ2 + sin2(θ)dφ2),

(2 is here to ensure curvature 1/2) we find that the sphere
metric is

ds2 =
8dzdz̄

(1 + |z|2)2

in terms of the stereographic coordinate z = tan( 1
2θ)e

iφ.
This gives, analogously to the Poincaré disk case, the vor-
tex solution

φ =
1 + |z|2

1 + |f(z)|2
df

dz

for any conformal f (in fact, a conformal map from a
sphere to a sphere is holomorphic). This time, the accept-
able f ’s turn out to be rational maps (rather than Blaschke
products).

We’ll discuss these later in the course, but you already
know what they are: maps of the form R(z) = p(z)/q(z)
for p, q polynomials. The Wronskian of the map is defined
by W (z) = p′(z)q(z)− p(z)q′(z).

The centres of the vortices occur when f ′(z), which
is precisely when the Wronksian is zero. In the generic
case that p and q have equal degrees, say n, we get that
W (z) is of degree 2n− 1.

Or do we? We’ll see in a second that the Wronskian
is generically of degree 2n − 2, because the first terms
cancel in p′q−q′p. Therefore there are N = 2n−2 vortices
in the generic case.

Definition: N is called the Popov vortex number.

Surprisingly, it’s always even - even though the Brad-
low bound seemingly permits all values of N less than
A/4π.

3 Degrees and rational maps

3.1 The degree of a mapping

We generalise winding number to maps f : M → N where
M , N are closed (i.e. no boundary), connected, oriented
manifolds of equal dimension d.

Definition: Let ω be a normalised volume form on
N , i.e. a d-form on N satisfying∫

N

ω = 1.

The degree of such a map is

deg(f) =

∫
M

f∗ω,

where f∗ω is the pull-back of ω to M .

Example: Let f : R2 → S2 (can compactify R2 to
make it closed), given by (θ, φ) = (θ(x, y), φ(x, y)).
Choose the standard volume form on S2 normalised to 1:

ω =
1

4π
sin(θ)dθ ∧ dφ.

The pull-back is then:

f∗ω =
1

4π
sin(θ(x, y))

(
∂θ

∂x
dx+

∂θ

∂y
dy

)
∧
(
∂φ

∂x
dx+

∂φ

∂y
dy

)
=

1

4π
sin(θ(x, y))

(
∂θ

∂x

∂φ

∂y
− ∂θ

∂y

∂φ

∂x

)
dx ∧ dy.

This can be integrated over R2 to get the degree of f .

3.2 Why is degree an integer?

Theorem: The choice of volume form in degree of a map
is arbitrary.

Proof: Let ω, ω̃ be normalised volume forms on N .
Then ∫

N

(ω − ω̃) = 0.

This implies, by results in homology theory, that ω − ω̃ is
closed, i.e. ω − ω̃ = dα for some α, a d− 1 form.

Under pull-back we have (because this is just a change of
coordinates):

f∗(ω − ω̃) = f∗(dα) = d(f∗α).

Then ∫
M

f∗(ω − ω̃) = 0 ⇒
∫
M

f∗ω =

∫
M

f∗ω̃.

Theorem: deg(f) is the number of preimages of a
generic point p ∈ N , counted according to orientation.

Proof: Since ω is arbitrary, choose it to be highly lo-
calised around some p ∈ N . Then ω is zero outside of Σ,
some small neighbourhood of p.

Let f−1
1 (p), f−1

2 (p), ... be the preimage points of p in
M . Let f−1

1 (Σ), f−1
2 (Σ), ... be the preimage regions. Then

by the change of coordinates formula:∫
f−1
i (Σ)

f∗ω = ±
∫
Σ

ω = ±
∫
N

ω = ±1.

11
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We get the ± sign dependent on the sign of the Jacobian
of f in a neighbourhood of f−1

i (Σ). It’s + for positive
orientation, − for negative orientation. ‘Generic point’ in
the Theorem translates to f not having zero Jacobian.

Therefore:

deg(f) =

∫
M

f∗ω =
∑
i

∫
f−1
i (Σ)

f∗ω =
∑

preimages
of p

(±1).

We have the immediate Corollaries:

• The degree is an integer.

• Since the degree is an integer, it is invariant under
continuous changes of ω, p and f . So degree is a
topological invariant.

Example: Consider a map φ : S1 → S1 with degree
1. A typical φ looks like:

This map clearly has winding number 1. At any generic
point, we have 1 preimage, accounting for orientation, as
in the diagram (unless the point has zero derivative!). So
degree is a generalisation of winding number.

3.3 Rational maps

Definition: A rational map R is a map R : S2 → S2 (where
we view each S2 as a copy of the Riemann sphere) such
that

R(z) =
p(z)

q(z)
,

where p, q are polynomials. We assume p, q have no
common roots.

Theorem: A rational map R(z) is holomorphic and
orientation preserving.

Proof: Just a function of z so holomorphic.

To see the map is orientation preserving, consider
the area element on the sphere, rdθ ∧ dφ. In terms of the
stereographic coordinate z = tan( 1

2θ)e
iφ, we can rewrite

this as
dA = 2i

dz ∧ dz
(1 + |z|2)2

.

Therefore on the target sphere the area element is

d̃A = 2i
dz ∧ dz

(1 + |R(z)|2)2

∣∣∣∣dRdz
∣∣∣∣2

But |R′(z)|2 ≥ 0, so this has the same sign as dA. So
orientation is preserved.

3.4 Algebraic degree

Definition: The algebraic degree of a rational map R is

degalg(R) = max{deg(p),deg(q)},

where R(z) = p(z)/q(z), p(z), q(z) coprime polynomials.

Examples: (i) z2 is degree 2; (ii) 1/z2 is degree 2;
(iii) z/(z2 − 1) is degree 2.

Theorem: The topological degree, i.e. deg(R), i.e.
the degree of the mapping, is equal to the algebraic
degree.

Proof: Let c be a generic point in the target space,
so that preimage R satisfies R(z) = c. Then

p(z)− cq(z) = 0.

For a generic point, the fundamental theorem of algebra
gives max{deg(p),deg(q)} = degalg(R) distinct roots.

Since rational maps are orientation preserving the
preimages all have positive orientation. Hence the number
of preimages is deg(R) = degalg(R).

3.5 The Wronskian

Definition: The Wronskian W (z) of a rational map R(z) =
p(z)/q(z) is defined by

W (z) = p′(z)q(z)− p(z)q′(z).

The Wronskian points are the zeroes of W .

Theorem: Under a Möbius transformation is performed
on R(z), then the Wronskian points are unchanged.

Proof: The new rational function is:

R̃(z) =
αR(z) + β

γR(z) + δ
=
αp+ βq

γp+ δq
.

The new Wronskian is:

(αp′+βq′)(γp+δq)−(γp′+δq′)(αp+βq) = (αδ−βγ)W (z),

and for a Möbius transformation, αδ − βγ 6= 0.

12
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Theorem (Properties of Wronskian):

(i) R′(z) = 0 iff W (z) = 0.

(ii) For generic polynomials p, q, we have

deg(W ) = 2 deg(R)− 2.

(iii) If R(z) has a symmetry, then W (z) also has the same
symmetry.

(iv) If W has degree less than 2 deg(R) − 2, then the dif-
ference is made up by zeroes of W lying at∞.

Proof: (i) Trivial. (ii) Substitute general polynomials p, q in
to check.

(iii), (iv) Not required.

3.6 Example: tetrahedral symmetry

Example: Consider the rational map

R(z) =

√
3iz2 − 1

z(z2 −
√

3i)

whose Wronskian is

W (z) = 2
√

3iz(z3 −
√

3iz)− (3z2 −
√

3i)(
√

3iz2 − 1)

= −
√

3iz4 + 6z2 −
√

3i

This has four roots, which are the Wronskian points. We
claim that in Cartesian coordinates they are given by:
1√
3

(1, 1, 1),
1√
3

(−1,−1, 1),
1√
3

(−1, 1,−1),
1√
3

(1,−1,−1).

The corresponding complex points are:

z =
1 + i

1 +
√

3
,
−1− i
1 +
√

3
,
−1 + i√

3− 1
,

1− i√
3− 1

.

Multiplying the factors (z − zi) together, we find the
polynomial above, as expected.

When plotted on the Riemann sphere, these roots,
together with a corresponding set of roots from another
tetrahedron, form the vertices of a cube. The normals to
the midpoints of the faces of the cube meet the Riemann
sphere at∞, 0,±1,±i, which is convenient:

The Wronskian points are tetrahedrally symmetric in the
following sense:

• Consider rotation 120◦ about an axis through one of
the vertices, say parallel to (1, 1, 1). From the cube
interpretation, this is equivalent to rotating vertices
of the cube. Indeed, this is equivalent to sending
0 7→ 1 7→ i 7→ 0 on the Riemann sphere.

The 120◦ rotation of the tetrahedron is therefore
represented by the Möbius map:

k(z) =
iz + 1

−iz + 1
.

Under this rotation, we have

R(k(z)) =
(1− i

√
3)R(z) + (

√
3− i)

−(
√

3 + i)R(z) + (1 + i
√

3)
,

and hence this is a symmetry, as defined later in the
course.

• We can also consider a reflection along one of the
tetrahedron’s axes of symmetry. We can check the
diagram that

k(z) = iz

is such a reflection. Then

R(k(z)) =
−
√

3iz2 − 1

iz(−z2 −
√

3i)
= iR(z).

Hence this is also a symmetry.
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4 Skyrmions

4.1 The Skyrme Lagrangian and SSB

Definition: The Skyrme field is a map U : R3+1 → S3. We
view U as SU(2)-valued, since SU(2) ∼= S3 as manifolds.
We write

U(x, t) = σ(x, t)I2 + iπππ(x, t) · τττ ,

where I2 is the identity matrix and τττ are the Pauli matrices.
σ is called the sigma field and πππ are called the pion fields.
We have σ2 + |πππ|2 = 1 for U to be in SU(2).

Definition: The Skyrme Lagrangian is

L =

∫
d3x
(
− F 2

π

16
Tr
(
(∂µU)U−1(∂µU)U−1

)
+

1

32e2
Tr
(
[(∂µU)U−1, (∂νU)U−1][(∂µU)U−1, (∂νU)U−1]

))
.

Definition: A chiral transformation is a transforma-
tion of the form U 7→ O1UO2 where O1, O2 ∈ SU(2).

Clearly the Skyrme Lagrangian is invariant under chi-
ral transformations. This means:

Theorem: The symmetry group of the Skyrme La-
grangian is

SU(2)× SU(2)

Z2
.

Proof: Via the standard proof in Standard Model course.

Note that the theory undergoes spontaneous sym-
metry breaking. The vacuum can be chosen WLOG to be
U = I2, i.e. σ = 1 and πππ = 0. Performing perturbations
around the vacuum, we get πππ particles but no σ particle.

Theorem: The unbroken symmetry group is
SU(2)/Z2

∼= SO(3).

Proof: We need to preserve the vacuum. So O1IO2 = I,
and it follows that O1 = O−1

2 . Result follows.

Definition: The symmetry group SO(3) is called the
isospin symmetry of the Skyrme Lagrangian.

4.2 Notation and field equations

To ease notation, write Rµ = ∂µUU
−1. As we saw in Sym-

metries, Fields and Particles, Rµ ∈ L(SU(2)), the Lie al-
gebra of SU(2).

Also rescale space and time to remove the Fπ and e con-
stants in the Skyrme Lagrangian. Then the Skyrme La-
grangian becomes:

L =

∫ (
−1

2
Tr(RµRµ) +

1

16
Tr([Rµ, Rν ][Rµ, Rν ])

)
d3x.

Theorem: The field equations of the the Skyrme La-
grangian are:

∂µ

(
Rµ +

1

4
[Rν , [R

ν , Rµ]]

)
= 0.

The linearised equations are ∂µ∂µπππ = 0.

Proof: This is a tedious but straightforward calcula-
tion. It helps to note a variation of U has the form
δU = εXU , with X in the Lie algebra of SU(2).

4.3 Derrick’s Theorem for Skyrmions

As usual, we consider static field configurations. Then the
energy takes the form:

E =

∫ (
−1

2
Tr(RiRi)−

1

16
Tr([Ri, Rj ][Ri, Rj ])

)
d3x.

Write:

E2 =

∫
−1

2
Tr(RiRi)d3x, E4 =

∫
− 1

16
Tr([Ri, Rj ][Ri, Rj ])d3x

Note that E2, E3 ≥ 0 because L(SU(2)) is of compact
type, so the Killing form is negative definite.

Derrick’s Theorem: E2 = E4 for any soliton solu-
tion.

Proof: Let U(x) be a soliton solution, i.e. a station-
ary point of energy satisfying the field equations. Then
Ũ(x) = U(λx) will minimise the energy when λ = 1. The
proof then proceeds exactly as in the proof of Derrick’s
Theorem for kinks.

4.4 Strain eigenvalues and energy

A more convenient representation of the Skyrme energy
is through strain eigenvalues.

Definition: The strain tensor is Dij = − 1
2Tr(RiRj).

The eigenvalues of the strain tensor are denoted λ2
1, λ2

2

and λ2
3. We call the λi the principal strains.

The strain eigenvalues represent how much stretch-
ing our Skyrme map U does. Consider the diagram:

14
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A ball of radius ε � 1 is mapped to some ellipsoid on
S3

1
∼= SU(2), the unit 3-sphere. Locally then, we can view

the map as a linear stretching. The ellipsoid has principal
axes of lengths λ1ε, λ2ε and λ3ε, where the λi are the
strains as above.

Theorem: In terms of the strain eigenvalues, the
Skyrme energy is:

E =

∫
R2

(
(λ2

1 + λ2
2 + λ2

3) + (λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1)
)
d3x.

Proof: To begin with, it is best to rewrite Dij in a different
form. Near I, we may write

U(x) = I + iπππ · τττ ,

from which it follows Ri = i(∂iπππ) · τττ . Then

Dij = −1

2
Tr(RiRj) =

1

2
∂iπ

a∂jπ
bTr(τaτ b) = ∂iπππ · ∂jπππ.

Now let’s begin rewriting the energy in terms of the strains.
The first term in the Lagrangian is just the trace of the strain
tensor, hence

Dii = −1

2
Tr(RiRi) = λ2

1 + λ2
2 + λ2

3

by definition.

To get the remaining terms, we use the alternative
form we derived above. We first note that

[Ri, Rj ] = −∂iπa∂jπb[τa, τ b] = −2iεabc∂iπ
a∂jπ

bτ c.

Hence Tr([Ri, Rj ][Ri, Rj ]) =

−4εabcεdef∂iπ
a∂jπ

b∂iπ
d∂jπ

eTr(τ cτf )

= −8εabcεdec∂iπ
a∂jπ

b∂iπ
d∂jπ

e

= −8(∂iπππ · ∂iπππ∂jπππ · ∂jπππ − ∂iπππ · ∂jπππ∂iπππ · ∂jπππ)

= −8(DiiDjj −DijDji).

Now use the following result: Tr(A2) =
∑
i µ

2
i where µi are

the eigenvalues of A. Then we have

DiiDjj −DijDji = (λ2
1 + λ2

2 + λ2
3)2 − (λ4

1 + λ4
2 + λ4

3)

= 2λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3,

whence the result follows.

Lemma: The volume of the unit d-sphere is:

Vol(Sd1 ) =
πd/2

Γ(d/2)

Proof: Note that

(
√
π)d =

∫
Rd

d∏
i=1

(e−x
2
i dxi) = Vol(Sd−1)

∞∫
0

e−r
2

rd−1dr.

Let u = r2 and the use the definition of the gamma
function.

Theorem: The degree of the mapping U : R3 → S3
1

is given by

B =
1

2π2

∫
R3

λ1λ2λ3 d
3x.

Proof: Note R3 is not compact, but U → I2 as |x| → ∞
allowing us to compactify and identify R3 ∼= S3

∞. Note that
λ1λ2λ3 is the factor by which volumes change under U ;
therefore the (non-normalised) standard volume form on
S3

1 has pull-back:
λ1λ2λ3d

3x.

It follows that∫
λ1λ2λ3 d

3x = Vol(S3
1)B = 2π2B,

where the volume of S3
1 is included to guarantee normali-

sation.

Theorem (Fadeev-Bogomolny Bound): We have
E ≥ 12π2|B|.

Proof: We complete the square in the energy to get:

E =

∫
R3

(
(λ1 − λ2λ3)2 + (λ2 − λ3λ1)2 + (λ3 − λ1λ2)2

)
d3x

+12Bπ2.

Note there are two options for sign when completing
the square, which gives the modulus. The result follows
immediately.

Note that it is impossible to attain this bound. Equal-
ity occurs iff λ1 = λ2λ3, λ2 = λ3λ1 and λ3 = λ1λ2 hold
everywhere; it is possible to show the only solutions are:

• λ1 = λ2 = λ3 = 0, i.e. U is constant. This is the
vacuum configuration U = I everywhere.

• λ1 = λ2 = λ3 = 1. then there is no strain and the map
preserves lengths locally. This is impossible since we
have to scrunch up R3 in some places to get to S3

1 ,
since the two spaces are not isometric.
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4.5 The hedgehog Skyrmion

The B = 1 Skyrmion solution comes from the ansatz:

U(x) = cos(f(r))I + i sin(f(r))x̂ · τττ .

Let’s examine the form of this map:

• Note that any 2-sphere of fixed radius r in R3 gets
mapped to a 2-sphere in SU(2) space of radius
sin(f(r)), since we can view cos(f(r)) fixed, leaving
the image only dependent on sin(f(r))x̂.

Hence we have split up the angular and radial
dependencies.

• The boundary conditions require U → I as |x| → ∞
and U → −I as |x| → 0 (the map must cover the tar-
get space, and thus−I must have a preimage, WLOG
put it at the origin). Therefore f(0) = π and f(∞) = 0.

Because of our interpretation of a fixed 2-sphere of radius
r mapping to a fixed 2-sphere of radius sin(f(r)), we can
compute the strains.

Theorem: The radial strain is λ1 = −f ′ and the an-
gular strains are

λ2 = λ3 =
sin(f(r))

r
.

Proof: Consider a sphere of radius r � 1 centred at 0 in
the domain. This is mapped to a sphere of radius sin(f(r)).
The metric on the original 2-sphere is

ds2 = r2dθ2 + r2 sin2(θ)dφ2,

and the metric on the new 2-sphere is

d̃s
2

= sin2(f(r))dθ2 + sin2(f(r)) sin2(θ)dφ2.

Comparing the two, we see that the angular strains are
indeed:

λ2 = λ3 =
sin(f(r))

r
.

Now consider the radial metrics. For small r, we have that
the sphere in the domain is mapped to a sphere of radius
sin(f(r)) in the target. Hence

sin(f(r)) ≈ f ′(r)r.

near r = 0. Since f is decreasing we have f ′ < 0, so the
strain is λ1 = −f ′.

Theorem: The hedgehog Skyrmion indeed has degree
B = 1.

Proof: Simply substitute strains into the formula for
B above and integrate.

Theorem: The energy of the hedgehog Skyrmion is
given by:

E =

∞∫
0

(
(f ′)2 +

2 sin2(f)

r2
(1 + (f ′)2) +

sin4(f)

r4

)
4πr2 dr.

Proof: Again, substitute into general formula.

We can now analyse the field equations for f . We
find:

Theorem: f obeys the ODE: 0 =

(−r2−2 sin2(f))f ′′−2rf ′+sin(2f)(1−(f ′)2)+
2 sin3(f) cos(f)

r2
.

Proof: Simply compute EL equations of above integral.

Thus linearising this equation, i.e. expanding sin(f) ≈ f ,
cos(f) ≈ 1, etc, we see that f obeys:

−r2f ′′ − 2rf ′ + 2f = 0

as r → ∞. Solving with the ansatz f = rk, we find k = 1,
k = −2. The k = 1 solution is not useful as it is unbounded.

Therefore the asymptotics of f as r → ∞ are given
by

f ∼ C

r2
,

and hence the asymptotics of the Skyrme field are:

U(x) =

(
1− C2

r4

)
I + i

C

r2
x̂ · τττ .
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4.6 The rational map approximation

Generalise the hedgehog. Try an ansatz of the form

U(x) = cos(f(r))I + i sin(f(r))n̂R(z) · τττ ,

where n̂ is the point on the Riemann sphere realised
as S2 corresponding to the point R(z) in the complex
plane. Also, z = tan( 1

2θ)e
iφ, where (θ, φ) are the angular

coordinates of x, in the domain.

Theorem: We have

n̂R(z) =
1

1 + |R|2
(R+R,−i(R−R), 1− |R|2)T .

Proof: Just use the result from the above section on
stereographic coordinates (under Popov vortices).

Theorem: If R has degree n, then the degree of the
Skyrme field is B = n.

Proof: Count preimages. f is a monotonic function,
so the only times we can have multiple preimages are if
n̂R(z) maps to the same points on S2 for different values
of z.

But then the number of preimages is the same as
the number of preimages of R(z). It follows that the
degrees are equal.

Theorem: The strain eigenvalues are

λ1 = −f ′, λ2 = λ3 =
sin(f(r))

r

(
1 + |z|2

1 + |R(z)|2

) ∣∣∣∣dRdz
∣∣∣∣ .

Proof: The radial argument is as before. The angular ar-
gument comes from that fact that the metric on S2

r in the
domain is:

ds2 =
r2dzdz

(1 + |z|2)2
.

The metric on S2
sin(f(r)) is

d̃s
2

=
sin2(f(r))dRdR

(1 + |R|2)2
=

∣∣∣∣dRdz
∣∣∣∣2 sin2(f(r))dzdz

(1 + |R|2)2
.

Hence the angular strains have product:

λ2λ3 =
sin2(f(r))

r2

(
1 + |z|2

1 + |R|2

)2 ∣∣∣∣dRdz
∣∣∣∣2 .

By the symmetry, λ2 = λ3, and hence they are equal to
the square root of the above.

Theorem: The energy is given by

E =

∞∫
0

(
(f ′)2 + 2B

sin2(f)

r2
(1 + (f ′)2) + I sin4(f)

r4

)
4πr2dr.

where I is a completely angular integral.
Proof: Use the standard form in terms of the strain eigen-
values. Need to use:

B =
1

2π2

∫
R3

λ1λ2λ3 d
3x

= − 1

2π2

∞∫
0

f ′ sin2(f(r)) dr

︸ ︷︷ ︸
=1

∫
R2

|R′|2
(

1 + |R|2

1 + |z|2

)
dΩ.

to replace an expression in the second term.

To find the approximate rational map Skyrmions, we
minimise E. We first minimise I numerically via a choice
of R(z). Remarkably, R(z) often has a lot of symmetry:

• For B = 1, R1(z) = z. This gives rise to n̂R(z) = x̂.
This is spherically symmetric.

• For B = 2, R2(z) = z2. This is toroidally symmetric.

• For B = 3, R3(z) =

√
3iz2 − 1

z3 − iz
√

3
. This is tetrahedrally

symmetric.

4.7 Comparison to true Skyrmions

Theorem: For B < 8, the approximate rational map
Skyrmions have the same symmetries as the true
Skyrmions.

Definition: The baryon density is B = λ1λ2λ3.

By the above, B ∝ R′(z), and hence the baryon number
density vanishes at the Wronskian points. It follows that
the approximate Skyrmions have holes at 2B − 2 points.

It turns out the true Skyrmions also have the same
number of holes:
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4.8 Pion mass terms

In the original Skyrme Lagrangian, we may also include
the pion mass terms:∫

−1

8
F 2
πm

2
πTr(I2 − U) d3x.

Theorem: For |πππ| � 1, this is manifestly as mass term.

Proof: We have

Tr(I2 − U) = Tr(I2 − σI2) = 2(1− σ).

since the Pauli matrices are traceless. Now

1− σ = 1−
√

1− |πππ|2 ∼ 1

2
πππ2.

Therefore the mass term becomes:∫
−1

8
F 2
πm

2
ππππ · πππ d3x.

The normal rescaling of space normalises this term to a
mass term.

The potential energy above is very high for U = −I2.
These are regions where cos(f) = −1, i.e. f = π, thus
sin(f) = 0, so the baryon density B vanishes there.

Therefore, the hollow Skyrmions as stated above are
very unstable as B increases. It follows that the true
Skyrmions are much more compact as B increases.

Indeed, most true larger Skyrmions are made up of
the more stable B = 4 cubic units in some arrangement.

4.9 Symmetries of rational maps

Definition: A rational map R : S2 → S2 has a symmetry if
it is invariant under combined rotations of both the domain
and target spheres S2.

A rotation k ∈ SO(3) acts on the z-sphere as

k(z) =
γz + δ

−δz + γ
,

where |γ|2 + |δ|2 = 1. A rotation M ∈ SO(3) acts on the
R(z)-sphere as

M(R) =
ΓR+ ∆

−∆R+ Γ
,

where |Γ|2 + |∆|2 = 1.

A symmetry of R(z) can then be written as (k,Mk)
where

Mk(R(z)) = R(k(z)).

Definition: The symmetry group of R(z) is the set of all
symmetries, together with the group multiplication given by

(k1,Mk1) · (k2,Mk2) = (k1k2,Mk1k2).

This makes sense because of the fact that we can evaluate
R(k1k2(z)) in two ways:

Mk1Mk2(R(z)) = R(k1k2(z)), Mk1k2(R(z)) = R(k1k2(z)).

HenceMk1k2 = Mk1Mk2 , soM is a group homomorphism.

4.10 Symmetries of Skyrmions

We can apply the above theory to work out more
about symmetries of the rational map approximations to
Skyrmions.

Each Skyrmion has a symmetry group of the form
K ≤ SO(3) × SO(3), where the first factor of SO(3) is
a rotation on the S2 domain sphere, i.e. the z-sphere,
and the second factor of SO(3) is an isorotation of the
R(z)-sphere.

We associate a colour to each of the pion fields π1,
π2, π3. In the rational map approximation, this corre-
sponds to where n̂R(z) is, i.e. where R(z) is on the
R-sphere.

Example: Consider the rational approximation R(z) = z2.
This gives a toroidal Skyrmion:

A normal rotation in z-space just rotates the Skyrmion
around. A rotation in R(z)-space rotates the colours
around. Thus we spot that a π rotation around the hole
gives a 2π rotation of the colours.

This corresponds to (with α = π) k(z) = eiαz and
R(k(z)) = R(eiαz) = e2iαz2 = Mk(R(z)), where
Mk(R) = e2iαR.

There’s another rotation which corresponds to flip-
ping the Skyrmion upside down. The corresponding
isorotation also flips the colours around.

In terms of the z-sphere, we should view the rotation
as k(z) = 1/z. This, as expected, gives the same rotation
of the colours via

Mk(R) =
1

R
.

Finally, one can reflect the Skyrmion, i.e. by k(z) = z,
Mk(R) = R. Geometrically, this is reflection in the 2-axis.
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The full symmetry group is D∞h, where D∞ is the infinite
dihedral group, and h is the reflection symmetry.

Note symmetries do not leave the Skyrmions invari-
ant on their own. For example, the hedgehog has pion
fields: πππ = sin(f(r))x̂.

Under a rotation of z-space, we have x̂ 7→ rx̂. Un-
der a rotation of R(z)-space, we have πππ 7→ M(r)πππ. It is
only under the combined transformation, where M(r) = r,
that the Skyrmion is invariant: M(r)πππ = sin(f(r))rx̂.

4.11 Quantisation of Skyrmions

We need to construct wavefunctions, which are functions
on the classical configuration space.

Definition: The Skyrme field configuration space, for
baryon number B, is:

CB = MapsB(R3 → SU(2)) ∼= MapsB(S3
∞ → S3),

where MapsB denotes the space of maps of degree B.

Theorem: Topologically,

MapsB(S3
∞ → S3) ∼= Maps0(S3

∞ → S3).

Proof: We can multiply each of the maps in the first set by
a fixed field configuration with baryon number B. Since
Skyrme fields live in a group, we can invert the map; since
it is a Lie group, the map is smooth and has a smooth
inverse.

Provided that degrees add, the spaces are homeo-
morphic. We can show this as follows. Suppose U1(x)
and U2(x) have degrees B1 and B2 separately. Then for
large a,

U1(x− a)U2(x),

it’s clear that the baryons are completely separate from
one another. So we get contributions separately from
both to get degree B1 + B2. Taking a → 0, the degree is
conserved since it is topological.

The important fact about the configuration spaces is
that they are connected but not simply-connected. It can
be shown that the homotopy group of Maps0(S3

∞ → S3)
is: π1(Maps0(S3

∞ → S3)) ∼= Z2. This has important
consequences when we quantise:

• A wavefunction on CB is allowed to be multi-valued
because of the simply-connected configuration space.

• In this particular case, the sign of the wavefunction
changes when we move around a non-contractible
loop in CB . This means these particles are fermionic.

4.12 Rigid body quantisation

We assume that Skyrmions are rigid bodies. Then there
are 9 possible coordinates describing the Skyrmion: (i) 3
translations, (ii) 3 rotations and (iii) 3 isorotations. These
describe the orientation of the Skrymions in terms of their
(i) position; (ii) orientation; (iii) colouring.

Associated to each of these symmetries, there are
Hermitian operators: (i) P, momentum, (ii) J, spin; (iii) I,
isospin.

Assume Skyrmion is fixed in space, and hence ig-
nore momentum. Then we can describe the state of any
quantised Skyrmion in the form:

|ψ〉 = |J L3 J3〉 ⊗ |I K3 I3〉 ,

where J is the total spin, J3 is the 3rd spin component
with respect to the space axes and L3 is the 3rd spin
component with respect to the body axes. Similarly for
isospin.

4.13 Examples of Skyrmion quantisation

Example 1: Consider the B = 1 hedgehog solution. For
any r ∈ SO(3) under which x transforms, the hedgehog is
symmetric with corresponding isorotation M(r) = r, under
which πππ transforms. Hence:

eiαn̂·Leiαn̂·K |ψ〉 = |ψ〉 ,

for any angle α and rotation axis n̂. We get a + sign on
the RHS since we can take α→ 0 continuously.

Infinitesimally,
(L + K) |ψ〉 = 0.

We call L + K grand spin, i.e. the sum of the spin and
isospin. This result means that the magnitudes of L and K
must be the same, and hence J = I.

Later we will see (by the Krusch formula) that:

e2πin̂·L |ψ〉 = − |ψ〉 .

This implies the particle has fermionic statistics, and
hence has half-integer spin.

For J = 1/2, I = 1/2, there are two isospin states
I3 = −1/2, 1/2. These are the neutron and proton.

For J = 3/2, I = 3/2, there are 4 isospin states,
I3 = −3/2, −1/2, 1/2, 3/2. These are the ∆−,∆0,∆+

and ∆++ resonances.
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Example 2: Recall that for B = 2, a rotation about
the 3-axis in the z space is k(z) = eiαz, and the corre-
sponding rotation about the 3-axis in the R(z) space is
M(R) = e2iαR. This leads to the constraint:

eiαL3e2iαK3 |ψ〉 = |ψ〉 .

As before, we have the + sign because we can take α→ 0.

We also get the condition from the rotation about the
1-axis by π:

eiπL1eiπK1 |ψ〉 = − |ψ〉 .

One can see this from the Krusch formula (see below), or
we can prove this intuitively as follows.

Begin by separating the Skyrmion out into two B = 1
Skyrmions, albeit of different orientations in terms of
colours:

In particular, the π1 poles are pointing towards one another
in the separated Skyrmions.

Now consider applying the operations eiπL1 and eiπK1 in
succession. For B = 1 Skyrmions, isorotations are the
same as rotations, so the effect of both of these is just to
perform a rotation around the π1 axis.

In the first case, both Skyrmions rotate in the same
direction by π, since eiπL1 is a physical rotation around the
π1 body axis. In the second case, the Skyrmions rotate in
different directions by π, since eiπK1 is an isorotation so is
rotating the colours.

Therefore, one Skyrmion rotates by 2π whilst the other
rotates by 0. It follows this is a non-contractible loop since
for B = 1 a 2π rotation is a non-contractible loop by the
Krusch formula (see later).

Notice also in this case that (around some appropri-
ate symmetry axis exchanging the B = 1 Skyrmions) we
have:

e2πin̂·L |ψ〉 = |ψ〉 ,

so we get no sign from the wavefunction under identical
particle exchange. Hence the B = 2 Skyrmion is bosonic,
and so has integral spin.

Thus, the allowed eigenstates obey (L3 + 2K3) |ψ〉 = 0.
Therefore L3 + 2K3 = 0 as eigenvalues.

Restrict to the case L < 2, K < 2. Then L < 2
implies L3 = −1, 0, 1 are allowed values, which gives
K3 = 2, 0,−2 respectively. Thus the only solution for
L,K < 2 is L3 = K3 = 0.

One possible allowed state is:

|J = 1, L3 = 0〉 ⊗ |I = 0,K3 = 0〉 .

This is called the deuteron. It is an isospin 0 bound state
of a proton and a neutron. Another possible allowed state
is

|J = 0, L3 = 0〉 ⊗ |I = 1,K3 = 0〉 .

This is called the dinucleon. It is a resonance, consisting
of two neutrons, two protons or the isospin 1 combination
of a neutron and a proton. It is unstable.

Can we have I = J = 0? No. We show this as
follows. Notice that we have:

eiπL1 |J, L3〉 = (−1)J+L3 |J,−L3〉 .

We get −L3 on the RHS from the rotation; when we flip the
Skyrmion upside down, the new body-fixed 3-axis points
in the opposite direction to the old angular momentum in
the 3-direction.

We get (−1)J+L3 from the following. Recall that eiπL1 is a
rotation about the 1-axis, sending θ 7→ π − θ. Recall that
the angular wavefunction is proportional to a spherical
harmonic, and hence under the transformation we have:

Y L3

J (θ, φ) = NeiL3φPL3

J (cos(θ))

7→ NeiL3φPL3

J (− cos(θ)) = (−1)J+L3Y L3

J (θ, φ),

by a property of the associated Legendre polynomials PL3

J .

Therefore: eiπL1eiπK1 |J, L3〉 ⊗ |I,K3〉

= (−1)J+I+L3+K3 |J,−L3〉 ⊗ |I,−K3〉 .

If I = J = 0, then L3 = K3 = 0, and hence
eiπL1eiπK1 |0, 0〉 ⊗ |0, 0〉 = |0, 0〉 ⊗ |0, 0〉 by the
above calculation. But this contradicts the condition
eiπL1eiπK1 |ψ〉 = − |ψ〉. So I = J = 0 is not possible.

4.14 The Krusch formula

Theorem: Suppose a symmetry gives rise to the quantum
constraint:

eiθ2n̂2·Leiθ1n̂1·K |ψ〉 = χFR |ψ〉 ,

where χFR = ± is called the Finkelstein-Rubinstein sign.
Then:

χFR = (−1)

{
B

2π
(Bθ2 − θ1)

}
.

Proof: Not required.
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