Part ll: Classical Dynamics - Revision

Lectures by Maciej Dunajski, notes by James Moore

1 Lagrangian mechanics

1.1 Definitions

Definition: Consider N particles with positions r;. Let 24
be their coordinates in the space R3". In this context, we
refer to C' = R3" as the configuration space of the system.

Definition:
(with masses my4) is a function £ :
configuration space C of the form

The Lagrangian of a system of particles
CxC — Ron

1
Lt i) =S maitit = V(z?, i),
2 n ———

potential

kinetic
That is, the Lagrangian is the kinetic minus the potential
energy.

Definition: Let 74 be a curve in configuration space,
parametrised by time ¢, with coordinates (z(t),#4(t)).
We define the action of the curve as the functional:

tfinal

Shl = L(x(t),3(t)) dt.

tinitial

1.2 The Principle of Least Action

Theorem: The curve taken in configuration space by a
system is an extremum of the action functional S.

Proof: Replace z4(t) by z“(t) + éz*(t) in the ac-
tion functional, and assume end-points are fixed, i.e.
S (tinie) = 0 and 5z (tg,) = 0. Then S — S + 6.S where:

thin

B oL ., oL 4
tinit

tfin ta
oL d oL oL fin

_ A e A
‘/(M <<w it (W))) d”[aa':f“;x }

by parts. Assuming the end-points are fixed, boundary
term vanishes. Demanding the action is an extremum, we
have 65 = 0 for all 6z*. Thus we must have:

oL d (oL _,
OxA  dt \9zA )

It remains to check the equivalence of these equations to
Newton’s equations.

7

We have
oL _ oV d (oL _i(mj;)
oA~ T 9zA dt \ozA ) ~ ar> AT

and so the above equation holds if and only if Newton’s
equations hold. O

Definition: We call the equations

oL _d (LN

ordA  dt \9i4 )
the Euler-Lagrange equations, or just Lagrange’s equa-
tions.

Theorem: The Euler-Lagrange equations hold in any
coordinate system.

Proof:  Let q.(x',2%,...,2°",t) be some coordinate
transformation. Assuming these relationships are invert-
ible, we can write 4 = 24(q1,4q2,...,q3v). Then by the
chain rule:

A ox? n x4
T 9 T T
Now consider the derivatives of £. We have:
oL _ oL oat oL dit
0qa  0xF 0q, O Oqq
oL dah oL ( ot 0
T 92F g,  0iF \ 9g.0q, L " gadt )
using & expression
oL oL ot oL out
04, 0i*F 94,  0i* Oq.
~—
can remove
dots by chain

rule

d (0L _d (0L Oak OL (Ot - Oah
dt \ 94, ) ~ dit \9i* ) Bg, " 9i* \ 9ga0qs 0 " Bgadt )

using &“ expression

Thus, putting everything together, we have:

oc 4 (DL _ost (0C 4 (DEVY_, o
0qa  dt \ 94, )  0Oqq \OxF dt \ 9i* o
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1.3 Constraints & generalised coordinates

Definition: A set of holonomic constraints is a set of
relations of the form {f,(z*,t) = 0}, A = 1,2,...,3N,
where a = 1,2,...,3N —n forsome 0 < n < 3N.

Definition: If a set of holonomic constraints can be
solved in principle by parametrising 2% = 24(q1, g2, ..., ¢n)
(note n degrees of freedom available), then the ¢; are
called generalised coordinates.

We can incorporate holonomic constraints into the
Lagrangian formalism in two ways:

1. Lagrange multipliers: Define a new Lagrangian

3N—n

L1+ D Aafala?t),
a=1

so that the Euler-Lagrange equations for £’ are given by:

L'z, i Mo, t) = L(z?

oL’ B
= a 1) =0,
W 0 = falz®,t)=0
i oL 3NZ7L /\ 8fa
dt \ 924 81‘4 B '
%,_/

constraint forces

We can now solve these equations as usual.

Example: Consider the pendulum shown.

The kinetic energy is m(i? + ¢?), the potential energy is
—mgy and the holonomic constraint is z2 + y?> — 12 = 0.
Hence by the above method of Lagrange multipliers, we
obtain the three equations:

2?42 =12
mi = Az
my = mg + Ay.

The Lagrange multiplier is proportional to the tension, A =
—T/1, in the Newtonian formalism, so we indeed see that
the Lagrange multipliers correspond to constraint forces.

2. Generalised coordinates: This method is useful when
we don’t care about the constraint forces’ values.

Theorem: For constrained systems, the equations of
motion can be derived directly from the Lagrangian

L(qi, dirt) = L(x* (g, 1), & (a1, 4, 1)),

where the ¢; are the generalised coordinates.

Proof: Define £ = L + Aofa = L + Aafa (SUmMma-
tion convention applies) and use the Lagrange multiplier
method. We can first change coordinates to

4. Jafori=1,..,n A=1,..,n
Yo = fafora=1,2,....3N —n, A=n+1,n+2,...,3N.

By coordinate invariance of the Euler-Lagrange equations,
we know that the equations of motion are, for the first n
coordinates:

d (0L oL Ofa
- - - )\a =Y,
dt (8%) 9q; ; 04 0

since f, independent of ¢;, by definiton. So we have
equations for the dynamics entirely in ¢;, which hold only
on the surface of constraints. [

Example: Consider the same pendulum as before.
The constraint is solved by introducing the generalised
coordinate 6 so that z = [sin(d) and y = lcos(f). Then
the Lagrangian becomes £ = 3m621> + Img cos(9), which
gives the Euler-Lagrange equation:

ml = —? sin(6).

Example: Consider a bead on a wire:

This has Lagrangian

1., .
L= §(w2+y2)+gy-

We can parametrise the wire as © = ¢, y = f(q) say, giving
y= dqq Then the Lagrangian can be written as:

2
L= % <q2 + (j{ch> ) +9/(q),

and the equation of motion is then easy to derive.
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1.4 Noether’s theorem and symmetries

Definition: A function F(q.,d.,t) is called a first integral
or constant of the motion if 2 = 0 holds whenever the
Euler-Lagrange equations hold.

oL

T u BE _ _
Definition: If e = 0, then the momentum p, = e

is clearly a first integral. We call ¢, ignorable or cyclic.

Definition: Suppose that there exists a one-parameter
family of transformations ¢,(t) — Q.(s,t) such that
Q.(0,t) = q.(t), where s € R is a parameter for the
family of transformations. We call this transformation a
continuous symmetry of the Lagrangian L if

A (£(@u(s,1),Quls,1). ) =0,

Theorem (Noether’s theorem):
tinuous symmetry of £, then

If Q.(s,t) is a con-

oL 0Q,
; 0q, 0Os

s=0

is a first integral.

Proof: By the definition of a continuous symmetry,
we have

o dL| 0L, L 90,
~ s 520_ dq, 0s D Os 5207
where we can repl ivati oL 9L \i
place the derivatives 55~ 30 with
PL DL because ¢, = Q. at s = 0 (also note summation

convention applies). Now use the Euler Lagrange equa-

tions:
d (LY 0Qu| 0L d (0Q
dt \0¢.) 0s |,_, Odudt \ Os
d (0L 0Q, -
~dt \9q, Os

1.5 Applications of Noether’s theorem

s=0

s=0

Theorem: Spatially homogeneous systems obey conser-
vation of momentum.

Proof: Consider a spatially homogeneous Lagrangian:
1 .
=3 D omiltiP = > V(Ir—ry)).
i.J

A continuous symmetry of the system is R;(s,t) =r; + sn,
where n is an arbitrary constant vector. So by Noether’s
Theorem,

oL OR;
8r2 0s s=0

Z* n*;Pi'n

is a conserved quantity. Since n was arbitrary, total

momentum is conserved. [J

Theorem: Spatially isotropic systems obey conser-
vation of angular momentum.

Proof: This time, a continuous symmetry is
R;(s,t) = A(s)r; where A(s) is an orthogonal matrix,
and A(0) = I. Taylor expanding, we find:

R,=r;+ Sﬁ(S) X ¥ + 0(52)7

where n(s) is the axis of rotation. The proof now proceeds
just as before. [

Theorem: Homogeneity in time implies the Hamilto-

nian
H= Z in 25 8qn

is a conserved quantity.

Proof: Homogeneity in time requires

oL

yri 0.

Thus (with the summation convention applying):
dH _ 0L . d (OL\ oL oL, oL,
at ~ "o, 0n) Ot 0g, T 04, ™

Now simply use the Euler-Lagrange equations, and we're
done. (Note: this didn’t use Noether’s theorem.) O

1.6 Applications of Lagrangian mechanics

Example: Geodesics
We call Lagrangians of the form £ = 1g4:(q)¢*¢", where
Jab IS Symmetric, kinetic Lagrangians. The Euler-Lagrange
equations are given by:

-b aagcb o

1q“qb%—g i —dbq
2 dq° < 0q°

1. b agab b bagcb 1 b - agbc
= —psasbZJab . _ -a aZJ0¢ 0’
04 e —9evd qqaa 299 B4
splitting the term up using g., = gs.- Now relabel a — b,
b+ a in the third term.
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We get:

1. b 89(11) agcb agac )
L .a _ _ — g =0.
a4 < Oq¢  0q*  O¢b Jebd

Multiplying through by —g*<, we obtain the equation
¢" +4"4"Tg, =0,
where T'¥, are the Christoffel symbols:
P <5gbd 09ca agbc) ‘

bc_29

0q° Oqb 0q?

Example: Electromagnetism
The Lagrangian for particles in an electromagnetic field is

1 . .
L=oml?—¢+F-A
where ¢ is the scalar potential, and A is the vector po-

tential. This recovers the Lorentz force law via the Euler-
Lagrange equations:

4 (9L _ 0L = 4 (mr+A) = oL
dt \ oF ) or dt -~ or’
Writing out in suffix notation:
Py 04, 04 ; 8Aa+8¢ B
Mra ory ory b ot or,
Now recall
09  0A, 0A.
Ey=——— — B, = €cge——r.
T o, ot ¢ e g

This gives the Lorentz force law as expected.

2 Stability analysis

2.1 Eigenvalue method

Suppose that the Euler-Lagrange equations for a system
reduce to the form

Gi = fi(q1, a2, --qn),
for generalised coordinates g;.

Definition: We say q = q° is an equilibrium solution
of this system if f,(q°) = 0 for all 4.

Theorem: A small perturbation n(t) to an equilibrium
solution at q° evolves as

i =Fn,
where F is the matrix with elements

afi

F; = .
dq; q=q°

Proof: Let @ = q° + n(t). Then the equations § = f(q)
become:
i =fn+a°) = f(@°) +(n- V)HQ") + ..
0

hence to first order, = Fn for the given matrix F, as
required. O

We analyse stability by looking at the eigenvalues of
F. First, we should check that the eigenvalues are real
(since F is not necessarily symmetric).

Theorem: For the Lagrangian

1

L= iTij(q)(jiq.j - V(q),

with T;; symmetric, positive-definite and invertible at q°,
the eigenvalues of the matrix F (governing stability at q)
are real.
Proof: The Euler-Lagrange equations for £ are:
19Ty, .. oV d :
~ =Yg, — — — — (Tijg;) = 0.
2 g 491~ gy ~ @t D)
Expanding with q = q° +n(t), we have to first order in n,
B 0%V
0¢;0q;

n; = Ti;(Q°)ii; = Ty Fjun,
a=q°

where in the last equality we used the equation of motion
for i, from the above Theorem. Redefining:
0%V

Tij = Tij(qo)a ij = 9q;0q;
? J

)
q=q°
we can rewrite our equation as the matrix equation:

~-V=TF =  -T'V=F,

since T is invertible at q°. Now suppose that Fu = \?p.
This occurs if and only if Vu = —\2Tu. Take the inner
product with p to obtain:

iVu = -\ Tu.

Now since V and T are symmetric, both z7Vu and 57 Ty
are real. Since T is positive definite, z” Tu # 0, and hence
it follows that —\?> must be real (if @’ Tu was zero, —\?
could be anything we liked!). O

This Theorem allows us to conduct the following analysis.
Suppose Fu, = \2p,, a = 1,2...m (Where m < n).

Definition: The vectors u, satisfying Fu, = M\pu,
are called the normal modes.
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The normal modes are important, since the most general
solution of # = Fn can be written as:

n(t) = 3 o (A + Boe ).

The A, and B, are unimportant constants of integration.
The A2 determine the behaviour of the perturbation. There
are two cases:

Case 1- )2 < (0forsomea: In this case, \s = Fwai,
for w, real. Hence the perturbation is linearly stable in the
direction p,,.

Case 2- )2 > (0 forsome a: In this case, A\, = +w,,
for w, real. Hence the perturbation is linearly unstable in
the direction p,.

Definition: An equilibrium point q° is called linearly
stable if \2 < 0 for all a; otherwise, it is called linearly
unstable.

2.2 Example: linear triatomic molecules

Consider a triatomic molecule with atoms of masses m,
M and m respectively (see diagram).

The Lagrangian is
1 5, 1 5 1
L= 5 M + §Mx2 + 5mds — V(zy — x2) — V(x2 — x3),

where the V' are chemical potentials (generally compli-
cated). Let z; = 2¥ be an equilibrium. By symmetry, we
expect |2§ — 23| = |23 — 29| = 7o at equilibrium. Consider
small perturbations z;(t) = x¥ + n;(t). Then:

ov o?V (r—mo)?
V(r)=V(ro)+ o . (r—ro)+ 7| 5 + ...
—— —_——
0 =k

Close the equilibrium point, the Lagrangian then becomes:

1 1 1
£ St LM+ i

5 3 Ly ((m —m2)® + (n2 — m3)?) ,

2
which gives an equation of the form # = Fn when we find
the Euler-Lagrange equations. We find that there are three
normal modes, one corresponding to translation, and the
other to vibrations.

3 Rigid body dynamics

3.1 Kinematics

Definition: A rigid body is a collection of N points
constrained such that the distances between the points
are fixed, |r; —r;| = constant, i,j = 1,2, ..., N.

Continuous configurations are also possible, where
we have infinitely many points; throughout, to change from
a discrete to a continuous distribution we replace masses
by mass density and sums by integrals.

Definition: The position of a rigid body fixed at a
point P (i.e. non-translating, just rotating) can be specified
by its position relative to either a fixed orthonormal frame
{e1,€,e3}, called the space frame, or a moving orthonor-
mal frame {e1(t),ez(t),es(t)} that moves with the body,
called the body frame.

In particular, we have e,(t) - e,(t) = dap = €, - €.
We also choose the vectors to be right-handed, in the
sense that e,(t) x €,(t) = eqpc€.(t) (and similarly for the
space frame).

The first question we should ask is how to go be-
tween the two frames.

Theorem: The 3 x 3 matrix R(t) defined by R, = e,(t) €,
is the unique orthogonal transformation such that
ea(t) = Rab(t)eb.

Proof: Uniqueness is immediate, since

ea(t) = Rab(t)éb = ea(t)'éc = Rab(t)éb'éc = Raca

by orthonormality of the frames. Orthogonality follows
from:

[RTR]ab = RacRbc = RacRbd(Scd = RacRbdéc'éd =©€,€, = 6ab- O

Using this Theorem, we can count the number of degrees
of freedom of the system. Notice that R, has 9 elements,
but the equation RT R = I for orthogonality gives 6 con-
straints, hence there are 3 degrees of freedom. We will
characterise these by Euler angles later on.
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3.2 Angular velocity

Definition: We notice that

deq(t) g(
dt  dt

Rabéb) = Rabéb = RabRb‘(}ec(t).

Define wae(t) = RapR,,' = RapRe (using R™' = R”). In
dyadic notation, w = RR”.

The matrix w,.(t) has some useful properties:

Theorem: We have
(i) ! = —w;

(i) forany pointr(t) = r,e,(t) on a rotating rigid body, we
have
dr(t)
dt
Proof: (i) follows immediately by differentiating the relation-
ship RR” = I, which gives:

= 7qWac€c(t).

0=RR" +RR” =w + (RR")T =w + w’.
For (ii), we have:

dr(t de,(t
d(t) =7, dat( ) = rowecc(t). O

From the matrix w, we can construct the angular ve-
locity of a rotating rigid body.

Definition: The angular velocity components of a
rotating rigid body are defined by

1
Wa = 7 €abcWhc-

2

Conversely, wap = €qpewe. Written out in full, we have:

0 w3 —W2
Wab = —Ws 0 w1 .
wo —W1 0

The angular velocity vector is defined by w = w.e,(t), i.e.
the components w, are components with respect to the
body frame.

Theorem: We have, for any vector r(t) in the body

frame: ()
r

Proof: We have

dt

using right-handedness of the frame. Now use r(t) =
r.€4(t) and linearity. O

= wacec(t) = *Eabcwbec(t) = *wbea(t)xeb(t) = wxea<t)7

3.3 The inertia tensor

Definition: The inertia tensor is defined by
I, = Zmi((ri “¥i)dap — (Fi)a(Fi)p)-

Notice that this tensor is manifestly symmetric.

Theorem: The kinetic energy of a rotating body is
given by 1w”l w, where | is the inertia tensor, and w is
the angular momentum vector. In components, this is
%walabwb.

Proof: The kinetic energy of the body is given by:

T = %Zmlm?

= %Zmﬂw x r;|? (by above)
1

= 5 Zmi(eabcwb(ri)c . 6ade‘"-”d(l"i)e)
1

=3 > miwawn((F - 1)0ap — (1)a(Fi))- u

In practice, we usually work with the continuous ana-
logue of the inertia tensor:

y2 + 22 —xy —xTz
| = /// o) | —zy 2?2422 —yz d>r,
—Tz — % + y2

Yyz

which can easily be obtained from the discrete formula.
Since | is symmetric and real-valued, it can be diago-
nalised by an orthogonal transformation and has real
eigenvalues.

Definition: The axes with respect to which | is diag-
onal are called the principal axes. The diagonal elements
of I, when expressed in the principal axis basis, are called
the principal moments of inertia.

Example: We compute the inertia tensor of a disc of
mass M, radius r, fixed at its centre.
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3.4 The parallel axis theorem

Theorem: Let I,, be the inertia tensor of a body fixed
about its centre of mass. Then if P’ is displaced ¢ from
the body’s centre of mass, the inertia tensor of the body
about P’ is given by:

(Ie)ap = Lap + M(|C|* 50 — cacp)-
Proof: We have

(Te)as = 3" mi (I = 025 — (i — €)a(ri — ©)
= Zmi(|ri|25ab — (F)a(ri)p) + Zmi(|c\26ab — CaCp)

+ Z m;¥; - (stuff only dependent on €¢). O

K2

vanishes in COM frame

3.5 Euler’s equations

Theorem: The angular momentum of a rotating rigid body
is givenby L =l w.

Proof: We have:
N N N

L= Zmirini = ZmiriX(eri) = Zmi(|ri|2w—(ri-w)ri)
n=1 =1 =1

which gives L = lw. OO

Theorem: The motion of a free rigid body under the

action of no external forces, with no translation, is

determined by Euler’s equations:
Ly + waws (I3 — 1)
Towo 4+ wawq (I; — I3)
Isws + wiwe(Is — It)

0
0

)

where I, are the principal moments of inertia of the body,
and w; are the components of the angular momentum in
the principal axis basis.

Proof: For a free rigid body, we have conservation of
total angular momentum by Noether's Theorem. Hence
writing L = L, (t)e,(t).
_dL_ dL(t)
Codt dt

de,(t)
dt

0 e.(t) + La(t)

= Lo€,(t) + La(t)w x €,4(t)

= La€u(t) + La(t)(whepacc(t)).

Thus we have L. + esowsLo = 0. In the principal axes,
L1 = liwy, Ly = Iywe and L3 = Ingg. SUbStltU“ng this in,
we have Euler’s equations. [

3.6 First integrals

There are two useful first integrals of Euler’s equations:

Theorem: The kinetic energy 1(Liw? + Lw3 + I3w3),
and the square norm of the angular momentum,
IL]? = Ifw? + I3w} + I3w3, are both constants of
the motion.

Proof: MUltlply by Liuw + OJQLLJS(IS — IQ) =0 by W1,
and similarly for others, and then add all of Euler’s equa-
tions together. Then integrate directly. Same for angular
momentum but multiply through by I;w,. O

3.7 Light spinning tops

We now see some example applications of Euler’'s equa-
tions to spinning tops.

Example 1: Sphere
For a sphere, Iy = I, = Is = I. Hence Euler’s equations
imply w, = 0 for all a. Thus the angular velocity is constant.

Example 2: Symmetric top

For a symmetric top, we have I = I, I # I3 and Iy # Is.
Since I, = I,, by Euler’'s equations we have w3 = 0. The
remaining equations reduce to:

. (L1 . L — I3
w1 = Il Wows, Wog = — Il wiws.

Set Q = ws(I; — I3)/11, which is a constant. Then we can
write the equations as w; = Qws, ws = —Qws. Decoupling,
we have &1 = Qs = —Q%w;.

In general, we have:
(w1, wa,ws) = (Asin(Qt), B cos(2t), ws(0)).

Hence there is spin precession around the z axis.

Example 3: Asymmetric top

For an asymmetric top, I # I, Is # I3, I # I3. Consider
the special case w1 = 0, ws = w3 = 0; this is an equilib-
rium position. We ask if it is stable.

Let wl(t) = QO+ nl(t), wg(t) = Ug(t) and W3(t) = 773(t).
Euler’s equations become:

Liin = O(n°)

Iy = Qs (t)(Is — I) + O(n?)

137;]3 = Q’I]Q(f)([l — Ig) + 0(7]2).

Differentiating the second equation and inserting into the
third, we have:

02 (I = I)(Is — I1)
I3

Hence there is an instability if Io < I < Iz or I3 < I; < Is.

Lijp = N9 4+ O(n?).
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3.8 Euler angles

We now try and deal with heavy tops, rather than just free
tops. This requires even further machinery.

Theorem (Euler’'s Theorem): A general rotation in
R3 may be expressed as a product of three successive
rotations about 3 (in general) different axes.

Proof: We want to find the matrix R,(t) such that
e.(t) = Rgp(t)€y, the matrix we showed existed and was
unique earlier on. We proceed in three steps:

Step 1: Rotation of ¢ about the e; axis:

Step 2: Rotation of # about the €] axis:

Step 3: Rotation of i) about the ég axis:

Composing all the matrices of these rotations gives
an overall matrix:

and so indeed we can represent the rotation matrix as a
product of three successive rotations, with varying angles
¢, 0 and y. O

Definition: We call the angles ¢, § and « the Euler
angles.

3.9 Angular velocity revisited

Theorem: The angular momentum in the body frame may
be expressed in terms of the Euler angles as:

w = (¢sin(f) sin(v) + 0 cos(h))e1 (t)
+(¢sin(0) cos(y)) — Osin(yh))ea(t) + (¢ + ¢ cos(6))es(t).

Proof: We prove the result through two steps:

Step 1: We show that if the rotation matrix is R(n,¢),
then angular velocity is w = ¢n. WLOG, take A = (1,0,0),

and so
1 0 0
R= (0 cos (o) sin(¢)) .
0 —sin(¢p) cos(¢)

Compute RR” to get:

. {0 0 0
RR"=¢|0 0 1].
0 -1 0

Compare to expected form of w,;, and then use

Wa = —€aqbeWhe = PNg.

2

Step 2: Show w is additive under composition of rotations.
We have:

d . .
%(Rle)(Rle)T = (R1Ry + R1Ro)RIRT = wy + ws.

where w; and w, are the angular velocity matrices. Hence
the angular velocity vectors are also additive.

Step 3: From Steps 1 and 2, we can immediately

conclude that the rotation R(é},v)R(€],0)R(€s,$) gives
angular velocity vector

w = )&, + 08 + ¢es.
Now we carefully construct €5, €, and &; in the body frame
using the Euler angle diagrams. We have:
~/!

& =e;(t), € =cos(v)e(t) —sin(v)es(t),

€3 = cos(0)€; + sin(h)e;
= cos(6)ex(t) + sin(f)(cos(1p)es(t) + sin(¢p)ey(t)).

Combining all this gives the result. O
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3.10 The heavy symmetric top

We finally have enough machinery to deal with the heavy
symmetric top. Consider the heavy symmetric top as
shown:

We assume that the top has principal moments of in-
ertia I = I, and I # I3, and the top has mass M.
The Lagrangian is:

1 1
L= 511(wf + w3) + 2 3w; — Mgl cos(6).

Using our Euler-angle expressions for w; and w,, we get:
w? +wi = $*sin®(0) + 62.
Substituting this, and the expression for ws in terms of Eu-
ler angles, into the the Lagrangian, we have:
L= L +sn2(0)0) + LI (W + 8 cos?(0) + 20 deos(6))
—M gl cos(0).

Idea: Our aim is to isolate the dynamics in terms of 6
using first integrals.

Theorem: The dynamics can be reduced to 1D mo-

tion of the form:
AdVest

do

16 =—
where

b— acos()\”

Vert(0) = %Il sin?(6) < sn2(0) ) + Mgl cos(6)

for constants a and b.

Proof: There are three first integrals: the momenta
Pg, Py and the total energy E. Constructing the first
integrals p, and py,, we have:

Lhb=py=1 sin2(0)q5 + I3 cosz(ﬁ)é + I39 cos(6),
lia=py = [3¢ + IgéCOS(@),
for constants a and b. Solving for ¢ and ¢ in terms of 6, we
obtain:

. b—acos(0)

sin? (9) ¥

“ge- ()

Trick: we notice that wy = ¢ cos(d) + 4 = Ia/ls, SO is a
constant (called the spin). Now use the total energy as the
final first integral:

: 0L 0L

o N
06 0¢ oY

= %Il(éz +sin?(0)$?) + %Igwg + Mgl cos(6).

Define E’ = E — }I3w3, which is also necessarily constant,
since the spin w3 is constant. It then follows that:

1 .
E' = 51192 + Verr(0),

where Vg is of the required form. Differentiate, and we're
done. O

Theorem: Defining « = cos(f), the equations of mo-
tion for the top can be written in the form

W? = f(u),

_b—au

1 —w?’

o hia u(b—au)
wiTgi 1 — 2 )

where f(u) is a cubic polynomial.

Proof: Use the energy equation in the form
E = %he? + Vst (0).

Redefining u = cos(0), we have
’L.L2

Also redefining o = 2F’ /11, § = 2Mgl/I,, we find that we
can put the equations in the required form, with

F(u) = (1 —u?)(a — Bu) — (b— au)?. O

To plot the cubic described above, we note that f(u) — co
as u — oo, and f(u) - —oco as u — —oo. We also note
that f(£1) < 0. Physically, we require —1 < u < 1 and
u? = f(u) > 0. Hence f(u) looks generally like:
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3.11

The types of motion the top undergoes depend on the sign
of ¢ at the roots of f(u) in —1 < u < 1, say u; and us,
corresponding to maximum and minimum 6, say ¢, and 6-.
There are three cases:

Types of heavy top motion

e ¢ > 0atu; and uy;
e ¢>0atu; and ¢ < 0 at uy;
e ¢ >0atu; and ¢ = 0 at us.

Note we don’t include gb < 0 at uy, us etc, as these are the
same motions but in different directions. Sketching gives
the diagrams:

We have names for the different types of motion:

Definition: Motion in the ¢ direction is called pre-
cession. Motion in the 6 direction is called nutation.

We now examine uniform precession, i.e. for all time

we have ¢ = constant and 6 = 0.

Theorem:
is

The requirement for uniform precession

w2 > 4Mg1112cos(00)'
IS
Proof: For uniform precession to occur, f(u) must have a

double root ug. So f(ug) = f'(up) = 0. From f(ug) = 0,
we have

0 = (1-ug)(a—puo)—(b—auo)® = (1-ug)(a—puo) —(1-up)*¢*

Hence
a — PBug

5 -
1—uj

b=

Substituting into the condition f’(uo) = 0 gives a quadratic
in ¢, and the condition on its discriminant gives the uniform

precession condition. [

Finally we look at the sleeping top, i.e. we initially have
0=06=0.

Theorem: The sleeping top is stable if

41, M gl
i > Midlal
3

and unstable otherwise.

Proof: We know that f(u) needs a root at 6 = 0, i.e.
u = +1. This implies a = b. From the definition of o and /5,
we have a = f in this case. In particular, these properties
show that f(u) has a double root at +1. Thus there are
two cases:

Let the other root be us = a?/a — 1. The graphs
show that if us > 1, the motion is stable, since we are
forced to stay in —1 < u < 1 and f(u) > 0; we can also
see that if us < 1, the motion is unstable. O

4 Hamiltonian mechanics

4.1 Phase space

Definition: Let £(¢;, ¢;,t) be a Lagrangian for N particles.

We call
_oc

the conjugate momentum associated to ¢;. We call the

6N -dimensional space RV with coordinates (¢;, p;) phase
space.

4.2 The Legendre transform
Definition: Let f : R? - R, f = f(z,y). Define

_9of
9z’

u

and use v and y as coordinates. Define

g(u,y) = ux(u’y) - f(os(U,y),y),

where to obtain z(u, y) we solved the relation v = %. We
call g the Legendre transform of f.

10
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Theorem: The Legendre transform is involutive, i.e. the
transform of the transform gives back the original function.

Proof: We take the Legendre transform of the above

g. We have:
dg

%7
The Legendre transform is then:

€r=

h(z,y) = 2u(z,y) — g(u(z,y),y)

4.3 Hamilton’s equations

Definition: The Hamiltonian is the Legendre transform of
the Lagrangian, given by

q p,?) sz% -

where ¢; = ¢;(q, p, t) are implicitly given by

_oc
pl_aq'i'

qz7qi7t)7

Theorem: Hamilton’s equations hold:

) -
q; = 51')1-7 bi = 8%7 o ot

Proof: We have

oL oL oL
Zdg; — —=dg; — —dt
0q; 1 0¢; b 5

oL oL oL oL
:yﬂ" lidpi — ~— dg; — li — 5 dt
q ¢i + qidp 94 dq 74 atd
~—~

use Euler-
Lagrange

oL oL
= ¢;dp; — < a4, ) dq; ~ 5 dt

oL

= zdz_ -Z'di—fdt
qiap; — piaq ot

dH = p;dg; + g;dp; —

Compare with

OH  OH OH
af = Mg + M+ %20 o
9, " T 9, P T oy

Example: Electromagnetism
Consider the Lagrangian for a particle in a magnetic field:

L= %mw —e(6(r) — - A).

We construct the Hamiltonian. The conjugate momentum
is:
oL

P=—= Er = mr + eA.

Thus the Hamiltonian is

H=p-r—L
b (P <peA>2+6(¢_ —ch) )
m 2m m
o 2
= 7@ QHiA) + e¢.

Hamilton’s equations recover the Lorentz force law.

4.4 The principle of least action

The principle of least action can be recovered from the
Hamiltonian formalism.

Theorem: Particles take the path in phase space
that extremises the action

S19,p] = /(piqi — H(q,p) dt

ty

Note: The integrand is just the Lagrangian, i.e. the
Legendre transform of the Hamiltonian.

Proof: We vary p; and ¢; separately to get:

[2)

H H
05 = / (%‘5191‘ + pidgi — 875172' - 85%‘) dt
opi 9

t1

to
aH 8H ta
= li— = |opi+ | —Pi— 5 )oq ) dt i0Gi ], -
[ (6= ) e (o= 5 ) ) e
¢

1

Assuming the variation has fixed end-points, the boundary
terms vanish. Thus Hamilton’s equations are recovered,
which are equivalent to Newton’s equations. [

4.5 Liouville’s theorem

Theorem: Consider a point in phase space (q,,p,). Let
the system evolve via Hamilton’s equations, so that at time
t, the particle is at (q(t), p(t)). This is called Hamiltonian
flow.

Liouville’s theorem states that Hamiltonian preserves
volumes in phase space: Vol(D(0)) = Vol(D(t)), where
D is a region in phase space that changes with time
according to Hamiltonian flow.

Proof: Let

Vol(D(t)) = / dqidqo...dg, dpidps...dp, = /dV(t).
D(t) D(t)

11
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We have dV(0) = dq;...dg, dpl...dpn\tzo. As we evolve
according to Hamiltonian flow, we have

OH
Op;
OH
0qi

qi(t) = ¢i(0) + t-—(0) + O(t*) =: G,

pi(t) = pi(0) —t——(0) + O(t*) =: p;.

We wish to compute det(J), where dg...dG, dp...dp, =
dV (t) = det(J)dV (0), i.e.

¢ 0q; O*H O*H

9q; 0 dGist gt apap !
det(J) = ({j Izj = det , Pid; pi p;

dq;  Op; dq;0q; Y 9q;0p;

Now use det(1+tM) = 1+ etr(M) + O(t?). It then follows
that

O*H O*H
det(J) = 1+tz <api8qj - 8qi8pj>+0<t2) =14+0(t?). O

4.6 The Poincaré recurrence theorem

Theorem: Let P be a point in a finite volume phase space.
For any neighbourhood D, of P, there exists P’ € D
that will return to Dy under a Hamiltonian flow in finite time.

Proof: Evolve Dy to D; for a time T, then D; to D,
for a time T, etc, until be get to Dy. Liouville’s Theorem
implies all of these regions have the same volume.

Suppose that D, N Dy, = @ for all distinct integers &
and £’. Then

Vol <G Dk> = iVol(Dk) = 00,
k=0

k=0

which contradicts the finite volume assumption. So there
exist distinct k£ and &’ with Dy, N Dy # (. Suppose k' > k
without loss of generality, and let Qxxr = Dy N Dyor.

Since Hamiltonian flow is invertible, by uniqueness of
solution to ODEs, we have Qg —x = Do N Dyr—j # 0.
Hence there exists P’ € Dg such that P’ returns to D,
after ¥’ — k steps of time T'. O

4.7 Poisson brackets

Definition: The Poisson bracket {f,g} of f and g, two
functions on phase space, is defined by

LS (a oy
{fvg} ]2:; <aqj 8pj aq]‘ Bpj .

Theorem: The Poisson bracket obeys:
(i) antisymmetry, {f,g} = —{g, f};
(ii) linearity, {af + Bg, h} = af{f,h} + B{g, h};
(iii) the Leibniz rule, {f,gh} = {f,gth + {f,h}g;
) {f{g, 0}y + {g.Ah. f}} +

(iv) the Jacobi
{h.{f. g1}

Proof: Trivial from the definition. O

identity,

Theorem: If Hamilton’s equations hold, then

df of
= _{f’H}JFE'

Proof: Just use chain rule and Hamilton’s equations. [J

Definition: A function f is a first integral of the Hamilto-
nian H if f is constant under Hamiltonian flow. If % =0,
then by the above Theorem, f is a first integral if and only
if {f,H} =0.

; i OH
In particular, if 5= =

which we call the energy.

0, then H is a first integral,

More generally, if two functions f and ¢ satisfy {f, g}
they are said to Poisson commute or to be in involution.

4.8 Canonical transformations

Notice if we define x = (q, p), Hamilton’s equations can be
written more compactly as

where
0o I,
(0 )

Theorem: The coordinate transform y = y(x) pre-
serves the form of Hamilton’s equations if and only if Dy
is a symplectic matrix, i.e. DyJDy” = J.

Proof: We have
o _ %, _Oya, OH _Oya, OyaOH
Yo = Oxy " Oxy 0z,  Omy Oz Oyq
Hence

OH

- 7\ OH
y = (DyJDy )8y' O

Theorem: A transformation is canonical if and only if
the Poisson bracket structure is conserved.

Proof: Write out the previous Theorem in matrix form. O

12
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4.9 Infinitesimal canonical transformations
Consider the transformation, for e <« 1:

¢ — Qi = q; + eF3(q,p) + O(e?),
pi = Py = p; + €Ei(q,p) + O(e?).

Theorem: |If this transformation is canonical, then there
exists a function G(q, p) such that

oG oG
Fi=—, E,=-——.
Op; 0¢;
Proof: Use that the Poisson bracket structure is conserved.
We have:

0Q; 0Q;  0Q; 0Q;
0= (2] iy = a_
{Qi@5) dqr Opr,  Opr Oqi
. OF; B OF; _ 9
= edik T Gapl 3k + O(€7).
Similarly,
OE; OF;
(5,: 7,P 5,4’6( j+ Z)+O€2
Hence we get the conditions:
or;  OF; or; _8Ej
Opi 3Pj’ Jq; opi

These consistency conditions imply the existence of the
required G. If such a G exists, the condition 0 = {P;, P;}
is also fulfilled. O

Idea: Infinitesimal canonical transformations are gen-
erated by a Hamiltonian flow, with Hamiltonian G. A
special case is time evolution, where G = H.

4.10 Noether’s theorem

Definition: A symmetry of the Hamiltonian is an infinitesi-
mal canonical transformation generated by some G that
gives 0H = 0 (to order ¢).

Theorem: If G generates a symmetry, {G,H} = 0.

Proof: We have

oOH oOH
5H = 250, + Py,
0q; @ Op; P

) +0(?) =e{H,G} +0O(e*). O

_ (PHOG 9HIG
—° 0gq; Op; Op; Og;

Theorem (Noether’s Theorem): If G generates a sym-
metry of the Hamiltonian, and is time-independent, then G
is a first integral.

Proof: Follows immediately from the above, since
{G,H}=0.0

4.11 Generating functions

This is a general method of constructing canonical trans-
formations.

Theorem: Let F'(q, Q) be an arbitrary function. Then if we
define

OF o OF
oq’ - 0Q’

and solve for Q and P, the result is a canonical transfor-
mation.

Proof: Write the actions for the two sets of variables
as

to

S= /(piq'i — H(q,p)) dt = /(p -dq — H(q,p)dt),

ty

and

5 = / (PQs — H'(Q,P)) dt / (P.dQ — H'(Q,P)dt).

t1 t1

Setting S = 0 and §5’ = 0 gives Hamilton’s equations for
the two sets of variables. But then §(S — S’) = 0, which
implies that the integrands differ by any total derivative,

dF =p-dq—P-dQ— (H — H')dt.
Comparing with:

oF oF

gives the result. In particular, we get H = H'. J

dQ,

By taking the Legendre transform, we can obtain the
generating function F'(q, P) with

_OF g oF
piaq7 78P’

which we know from Integrable Systems.

13
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4.12 Integrability and action-angle variables

Definition: Suppose there exists a canonical transforma-
tion (q,p) — (0,1) with H = H(l). Then (0,1) are called
action-angle variables.

Trivially, Hamilton’s equations in action-angle variables
can be integrated.

Definition: An integrable system if a 2n-dimensional
phase space M together with n first integrals f; : M — R,
1=1,2,...,n such that:

e Vf; are linearly independent vectors at all points in
M;

e the functions f; are all in involution.

This definition makes sense because of...

4.13 The Arnold-Liouville theorem

Theorem: Let (M, f1, fo, ..., fn) be an integrable system
with H = f1, say. Define

Mc = {(q7p) EM: fl(qap) = Ci}-
If M is compact, then
(i) M. is diffeomorphic to the torus T";

(i) there exists a local canonical transformation (q,p) —
(0,1) where 6) are coordinates on M, | are first inte-
grals, and H = H(I) (i.e. these are action-angle coor-
dinates, so we can easily integrate Hamilton’s equa-
tions).

Proof: See Integrable Systems. Here, we only construct
the (0,1). Define

1

I -
k= 21

pdq7

where I';, is the kth cycle on the torus. This definition does
not depend on the choice of cycle (see Integrable Systems
- use Green’s Theorem). Since the actions depend only
on ¢, they are first integrals.

Use the generating function

q
F(q,l):/p~dq
1)

to construct the angle coordinates via

oF
Hk - ai_lk

Since we used a generating function, the transformation is
canonical. [

4.14 Adiabatic invariants

Definition: A function I(q,p, ), with A = O(e), € < 1,
is an adiabatic invariant of a system with Hamiltonian
H(q,p,\) if [I(t) —I(0)] = O(e) forall 0 < t < T/e.

Idea: I doesn’t change very much. We can treat it
as almost constant.

Theorem: The action variable | is an adiabatic in-
variant.

Proof: Use action variables H = H(l,)\). Introduce
the generating function F(q, I, X). If A = A(¢), then

oo

so in our earlier construction of the generating function, we
need instead

3F aF
Hence by Hamilton’s equatlons.
. OH' . O*F
'=""96 = “Yoxe0 ~ L)

assuming A = O(e). Hence l is slowly-varying. [J

Example: Let H = 1p? + IA(t)¢*.
construct the action:

5 PP qf/qu

We can easily

where q1, 2 are the real roots of 2E—\(t)¢* = 0. Changing
variables, we can put this in the form:

1
V2E [(2EN\Y* [ ——
i
-1

Since | is almost constant, it follows that E ~ A\1/3.

4.15 Poisson structures

Definition: A Poisson structure is a pair (M, J) such that
M is a phase space of dimension m, J = J% is a skew-
symmetric matrix with components that are functions of M,
and the bracket

Jab of 9g
Oz Oz’

{f.9} = Z

a,b=1

obeys the Jacobi identity. For the Poisson structure,
Hamilton’s equations are x = {x, H }.

Most properties of Poisson structures are proved us-
ing {«%,29} = J¥Y, where z' and 27 are the coordinate
functions of the phase space.
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