Part II: Classical Dynamics - Revision

Lectures by Maciej Dunajski, notes by James Moore

1 Lagrangian mechanics

1.1 Definitions

Definition: Consider N particles with positions \mathbf{r}_{i}. Let x^{A} be their coordinates in the space $\mathbb{R}^{3 N}$. In this context, we refer to $C=\mathbb{R}^{3 N}$ as the configuration space of the system.

Definition: The Lagrangian of a system of particles (with masses m_{A}) is a function $\mathcal{L}: C \times C \rightarrow \mathbb{R}$ on configuration space C of the form

$$
\mathcal{L}\left(x^{A}, \dot{x}^{A}\right)=\underbrace{\frac{1}{2} \sum_{A} m_{A} \dot{x}^{A} \dot{x}^{A}}_{\text {kinetic }}-\underbrace{V\left(x^{A}, \dot{x}^{A}\right)}_{\text {potential }} .
$$

That is, the Lagrangian is the kinetic minus the potential energy.

Definition: Let γ^{A} be a curve in configuration space, parametrised by time t, with coordinates $\left(x^{A}(t), \dot{x}^{A}(t)\right)$. We define the action of the curve as the functional:

$$
S[\gamma]=\int_{t_{\text {initial }}}^{t_{\text {final }}} \mathcal{L}\left(x^{A}(t), \dot{x}^{A}(t)\right) d t .
$$

1.2 The Principle of Least Action

Theorem: The curve taken in configuration space by a system is an extremum of the action functional S.

Proof: Replace $x^{A}(t)$ by $x^{A}(t)+\delta x^{A}(t)$ in the action functional, and assume end-points are fixed, i.e. $\delta x^{A}\left(t_{\text {init }}\right)=0$ and $\delta x^{A}\left(t_{\text {fin }}\right)=0$. Then $S \mapsto S+\delta S$ where:

$$
\begin{aligned}
\delta S & =\int_{t_{\text {init }}}^{t_{\text {fin }}}\left(\frac{\partial \mathcal{L}}{\partial x^{A}} \delta x^{A}+\frac{\partial \mathcal{L}}{\partial \dot{x}^{A}} \delta \dot{x}^{A}\right) d t \\
& =\int_{t_{\text {init }}}^{t_{\text {fin }}}\left(\delta x^{A}\left(\frac{\delta \mathcal{L}}{\delta x^{A}}-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}^{A}}\right)\right)\right) d t+\left[\frac{\partial \mathcal{L}}{\partial \dot{x}^{A}} \delta x^{A}\right]_{t_{\text {init }}}^{t_{\mathrm{fin}}},
\end{aligned}
$$

by parts. Assuming the end-points are fixed, boundary term vanishes. Demanding the action is an extremum, we have $\delta S=0$ for all δx^{A}. Thus we must have:

$$
\frac{\partial \mathcal{L}}{\partial x^{A}}-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}^{A}}\right)=0 .
$$

It remains to check the equivalence of these equations to Newton's equations.

We have

$$
\frac{\partial \mathcal{L}}{\partial x^{A}}=-\frac{\partial V}{\partial x^{A}}, \quad \frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}^{A}}\right)=\frac{d}{d t}\left(m_{A} \dot{x}_{A}\right),
$$

and so the above equation holds if and only if Newton's equations hold.

Definition: We call the equations

$$
\frac{\partial \mathcal{L}}{\partial x^{A}}-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}^{A}}\right)=0
$$

the Euler-Lagrange equations, or just Lagrange's equations.

Theorem: The Euler-Lagrange equations hold in any coordinate system.

Proof: Let $q_{a}\left(x^{1}, x^{2}, \ldots, x^{3 N}, t\right)$ be some coordinate transformation. Assuming these relationships are invertible, we can write $x^{A}=x^{A}\left(q_{1}, q_{2}, \ldots, q_{3 N}\right)$. Then by the chain rule:

$$
\dot{x}^{A}=\frac{\partial x^{A}}{\partial q_{a}} \dot{q}_{a}+\frac{\partial x^{A}}{\partial t} .
$$

Now consider the derivatives of \mathcal{L}. We have:

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial q_{a}} & =\frac{\partial \mathcal{L}}{\partial x^{k}} \frac{\partial x^{k}}{\partial q_{a}}+\frac{\partial \mathcal{L}}{\partial \dot{x}^{k}} \frac{\partial \dot{x}^{k}}{\partial q_{a}} \\
& =\frac{\partial \mathcal{L}}{\partial x^{k}} \frac{\partial x^{k}}{\partial q_{a}}+\frac{\partial \mathcal{L}}{\partial \dot{x}^{k}} \underbrace{\left(\frac{\partial^{2} x^{k}}{\partial q_{a} \partial q_{b}} \dot{q}^{b}+\frac{\partial^{2} x^{k}}{\partial q_{a} \partial t}\right)}_{\text {using } \dot{x}^{A}} . \\
\frac{\partial \mathcal{L}}{\partial \dot{q}_{a}} & =\frac{\partial \mathcal{L}}{\partial \dot{x}^{k}} \underbrace{\frac{\partial \dot{x}^{k}}{\partial \dot{q}_{a}}}_{\begin{array}{c}
\text { cassion remove } \\
\text { doit by chain } \\
\text { ule }
\end{array}}=\frac{\partial \mathcal{L}}{\partial \dot{x}^{k}} \frac{\partial x^{k}}{\partial q_{a}} . \\
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{a}}\right) & =\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}^{k}}\right) \frac{\partial x^{k}}{\partial q_{a}}+\frac{\partial \mathcal{L}}{\partial \dot{x}^{k}} \underbrace{\left(\frac{\partial^{2} x^{k}}{\partial q_{a} \partial q_{b}} \dot{q}_{b}+\frac{\partial^{2} x^{k}}{\partial q_{a} \partial t}\right)}_{\text {using } \dot{x}^{A}} .
\end{aligned}
$$

Thus, putting everything together, we have:

$$
\frac{\partial \mathcal{L}}{\partial q_{a}}-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{a}}\right)=\frac{\partial x^{k}}{\partial q_{a}}\left(\frac{\partial \mathcal{L}}{\partial x^{k}}-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}^{k}}\right)\right)=0 .
$$

1.3 Constraints \& generalised coordinates

Definition: A set of holonomic constraints is a set of relations of the form $\left\{f_{\alpha}\left(x^{A}, t\right)=0\right\}, A=1,2, \ldots, 3 N$, where $\alpha=1,2, \ldots, 3 N-n$ for some $0 \leq n \leq 3 N$.

Definition: If a set of holonomic constraints can be solved in principle by parametrising $x^{A}=x^{A}\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ (note n degrees of freedom available), then the q_{i} are called generalised coordinates.

We can incorporate holonomic constraints into the Lagrangian formalism in two ways:

1. Lagrange multipliers: Define a new Lagrangian

$$
\mathcal{L}^{\prime}\left(x^{A}, \dot{x}^{A}, \lambda_{\alpha}, t\right)=\mathcal{L}\left(x^{A}, \dot{x}^{A}, t\right)+\sum_{\alpha=1}^{3 N-n} \lambda_{\alpha} f_{\alpha}\left(x^{A}, t\right),
$$

so that the Euler-Lagrange equations for \mathcal{L}^{\prime} are given by:

$$
\begin{gathered}
\frac{\partial \mathcal{L}^{\prime}}{\partial \lambda_{\alpha}}=0 \quad \Rightarrow \quad f_{\alpha}\left(x^{A}, t\right)=0, \\
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}^{A}}\right)-\frac{\partial \mathcal{L}}{\partial x^{A}}=\underbrace{\sum_{\alpha=1}^{3 N-n} \lambda_{\alpha} \frac{\partial f_{\alpha}}{\partial x^{A}}}_{\text {constraint forces }} .
\end{gathered}
$$

We can now solve these equations as usual.

Example: Consider the pendulum shown.

The kinetic energy is $\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)$, the potential energy is $-m g y$ and the holonomic constraint is $x^{2}+y^{2}-l^{2}=0$. Hence by the above method of Lagrange multipliers, we obtain the three equations:

$$
\begin{aligned}
x^{2}+y^{2} & =l^{2} \\
m \ddot{x} & =\lambda x \\
m \ddot{y} & =m g+\lambda y .
\end{aligned}
$$

The Lagrange multiplier is proportional to the tension, $\lambda=$ $-T / l$, in the Newtonian formalism, so we indeed see that the Lagrange multipliers correspond to constraint forces.
2. Generalised coordinates: This method is useful when we don't care about the constraint forces' values.

Theorem: For constrained systems, the equations of motion can be derived directly from the Lagrangian

$$
L\left(q_{i}, \dot{q}_{i}, t\right):=\mathcal{L}\left(x^{A}\left(q_{i}, t\right), \dot{x}^{A}\left(q_{i}, \dot{q}_{i}, t\right)\right),
$$

where the q_{i} are the generalised coordinates.
Proof: Define $\mathcal{L}^{\prime}=\mathcal{L}+\lambda_{\alpha} f_{\alpha}=L+\lambda_{\alpha} f_{\alpha}$ (summation convention applies) and use the Lagrange multiplier method. We can first change coordinates to

$$
y^{A}:=\left\{\begin{array}{l}
q_{i} \text { for } i=1, \ldots, n, \quad A=1, \ldots, n \\
f_{\alpha} \text { for } \alpha=1,2, \ldots, 3 N-n, \quad A=n+1, n+2, \ldots, 3 N .
\end{array}\right.
$$

By coordinate invariance of the Euler-Lagrange equations, we know that the equations of motion are, for the first n coordinates:

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}=\sum_{\alpha} \lambda_{\alpha} \frac{\partial f_{\alpha}}{\partial q_{i}}=0
$$

since f_{α} independent of q_{i}, by definition. So we have equations for the dynamics entirely in q_{i}, which hold only on the surface of constraints.

Example: Consider the same pendulum as before. The constraint is solved by introducing the generalised coordinate θ so that $x=l \sin (\theta)$ and $y=l \cos (\theta)$. Then the Lagrangian becomes $\mathcal{L}=\frac{1}{2} m \dot{\theta}^{2} l^{2}+l m g \cos (\theta)$, which gives the Euler-Lagrange equation:

$$
m \ddot{\theta}=-\frac{m g}{l} \sin (\theta) .
$$

Example: Consider a bead on a wire:

This has Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+g y .
$$

We can parametrise the wire as $x=q, y=f(q)$ say, giving $\dot{y}=\frac{d f}{d q} \dot{q}$. Then the Lagrangian can be written as:

$$
\mathcal{L}=\frac{1}{2}\left(\dot{q}^{2}+\left(\frac{d f}{d q} \dot{q}\right)^{2}\right)+g f(q),
$$

and the equation of motion is then easy to derive.

1.4 Noether's theorem and symmetries

Definition: A function $F\left(q_{a}, \dot{q}_{a}, t\right)$ is called a first integral or constant of the motion if $\frac{d F}{d t}=0$ holds whenever the Euler-Lagrange equations hold.

Definition: If $\frac{\partial \mathcal{L}}{\partial q_{b}}=0$, then the momentum $p_{b}=\frac{\partial \mathcal{L}}{\partial \dot{q}_{b}}$ is clearly a first integral. We call q_{b} ignorable or cyclic.

Definition: Suppose that there exists a one-parameter family of transformations $q_{a}(t) \mapsto Q_{a}(s, t)$ such that $Q_{a}(0, t)=q_{a}(t)$, where $s \in \mathbb{R}$ is a parameter for the family of transformations. We call this transformation a continuous symmetry of the Lagrangian \mathcal{L} if

$$
\frac{d}{d s}\left(\mathcal{L}\left(Q_{a}(s, t), \dot{Q}_{a}(s, t), t\right)\right)=0
$$

Theorem (Noether's theorem): If $Q_{a}(s, t)$ is a continuous symmetry of \mathcal{L}, then

$$
\left.\sum_{a} \frac{\partial \mathcal{L}}{\partial \dot{q}_{a}} \frac{\partial Q_{a}}{\partial s}\right|_{s=0}
$$

is a first integral.
Proof: By the definition of a continuous symmetry, we have

$$
0=\left.\frac{d \mathcal{L}}{d s}\right|_{s=0}=\left.\frac{\partial \mathcal{L}}{\partial q_{a}} \frac{\partial Q_{a}}{\partial s}\right|_{s=0}+\left.\frac{\partial \mathcal{L}}{\partial \dot{q}_{a}} \frac{\partial \dot{Q}_{a}}{\partial s}\right|_{s=0},
$$

where we can replace the derivatives $\frac{\partial \mathcal{L}}{\partial Q_{a}}, \frac{\partial \mathcal{L}}{\partial \dot{Q}_{a}}$ with $\frac{\partial \mathcal{L}}{\partial q_{a}}, \frac{\partial \mathcal{L}}{\partial \dot{q}_{a}}$ because $q_{a}=Q_{a}$ at $s=0$ (also note summation convention applies). Now use the Euler Lagrange equations:

$$
\begin{aligned}
0 & =\left.\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{a}}\right) \frac{\partial Q_{a}}{\partial s}\right|_{s=0}+\left.\frac{\partial \mathcal{L}}{\partial \dot{q}_{a}} \frac{d}{d t}\left(\frac{\partial \dot{Q}_{a}}{\partial s}\right)\right|_{s=0} \\
& =\left.\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{a}} \frac{\partial Q_{a}}{\partial s}\right)\right|_{s=0} \quad \square
\end{aligned}
$$

1.5 Applications of Noether's theorem

Theorem: Spatially homogeneous systems obey conservation of momentum.

Proof: Consider a spatially homogeneous Lagrangian:

$$
\mathcal{L}=\frac{1}{2} \sum m_{i}\left|\dot{\mathbf{r}}_{i}\right|^{2}-\sum_{i, j} V\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right) .
$$

A continuous symmetry of the system is $\mathbf{R}_{i}(s, t)=\mathbf{r}_{i}+s \mathbf{n}$, where \mathbf{n} is an arbitrary constant vector. So by Noether's Theorem,

$$
\left.\sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{\dot{r}}_{i}} \cdot \frac{\partial \mathbf{R}_{i}}{\partial s}\right|_{s=0}=\sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{r}}_{i}} \cdot \mathbf{n}=\sum_{i} \mathbf{p}_{i} \cdot \mathbf{n}
$$

is a conserved quantity. Since \mathbf{n} was arbitrary, total momentum is conserved.

Theorem: Spatially isotropic systems obey conservation of angular momentum.

Proof: This time, a continuous symmetry is $\mathbf{R}_{i}(s, t)=A(s) \mathbf{r}_{i}$ where $A(s)$ is an orthogonal matrix, and $A(0)=I$. Taylor expanding, we find:

$$
\mathbf{R}_{i}=\mathbf{r}_{i}+s \hat{\mathbf{n}}(s) \times \mathbf{r}_{i}+O\left(s^{2}\right),
$$

where $\hat{\mathbf{n}}(s)$ is the axis of rotation. The proof now proceeds just as before.

Theorem: Homogeneity in time implies the Hamiltonian

$$
H=\sum_{n} \dot{q}_{n} \frac{\partial \mathcal{L}}{\partial \dot{q}_{n}}-\mathcal{L}
$$

is a conserved quantity.
Proof: Homogeneity in time requires

$$
\frac{\partial \mathcal{L}}{\partial t}=0 .
$$

Thus (with the summation convention applying):

$$
\frac{d H}{d t}=\ddot{q}_{n} \frac{\partial \mathcal{L}}{\partial \dot{q}_{n}}+\dot{q}_{n} \frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{n}}\right)-\frac{\partial \mathcal{L}}{\partial t}-\frac{\partial \mathcal{L}}{\partial q_{n}} \dot{q}_{n}-\frac{\partial \mathcal{L}}{\partial \dot{q}_{n}} \ddot{q}_{n} .
$$

Now simply use the Euler-Lagrange equations, and we're done. (Note: this didn't use Noether's theorem.) \square

1.6 Applications of Lagrangian mechanics

Example: Geodesics

We call Lagrangians of the form $\mathcal{L}=\frac{1}{2} g_{a b}(\mathbf{q}) \dot{q}^{a} \dot{q}^{b}$, where $g_{a b}$ is symmetric, kinetic Lagrangians. The Euler-Lagrange equations are given by:

$$
\begin{gathered}
\frac{1}{2} \dot{q}^{a} \dot{q^{b}} \frac{\partial g_{a b}}{\partial q^{c}}-g_{c b} \ddot{q}^{b}-\dot{q}^{b} \dot{q}^{a} \frac{\partial g_{c b}}{\partial q^{a}}=0 \\
\Rightarrow \quad \frac{1}{2} \dot{q}^{a} \dot{q}^{b} \frac{\partial g_{a b}}{\partial q^{c}}-g_{c b} \ddot{q}^{b}-\frac{1}{2} \dot{q}^{a} \dot{q} \frac{\partial g_{c b}}{\partial q^{a}}-\frac{1}{2} \dot{q}^{b} \dot{q}^{a} \frac{\partial g_{b c}}{\partial q^{a}}=0
\end{gathered}
$$

splitting the term up using $g_{c b}=g_{b c}$. Now relabel $a \mapsto b$, $b \mapsto a$ in the third term.

We get:

$$
\frac{1}{2} \dot{q}^{a} \dot{q}^{b}\left(\frac{\partial g_{a b}}{\partial q^{c}}-\frac{\partial g_{c b}}{\partial q^{a}}-\frac{\partial g_{a c}}{\partial q^{b}}\right)-g_{c b} \ddot{q}^{b}=0 .
$$

Multiplying through by $-g^{k c}$, we obtain the equation

$$
\ddot{q}^{k}+\dot{q}^{a} \dot{q}^{b} \Gamma_{a b}^{k}=0,
$$

where $\Gamma_{a b}^{k}$ are the Christoffel symbols:

$$
\Gamma_{b c}^{a}=\frac{1}{2} g^{a d}\left(\frac{\partial g_{b d}}{\partial q^{c}}+\frac{\partial g_{c d}}{\partial q^{b}}-\frac{\partial g_{b c}}{\partial q^{d}}\right) .
$$

Example: Electromagnetism

The Lagrangian for particles in an electromagnetic field is

$$
\mathcal{L}=\frac{1}{2} m|\dot{\mathbf{r}}|^{2}-\phi+\dot{\mathbf{r}} \cdot \mathbf{A},
$$

where ϕ is the scalar potential, and \mathbf{A} is the vector potential. This recovers the Lorentz force law via the EulerLagrange equations:

$$
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{r}}}\right)=\frac{\partial \mathcal{L}}{\partial \mathbf{r}} \quad \Rightarrow \quad \frac{d}{d t}(m \dot{\mathbf{r}}+\mathbf{A})=\frac{\partial \mathcal{L}}{\partial \mathbf{r}}
$$

Writing out in suffix notation:

$$
m \ddot{r}_{a}+\left(\frac{\partial A_{a}}{\partial r_{b}}-\frac{\partial A_{b}}{\partial r_{a}}\right) \dot{r}_{b}+\frac{\partial A_{a}}{\partial t}+\frac{\partial \phi}{\partial r_{a}}=0 .
$$

Now recall

$$
E_{a}=-\frac{\partial \phi}{\partial r_{a}}-\frac{\partial A_{a}}{\partial t}, \quad B_{c}=\epsilon_{c d e} \frac{\partial A_{e}}{\partial r_{d}} .
$$

This gives the Lorentz force law as expected.

2 Stability analysis

2.1 Eigenvalue method

Suppose that the Euler-Lagrange equations for a system reduce to the form

$$
\ddot{q}_{i}=f_{i}\left(q_{1}, q_{2}, \ldots q_{n}\right),
$$

for generalised coordinates q_{i}.
Definition: We say $\mathbf{q}=\mathbf{q}^{0}$ is an equilibrium solution of this system if $f_{i}\left(\mathbf{q}^{0}\right)=0$ for all i.

Theorem: A small perturbation $\boldsymbol{\eta}(t)$ to an equilibrium solution at \mathbf{q}^{0} evolves as

$$
\ddot{\eta}=\mathbf{F} \eta,
$$

where \mathbf{F} is the matrix with elements

$$
F_{i j}=\left.\frac{\partial f_{i}}{\partial q_{j}}\right|_{\mathbf{q}=\mathbf{q}^{0}} .
$$

Proof: Let $\mathbf{q}=\mathbf{q}^{0}+\boldsymbol{\eta}(t)$. Then the equations $\ddot{\mathbf{q}}=\mathbf{f}(\mathbf{q})$ become:

$$
\ddot{\boldsymbol{\eta}}=\mathbf{f}\left(\boldsymbol{\eta}+\mathbf{q}^{0}\right)=\underbrace{f\left(\mathbf{q}^{0}\right)}_{0}+(\boldsymbol{\eta} \cdot \nabla) \mathbf{f}\left(\mathbf{q}^{0}\right)+\ldots
$$

hence to first order, $\ddot{\eta}=\mathbf{F} \eta$ for the given matrix \mathbf{F}, as required.

We analyse stability by looking at the eigenvalues of F. First, we should check that the eigenvalues are real (since \mathbf{F} is not necessarily symmetric).

Theorem: For the Lagrangian

$$
\mathcal{L}=\frac{1}{2} T_{i j}(\mathbf{q}) \dot{q}_{i} \dot{q}_{j}-V(\mathbf{q}),
$$

with $T_{i j}$ symmetric, positive-definite and invertible at \mathbf{q}^{0}, the eigenvalues of the matrix \mathbf{F} (governing stability at \mathbf{q}^{0}) are real.

Proof: The Euler-Lagrange equations for \mathcal{L} are:

$$
\frac{1}{2} \frac{\partial T_{i j}}{\partial q_{k}} \dot{q}_{i} \dot{q}_{j}-\frac{\partial V}{\partial q_{k}}-\frac{d}{d t}\left(T_{k j} \dot{q}_{j}\right)=0
$$

Expanding with $\mathbf{q}=\mathbf{q}^{0}+\boldsymbol{\eta}(t)$, we have to first order in $\boldsymbol{\eta}$,

$$
-\left.\frac{\partial^{2} V}{\partial q_{i} \partial q_{j}}\right|_{\mathbf{q}=\mathbf{q}^{0}} \eta_{j}=T_{i j}\left(\mathbf{q}^{0}\right) \ddot{\eta}_{j}=T_{i j} F_{j k} \eta_{k},
$$

where in the last equality we used the equation of motion for η_{k} from the above Theorem. Redefining:

$$
T_{i j}=T_{i j}\left(\mathbf{q}^{0}\right), \quad V_{i j}=\left.\frac{\partial^{2} V}{\partial q_{i} \partial q_{j}}\right|_{\mathbf{q}=\mathbf{q}^{0}},
$$

we can rewrite our equation as the matrix equation:

$$
-\mathbf{V}=\mathbf{T F} \quad \Rightarrow \quad-\mathbf{T}^{-1} \mathbf{V}=\mathbf{F}
$$

since \mathbf{T} is invertible at \mathbf{q}^{0}. Now suppose that $\mathbf{F} \boldsymbol{\mu}=\lambda^{2} \boldsymbol{\mu}$. This occurs if and only if $\mathbf{V} \mu=-\lambda^{2} \mathbf{T} \mu$. Take the inner product with μ to obtain:

$$
\overline{\boldsymbol{\mu}}^{T} \mathbf{V} \boldsymbol{\mu}=-\lambda^{2} \overline{\boldsymbol{\mu}}^{T} \mathbf{T} \boldsymbol{\mu}
$$

Now since \mathbf{V} and \mathbf{T} are symmetric, both $\bar{\mu}^{T} \mathbf{V} \mu$ and $\overline{\boldsymbol{\mu}}^{T} \mathbf{T} \boldsymbol{\mu}$ are real. Since \mathbf{T} is positive definite, $\overline{\boldsymbol{\mu}}^{T} \mathbf{T} \boldsymbol{\mu} \neq 0$, and hence it follows that $-\lambda^{2}$ must be real (if $\bar{\mu}^{T} \mathbf{T} \mu$ was zero, $-\lambda^{2}$ could be anything we liked!).

This Theorem allows us to conduct the following analysis. Suppose $\mathbf{F} \boldsymbol{\mu}_{a}=\lambda_{a}^{2} \boldsymbol{\mu}_{a}, a=1,2 \ldots m$ (where $m \leq n$).

Definition: The vectors μ_{a} satisfying $\mathbf{F} \mu_{a}=\lambda_{a}^{2} \boldsymbol{\mu}_{a}$ are called the normal modes.

The normal modes are important, since the most general solution of $\ddot{\eta}=\mathrm{F} \eta$ can be written as:

$$
\boldsymbol{\eta}(t)=\sum_{a} \boldsymbol{\mu}_{a}\left(A_{a} e^{\lambda_{a} t}+B_{a} e^{-\lambda_{a} t}\right) .
$$

The A_{a} and B_{a} are unimportant constants of integration. The λ_{a}^{2} determine the behaviour of the perturbation. There are two cases:

Case 1- $\lambda_{a}^{2}<0$ for some a : In this case, $\lambda_{a}= \pm \omega_{a} i$, for ω_{a} real. Hence the perturbation is linearly stable in the direction μ_{a}.

Case 2- $\lambda_{a}^{2}>0$ for some a : In this case, $\lambda_{a}= \pm \omega_{a}$, for ω_{a} real. Hence the perturbation is linearly unstable in the direction μ_{a}.

Definition: An equilibrium point \mathbf{q}^{0} is called linearly stable if $\lambda_{a}^{2}<0$ for all a; otherwise, it is called linearly unstable.

2.2 Example: linear triatomic molecules

Consider a triatomic molecule with atoms of masses m, M and m respectively (see diagram).

The Lagrangian is

$$
\mathcal{L}=\frac{1}{2} m \dot{x}_{1}^{2}+\frac{1}{2} M \dot{x}_{2}^{2}+\frac{1}{2} m \dot{x}_{3}^{2}-V\left(x_{1}-x_{2}\right)-V\left(x_{2}-x_{3}\right)
$$

where the V are chemical potentials (generally complicated). Let $x_{i}=x_{i}^{0}$ be an equilibrium. By symmetry, we expect $\left|x_{1}^{0}-x_{2}^{0}\right|=\left|x_{2}^{0}-x_{3}^{0}\right|=r_{0}$ at equilibrium. Consider small perturbations $x_{i}(t)=x_{i}^{0}+\eta_{i}(t)$. Then:
$V(r)=V\left(r_{0}\right)+\underbrace{\left.\frac{\partial V}{\partial r}\right|_{r=r_{0}}}_{0}\left(r-r_{0}\right)+\underbrace{\left.\frac{\partial^{2} V}{\partial r^{2}}\right|_{r=r_{0}}}_{=: k} \frac{\left(r-r_{0}\right)^{2}}{2}+\ldots$
Close the equilibrium point, the Lagrangian then becomes:
$\mathcal{L} \approx \frac{1}{2} m \dot{\eta}_{1}^{2}+\frac{1}{2} M \dot{\eta}_{2}^{2}+\frac{1}{2} m \dot{\eta}_{3}^{2}-\frac{1}{2} k\left(\left(\eta_{1}-\eta_{2}\right)^{2}+\left(\eta_{2}-\eta_{3}\right)^{2}\right)$,
which gives an equation of the form $\ddot{\eta}=F \eta$ when we find the Euler-Lagrange equations. We find that there are three normal modes, one corresponding to translation, and the other to vibrations.

3 Rigid body dynamics

3.1 Kinematics

Definition: A rigid body is a collection of N points constrained such that the distances between the points are fixed, $\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|=$ constant, $i, j=1,2, \ldots, N$.

Continuous configurations are also possible, where we have infinitely many points; throughout, to change from a discrete to a continuous distribution we replace masses by mass density and sums by integrals.

Definition: The position of a rigid body fixed at a point P (i.e. non-translating, just rotating) can be specified by its position relative to either a fixed orthonormal frame $\left\{\tilde{\mathbf{e}}_{1}, \tilde{e}_{2}, \tilde{\mathbf{e}}_{3}\right\}$, called the space frame, or a moving orthonormal frame $\left\{\mathbf{e}_{1}(t), \mathbf{e}_{2}(t), \mathbf{e}_{3}(t)\right\}$ that moves with the body, called the body frame.

In particular, we have $\mathbf{e}_{a}(t) \cdot \mathbf{e}_{b}(t)=\delta_{a b}=\tilde{\mathbf{e}}_{a} \cdot \tilde{\mathbf{e}}_{b}$. We also choose the vectors to be right-handed, in the sense that $\mathbf{e}_{a}(t) \times \mathbf{e}_{b}(t)=\epsilon_{a b c} \mathbf{e}_{c}(t)$ (and similarly for the space frame).

The first question we should ask is how to go between the two frames.

Theorem: The 3×3 matrix $R(t)$ defined by $R_{a b}=\mathbf{e}_{a}(t) \cdot \tilde{\mathbf{e}}_{b}$ is the unique orthogonal transformation such that $\mathbf{e}_{a}(t)=R_{a b}(t) \tilde{\mathbf{e}}_{b}$.

Proof: Uniqueness is immediate, since

$$
\mathbf{e}_{a}(t)=R_{a b}(t) \tilde{\mathbf{e}}_{b} \quad \Rightarrow \quad \mathbf{e}_{a}(t) \cdot \tilde{e}_{c}=R_{a b}(t) \tilde{\mathbf{e}}_{b} \cdot \tilde{\mathbf{e}}_{c}=R_{a c},
$$

by orthonormality of the frames. Orthogonality follows from:

$$
\left[R^{T} R\right]_{a b}=R_{a c} R_{b c}=R_{a c} R_{b d} \delta_{c d}=R_{a c} R_{b d} \tilde{\mathbf{d}}_{c} \cdot \tilde{\mathbf{e}}_{d}=\mathbf{e}_{a} \cdot \mathbf{e}_{b}=\delta_{a b} .
$$

Using this Theorem, we can count the number of degrees of freedom of the system. Notice that $R_{a b}$ has 9 elements, but the equation $R^{T} R=I$ for orthogonality gives 6 constraints, hence there are 3 degrees of freedom. We will characterise these by Euler angles later on.

3.2 Angular velocity

Definition: We notice that

$$
\frac{d \mathbf{e}_{a}(t)}{d t}=\frac{d}{d t}\left(R_{a b} \tilde{\mathbf{e}}_{b}\right)=\dot{R}_{a b} \tilde{\mathbf{e}}_{b}=\dot{R}_{a b} R_{b c}^{-1} \mathbf{e}_{c}(t)
$$

Define $\omega_{a c}(t)=\dot{R}_{a b} R_{b c}^{-1}=\dot{R}_{a b} R_{c b}$ (using $\mathbf{R}^{-1}=\mathbf{R}^{T}$). In dyadic notation, $\omega=\dot{\mathbf{R}} \mathbf{R}^{T}$.

The matrix $\omega_{a c}(t)$ has some useful properties:
Theorem: We have
(i) $\boldsymbol{\omega}^{T}=-\boldsymbol{\omega}$;
(ii) for any point $\mathbf{r}(t)=r_{a} \mathbf{e}_{a}(t)$ on a rotating rigid body, we have

$$
\frac{d \mathbf{r}(t)}{d t}=r_{a} \omega_{a c} \mathbf{e}_{c}(t)
$$

Proof: (i) follows immediately by differentiating the relationship $\mathbf{R R}^{T}=I$, which gives:

$$
0=\dot{\mathbf{R}} \mathbf{R}^{T}+\mathbf{R} \dot{\mathbf{R}}^{T}=\boldsymbol{\omega}+\left(\dot{\mathbf{R}} \mathbf{R}^{T}\right)^{T}=\boldsymbol{\omega}+\boldsymbol{\omega}^{T}
$$

For (ii), we have:

$$
\frac{d \mathbf{r}(t)}{d t}=r_{a} \frac{d \mathbf{e}_{a}(t)}{d t}=r_{a} \omega_{a c} \mathbf{e}_{c}(t)
$$

From the matrix ω, we can construct the angular velocity of a rotating rigid body.

Definition: The angular velocity components of a rotating rigid body are defined by

$$
\omega_{a}=\frac{1}{2} \epsilon_{a b c} \omega_{b c}
$$

Conversely, $\omega_{a b}=\epsilon_{a b c} \omega_{c}$. Written out in full, we have:

$$
\omega_{a b}=\left(\begin{array}{ccc}
0 & \omega_{3} & -\omega_{2} \\
-\omega_{3} & 0 & \omega_{1} \\
\omega_{2} & -\omega_{1} & 0
\end{array}\right)
$$

The angular velocity vector is defined by $\boldsymbol{\omega}=\omega_{a} \mathbf{e}_{a}(t)$, i.e. the components ω_{a} are components with respect to the body frame.

Theorem: We have, for any vector $\mathbf{r}(t)$ in the body frame:

$$
\frac{d \mathbf{r}(t)}{d t}=\boldsymbol{\omega} \times \mathbf{r}(t)
$$

Proof: We have
$\frac{d \mathbf{e}_{a}}{d t}=\omega_{a c} \mathbf{e}_{c}(t)=-\epsilon_{a b c} \omega_{b} \mathbf{e}_{c}(t)=-\omega_{b} \mathbf{e}_{a}(t) \times \mathbf{e}_{b}(t)=\omega \times \mathbf{e}_{a}(t)$,
using right-handedness of the frame. Now use $\mathbf{r}(t)=$ $r_{a} \mathbf{e}_{a}(t)$ and linearity.

3.3 The inertia tensor

Definition: The inertia tensor is defined by

$$
I_{a b}=\sum_{i} m_{i}\left(\left(\mathbf{r}_{i} \cdot \mathbf{r}_{i}\right) \delta_{a b}-\left(\mathbf{r}_{i}\right)_{a}\left(\mathbf{r}_{i}\right)_{b}\right)
$$

Notice that this tensor is manifestly symmetric.

Theorem: The kinetic energy of a rotating body is given by $\frac{1}{2} \boldsymbol{\omega}^{T} \mathbf{I} \boldsymbol{\omega}$, where I is the inertia tensor, and $\boldsymbol{\omega}$ is the angular momentum vector. In components, this is $\frac{1}{2} \omega_{a} I_{a b} \omega_{b}$.

Proof: The kinetic energy of the body is given by:

$$
\begin{aligned}
T & =\frac{1}{2} \sum_{i} m_{i}\left|\dot{\mathbf{r}}_{i}\right|^{2} \\
& =\frac{1}{2} \sum_{i} m_{i}\left|\boldsymbol{\omega} \times \mathbf{r}_{i}\right|^{2} \quad \text { (by above) } \\
& =\frac{1}{2} \sum_{i} m_{i}\left(\epsilon_{a b c} \omega_{b}\left(\mathbf{r}_{i}\right)_{c} \cdot \epsilon_{a d e} \omega_{d}\left(\mathbf{r}_{i}\right)_{e}\right) \\
& =\frac{1}{2} \sum_{i} m_{i} \omega_{a} \omega_{b}\left(\left(\mathbf{r}_{i} \cdot \mathbf{r}_{i}\right) \delta_{a b}-\left(\mathbf{r}_{i}\right)_{a}\left(\mathbf{r}_{i}\right)_{b}\right)
\end{aligned}
$$

In practice, we usually work with the continuous analogue of the inertia tensor:

$$
\mathbf{I}=\iiint \rho(\mathbf{r})\left(\begin{array}{ccc}
y^{2}+z^{2} & -x y & -x z \\
-x y & x^{2}+z^{2} & -y z \\
-x z & -y z & x^{2}+y^{2}
\end{array}\right) d^{3} \mathbf{r}
$$

which can easily be obtained from the discrete formula. Since I is symmetric and real-valued, it can be diagonalised by an orthogonal transformation and has real eigenvalues.

Definition: The axes with respect to which I is diagonal are called the principal axes. The diagonal elements of I, when expressed in the principal axis basis, are called the principal moments of inertia.

Example: We compute the inertia tensor of a disc of mass M, radius r, fixed at its centre.

3.4 The parallel axis theorem

Theorem: Let $I_{a b}$ be the inertia tensor of a body fixed about its centre of mass. Then if P^{\prime} is displaced \mathbf{c} from the body's centre of mass, the inertia tensor of the body about P^{\prime} is given by:

$$
\left(I_{\mathbf{c}}\right)_{a b}=I_{a b}+M\left(|\mathbf{c}|^{2} \delta_{a b}-c_{a} c_{b}\right) .
$$

Proof: We have

$$
\begin{aligned}
\left(I_{\mathbf{c}}\right)_{a b}= & \sum_{i} m_{i}\left(\left|\mathbf{r}_{i}-\mathbf{c}\right|^{2} \delta_{a b}-\left(\mathbf{r}_{i}-\mathbf{c}\right)_{a}\left(\mathbf{r}_{i}-\mathbf{c}\right)_{\mathbf{b}}\right) \\
= & \sum_{i} m_{i}\left(\left|\mathbf{r}_{i}\right|^{2} \delta_{a b}-\left(\mathbf{r}_{i}\right)_{a}\left(\mathbf{r}_{i}\right)_{b}\right)+\sum_{i} m_{i}\left(|\mathbf{c}|^{2} \delta_{a b}-c_{a} c_{b}\right) \\
& +\underbrace{\sum_{i} m_{i} \mathbf{r}_{i} \cdot(\text { stuff only dependent on } \mathbf{c})}_{\text {vanishes in COM frame }} .
\end{aligned}
$$

3.5 Euler's equations

Theorem: The angular momentum of a rotating rigid body is given by $\mathrm{L}=\mathrm{I} \omega$.

Proof: We have:
$\mathbf{L}=\sum_{n=1}^{N} m_{i} \mathbf{r}_{i} \times \dot{\mathbf{r}}_{i}=\sum_{i=1}^{N} m_{i} \mathbf{r}_{i} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{i}\right)=\sum_{i=1}^{N} m_{i}\left(\left|\mathbf{r}_{i}\right|^{2} \boldsymbol{\omega}-\left(\mathbf{r}_{i} \cdot \boldsymbol{\omega}\right) \mathbf{r}_{i}\right)$ which gives $\mathbf{L}=\mathbf{I} \boldsymbol{\omega}$.

Theorem: The motion of a free rigid body under the action of no external forces, with no translation, is determined by Euler's equations:

$$
\begin{aligned}
& I_{1} \dot{\omega}_{1}+\omega_{2} \omega_{3}\left(I_{3}-I_{2}\right)=0 \\
& I_{2} \dot{\omega}_{2}+\omega_{3} \omega_{1}\left(I_{1}-I_{3}\right)=0 \\
& I_{3} \dot{\omega}_{3}+\omega_{1} \omega_{2}\left(I_{2}-I_{1}\right)=0,
\end{aligned}
$$

where I_{i} are the principal moments of inertia of the body, and ω_{i} are the components of the angular momentum in the principal axis basis.

Proof: For a free rigid body, we have conservation of total angular momentum by Noether's Theorem. Hence writing $\mathbf{L}=L_{a}(t) \mathbf{e}_{a}(t)$.

$$
\begin{aligned}
\mathbf{0}= & \frac{d \mathbf{L}}{d t}=\frac{d L_{a}(t)}{d t} \mathbf{e}_{a}(t)+L_{a}(t) \frac{d \mathbf{e}_{a}(t)}{d t} \\
& =\dot{L}_{a} \mathbf{e}_{a}(t)+L_{a}(t) \boldsymbol{\omega} \times \mathbf{e}_{a}(t) \\
= & \dot{L}_{a} \mathbf{e}_{a}(t)+L_{a}(t)\left(\omega_{b} \epsilon_{b a c} \mathbf{e}_{c}(t)\right) .
\end{aligned}
$$

Thus we have $\dot{L}_{c}+\epsilon_{c b a} \omega_{b} L_{a}=0$. In the principal axes, $L_{1}=I_{1} \omega_{1}, L_{2}=I_{2} \omega_{2}$ and $L_{3}=I_{3} \omega_{3}$. Substituting this in, we have Euler's equations.

3.6 First integrals

There are two useful first integrals of Euler's equations:
Theorem: The kinetic energy $\frac{1}{2}\left(I_{1} \omega_{1}^{2}+I_{2} \omega_{2}^{2}+I_{3} \omega_{3}^{2}\right)$, and the square norm of the angular momentum, $|\mathbf{L}|^{2}=I_{1}^{2} \omega_{1}^{2}+I_{2}^{2} \omega_{2}^{2}+I_{3}^{2} \omega_{3}^{2}$, are both constants of the motion.

Proof: Multiply by $I_{1} \dot{\omega}_{1}+\omega_{2} \omega_{3}\left(I_{3}-I_{2}\right)=0$ by ω_{1}, and similarly for others, and then add all of Euler's equations together. Then integrate directly. Same for angular momentum but multiply through by $I_{i} \omega_{i}$.

3.7 Light spinning tops

We now see some example applications of Euler's equations to spinning tops.

Example 1: Sphere

For a sphere, $I_{1}=I_{2}=I_{3}=I$. Hence Euler's equations imply $\dot{\omega}_{a}=0$ for all a. Thus the angular velocity is constant.

Example 2: Symmetric top

For a symmetric top, we have $I_{1}=I_{2}, I_{1} \neq I_{3}$ and $I_{2} \neq I_{3}$. Since $I_{1}=I_{2}$, by Euler's equations we have $\dot{\omega}_{3}=0$. The remaining equations reduce to:

$$
\dot{\omega}_{1}=\left(\frac{I_{1}-I_{3}}{I_{1}}\right) \omega_{2} \omega_{3}, \quad \dot{\omega}_{2}=-\left(\frac{I_{1}-I_{3}}{I_{1}}\right) \omega_{1} \omega_{3} .
$$

Set $\Omega=\omega_{3}\left(I_{1}-I_{3}\right) / I_{1}$, which is a constant. Then we can write the equations as $\dot{\omega}_{1}=\Omega \omega_{2}, \dot{\omega}_{2}=-\Omega \omega_{3}$. Decoupling, we have $\ddot{\omega}_{1}=\Omega \dot{\omega}_{2}=-\Omega^{2} \omega_{1}$.

In general, we have:

$$
\left(\omega_{1}, \omega_{2}, \omega_{3}\right)=\left(A \sin (\Omega t), B \cos (\Omega t), \omega_{3}(0)\right)
$$

Hence there is spin precession around the $\hat{\mathbf{z}}$ axis.

Example 3: Asymmetric top

For an asymmetric top, $I_{1} \neq I_{2}, I_{2} \neq I_{3}, I_{1} \neq I_{3}$. Consider the special case $\omega_{1}=\Omega, \omega_{2}=\omega_{3}=0$; this is an equilibrium position. We ask if it is stable.

Let $\omega_{1}(t)=\Omega+\eta_{1}(t), \omega_{2}(t)=\eta_{2}(t)$ and $\omega_{3}(t)=\eta_{3}(t)$. Euler's equations become:

$$
\begin{aligned}
& I_{1} \dot{\eta}_{1}=O\left(\eta^{2}\right) \\
& I_{2} \dot{\eta}_{2}=\Omega \eta_{3}(t)\left(I_{3}-I_{1}\right)+O\left(\eta^{2}\right) \\
& I_{3} \dot{\eta}_{3}=\Omega \eta_{2}(t)\left(I_{1}-I_{2}\right)+O\left(\eta^{2}\right) .
\end{aligned}
$$

Differentiating the second equation and inserting into the third, we have:

$$
I_{2} \ddot{\eta}_{2}=\Omega^{2} \frac{\left(I_{1}-I_{2}\right)\left(I_{3}-I_{1}\right)}{I_{3}} \eta_{2}+O\left(\eta^{2}\right) .
$$

Hence there is an instability if $I_{2}<I_{1}<I_{3}$ or $I_{3}<I_{1}<I_{2}$.

3.8 Euler angles

We now try and deal with heavy tops, rather than just free tops. This requires even further machinery.

Theorem (Euler's Theorem): A general rotation in \mathbb{R}^{3} may be expressed as a product of three successive rotations about 3 (in general) different axes.

Proof: We want to find the matrix $R_{a b}(t)$ such that $\mathbf{e}_{a}(t)=R_{a b}(t) \tilde{\mathbf{e}}_{b}$, the matrix we showed existed and was unique earlier on. We proceed in three steps:

Step 1: Rotation of ϕ about the $\tilde{\mathbf{e}}_{3}$ axis:

Step 2: Rotation of θ about the $\tilde{\mathbf{e}}_{1}^{\prime}$ axis:

Step 3: Rotation of ψ about the $\tilde{\mathbf{e}}_{3}^{\prime \prime}$ axis:

Composing all the matrices of these rotations gives an overall matrix:

$$
\mathbf{R}(\phi, \theta, \psi)=\mathbf{R}\left(\tilde{\mathbf{e}}_{3}^{\prime \prime}, \psi\right) \mathbf{R}\left(\tilde{\mathbf{e}}_{1}^{\prime}, \theta\right) \mathbf{R}\left(\tilde{\mathbf{e}}_{3}, \phi\right),
$$

and so indeed we can represent the rotation matrix as a product of three successive rotations, with varying angles ϕ, θ and ψ.

Definition: We call the angles ϕ, θ and ψ the Euler angles.

3.9 Angular velocity revisited

Theorem: The angular momentum in the body frame may be expressed in terms of the Euler angles as:

$$
\begin{gathered}
\boldsymbol{\omega}=(\dot{\phi} \sin (\theta) \sin (\psi)+\dot{\theta} \cos (\theta)) \mathbf{e}_{1}(t) \\
+(\dot{\phi} \sin (\theta) \cos (\psi)-\dot{\theta} \sin (\psi)) \mathbf{e}_{2}(t)+(\dot{\psi}+\dot{\phi} \cos (\theta)) \mathbf{e}_{3}(t) .
\end{gathered}
$$

Proof: We prove the result through two steps:
Step 1: We show that if the rotation matrix is $\mathbf{R}(\hat{\mathbf{n}}, \phi)$, then angular velocity is $\boldsymbol{\omega}=\dot{\phi} \hat{\mathbf{n}}$. WLOG, take $\hat{\mathbf{n}}=(1,0,0)$, and so

$$
\mathbf{R}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\phi) & \sin (\phi) \\
0 & -\sin (\phi) & \cos (\phi)
\end{array}\right) .
$$

Compute $\mathbf{R R}^{T}$ to get:

$$
\dot{\mathbf{R}} \mathbf{R}^{T}=\dot{\phi}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) .
$$

Compare to expected form of $\omega_{a b}$, and then use

$$
\omega_{a}=\frac{1}{2} \epsilon_{a b c} \omega_{b c}=\dot{\phi} n_{a} .
$$

Step 2: Show ω is additive under composition of rotations. We have:

$$
\frac{d}{d t}\left(R_{1} R_{2}\right)\left(R_{1} R_{2}\right)^{T}=\left(\dot{R}_{1} R_{2}+R_{1} \dot{R}_{2}\right) R_{2}^{T} R_{1}^{T}=\omega_{1}+\omega_{2}
$$

where ω_{1} and ω_{2} are the angular velocity matrices. Hence the angular velocity vectors are also additive.

Step 3: From Steps 1 and 2, we can immediately conclude that the rotation $\mathbf{R}\left(\tilde{\mathbf{e}}_{3}^{\prime \prime}, \psi\right) \mathbf{R}\left(\tilde{\mathbf{e}}_{1}^{\prime}, \theta\right) \mathbf{R}\left(\tilde{\mathbf{e}}_{3}, \phi\right)$ gives angular velocity vector

$$
\omega=\dot{\psi} \tilde{\mathbf{e}}_{3}^{\prime \prime}+\dot{\theta} \tilde{\mathbf{e}}_{1}^{\prime}+\dot{\phi} \tilde{\mathbf{e}}_{3} .
$$

Now we carefully construct $\tilde{\mathbf{e}}_{3}^{\prime \prime}, \tilde{\mathbf{e}}_{1}^{\prime}$ and $\tilde{\mathbf{e}}_{3}$ in the body frame using the Euler angle diagrams. We have:

$$
\begin{gathered}
\tilde{\mathbf{e}}_{3}^{\prime \prime}=\mathbf{e}_{3}(t), \quad \tilde{\mathbf{e}}_{1}^{\prime}=\cos (\psi) \mathbf{e}_{1}(t)-\sin (\psi) \mathbf{e}_{2}(t), \\
=\cos (\theta) \mathbf{e}_{2}(t)+\sin (\theta)\left(\cos (\psi) \mathbf{e}_{2}(t)+\sin (\psi) \mathbf{e}_{1}(t)\right)
\end{gathered}
$$

Combining all this gives the result.

3.10 The heavy symmetric top

We finally have enough machinery to deal with the heavy symmetric top. Consider the heavy symmetric top as shown:

We assume that the top has principal moments of inertia $I_{1}=I_{2}$ and $I_{1} \neq I_{3}$, and the top has mass M.

The Lagrangian is:

$$
\mathcal{L}=\frac{1}{2} I_{1}\left(\omega_{1}^{2}+\omega_{2}^{2}\right)+\frac{1}{2} I_{3} \omega_{3}^{2}-M g l \cos (\theta) .
$$

Using our Euler-angle expressions for ω_{1} and ω_{2}, we get:

$$
\omega_{1}^{2}+\omega_{2}^{2}=\dot{\phi}^{2} \sin ^{2}(\theta)+\dot{\theta}^{2} .
$$

Substituting this, and the expression for ω_{3} in terms of Euler angles, into the the Lagrangian, we have:

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2} I_{1}\left(\dot{\theta}^{2}+\sin ^{2}(\theta) \dot{\phi}^{2}\right)+\frac{1}{2} I_{3}\left(\dot{\psi}^{2}+\dot{\phi}^{2} \cos ^{2}(\theta)+2 \dot{\psi} \dot{\phi} \cos (\theta)\right) \\
-M g l \cos (\theta) .
\end{gathered}
$$

Idea: Our aim is to isolate the dynamics in terms of θ using first integrals.

Theorem: The dynamics can be reduced to 1D motion of the form:

$$
I_{1} \ddot{\theta}=-\frac{d V_{\mathrm{eff}}}{d \theta}
$$

where

$$
V_{\mathrm{eff}}(\theta)=\frac{1}{2} I_{1} \sin ^{2}(\theta)\left(\frac{b-a \cos (\theta)}{\sin ^{2}(\theta)}\right)^{2}+M g l \cos (\theta)
$$

for constants a and b.
Proof: There are three first integrals: the momenta p_{ϕ}, p_{ψ} and the total energy E. Constructing the first integrals p_{ϕ} and p_{ψ}, we have:

$$
\begin{aligned}
& I_{1} b=p_{\phi}=I_{1} \sin ^{2}(\theta) \dot{\phi}+I_{3} \cos ^{2}(\theta) \dot{\phi}+I_{3} \dot{\psi} \cos (\theta), \\
& I_{1} a=p_{\psi}=I_{3} \dot{\psi}+I_{3} \dot{\phi} \cos (\theta),
\end{aligned}
$$

for constants a and b. Solving for $\dot{\phi}$ and $\dot{\psi}$ in terms of θ, we obtain:

$$
\dot{\phi}=\frac{b-a \cos (\theta)}{\sin ^{2}(\theta)}, \quad \dot{\psi}=\frac{I_{1}}{I_{3}} a-\left(\frac{b \cos (\theta)-a \cos ^{2}(\theta)}{\sin ^{2}(\theta)}\right) .
$$

Trick: we notice that $\omega_{3}=\dot{\phi} \cos (\theta)+\dot{\psi}=I_{1} a / I_{3}$, so is a constant (called the spin). Now use the total energy as the final first integral:

$$
\begin{aligned}
E & =\dot{\theta} \frac{\partial \mathcal{L}}{\partial \dot{\theta}}+\dot{\phi} \frac{\partial \mathcal{L}}{\partial \dot{\phi}}+\dot{\psi} \frac{\partial \mathcal{L}}{\partial \dot{\psi}}-\mathcal{L} \\
& =\frac{1}{2} I_{1}\left(\dot{\theta}^{2}+\sin ^{2}(\theta) \dot{\phi}^{2}\right)+\frac{1}{2} I_{3} \omega_{3}^{2}+M g l \cos (\theta) .
\end{aligned}
$$

Define $E^{\prime}=E-\frac{1}{2} I_{3} \omega_{3}^{2}$, which is also necessarily constant, since the spin ω_{3} is constant. It then follows that:

$$
E^{\prime}=\frac{1}{2} I_{1} \dot{\theta}^{2}+V_{\mathrm{eff}}(\theta),
$$

where $V_{\text {eff }}$ is of the required form. Differentiate, and we're done.

Theorem: Defining $u=\cos (\theta)$, the equations of motion for the top can be written in the form

$$
\begin{aligned}
\dot{u}^{2} & =f(u), \\
\dot{\phi} & =\frac{b-a u}{1-u^{2}}, \\
\dot{\psi} & =\frac{I_{1} a}{I_{3}}-\frac{u(b-a u)}{1-u^{2}},
\end{aligned}
$$

where $f(u)$ is a cubic polynomial.
Proof: Use the energy equation in the form

$$
E^{\prime}=\frac{1}{2} I_{1} \dot{\theta}^{2}+V_{\mathrm{eff}}(\theta) .
$$

Redefining $u=\cos (\theta)$, we have

$$
\dot{u}=-\dot{\theta} \sin (\theta) \quad \Rightarrow \quad \dot{\theta}^{2}=\frac{\dot{u}^{2}}{1-u^{2}} .
$$

Also redefining $\alpha=2 E^{\prime} / I_{1}, \beta=2 \mathrm{Mgl} / I_{1}$, we find that we can put the equations in the required form, with

$$
f(u)=\left(1-u^{2}\right)(\alpha-\beta u)-(b-a u)^{2} .
$$

To plot the cubic described above, we note that $f(u) \rightarrow \infty$ as $u \rightarrow \infty$, and $f(u) \rightarrow-\infty$ as $u \rightarrow-\infty$. We also note that $f(\pm 1)<0$. Physically, we require $-1 \leq u \leq 1$ and $\dot{u}^{2}=f(u)>0$. Hence $f(u)$ looks generally like:

3.11 Types of heavy top motion

The types of motion the top undergoes depend on the sign of $\dot{\phi}$ at the roots of $f(u)$ in $-1 \leq u \leq 1$, say u_{1} and u_{2}, corresponding to maximum and minimum θ, say θ_{1} and θ_{2}. There are three cases:

- $\dot{\phi}>0$ at u_{1} and u_{2};
- $\dot{\phi}>0$ at u_{1} and $\dot{\phi}<0$ at u_{2};
- $\dot{\phi}>0$ at u_{1} and $\dot{\phi}=0$ at u_{2}.

Note we don't include $\dot{\phi}<0$ at u_{1}, u_{2} etc, as these are the same motions but in different directions. Sketching gives the diagrams:

Finally we look at the sleeping top, i.e. we initially have $\dot{\theta}=\theta=0$.

Theorem: The sleeping top is stable if

$$
\omega_{3}^{2}>\frac{4 I_{1} M g l}{I_{3}^{2}}
$$

and unstable otherwise.
Proof: We know that $f(u)$ needs a root at $\theta=0$, i.e. $u=+1$. This implies $a=b$. From the definition of α and β, we have $\alpha=\beta$ in this case. In particular, these properties show that $f(u)$ has a double root at +1 . Thus there are two cases:

Let the other root be $u_{2}=a^{2} / \alpha-1$. The graphs show that if $u_{2}>1$, the motion is stable, since we are forced to stay in $-1 \leq u \leq 1$ and $f(u)>0$; we can also see that if $u_{2}<1$, the motion is unstable.

4 Hamiltonian mechanics

4.1 Phase space

Definition: Let $\mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right)$ be a Lagrangian for N particles. We call

$$
\mathbf{p}_{i}=\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}
$$

the conjugate momentum associated to q_{i}. We call the $6 N$-dimensional space $\mathbb{R}^{6 N}$ with coordinates (q_{i}, p_{i}) phase space.

4.2 The Legendre transform

Definition: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f=f(x, y)$. Define

$$
u=\frac{\partial f}{\partial x},
$$

and use u and y as coordinates. Define

$$
g(u, y)=u x(u, y)-f(x(u, y), y),
$$

where to obtain $x(u, y)$ we solved the relation $u=\frac{\partial f}{\partial x}$. We call g the Legendre transform of f.

Theorem: The Legendre transform is involutive, i.e. the transform of the transform gives back the original function.

Proof: We take the Legendre transform of the above g. We have:

$$
x=\frac{\partial g}{\partial u},
$$

The Legendre transform is then:

$$
\begin{aligned}
h(x, y) & =x u(x, y)-g(u(x, y), y) \\
& =x u(x, y)-u x(u, y)+f(x(u, y), y)=f(x, y) .
\end{aligned}
$$

4.3 Hamilton's equations

Definition: The Hamiltonian is the Legendre transform of the Lagrangian, given by

$$
H(\mathbf{q}, \mathbf{p}, t)=\sum_{i} p_{i} \dot{q}_{i}-\mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right),
$$

where $\dot{q}_{i}=\dot{q}_{i}(\mathbf{q}, \mathbf{p}, t)$ are implicitly given by

$$
p_{i}=\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} .
$$

Theorem: Hamilton's equations hold:

$$
\dot{q}_{i}=\frac{\partial H}{\partial \dot{p}_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial \dot{q}_{i}}, \quad \frac{\partial H}{\partial t}=-\frac{\partial \mathcal{L}}{\partial t} .
$$

Proof: We have

$$
\begin{aligned}
d H & =p_{i} d \dot{q}_{i}+\dot{q}_{i} d p_{i}-\frac{\partial \mathcal{L}}{\partial q_{i}} d q_{i}-\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} d \dot{q}_{i}-\frac{\partial \mathcal{L}}{\partial t} d t \\
& =\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \dot{q}_{i}+\dot{q}_{i} d p_{i}-\underbrace{\frac{\partial \mathcal{L}}{\partial q_{i}}}_{\begin{array}{c}
\text { use Euner-e- } \\
\text { Lagrane }
\end{array}} d q_{i}-\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} d \dot{q}_{i}-\frac{\partial \mathcal{L}}{\partial t} d t \\
& =\dot{q}_{i} d p_{i}-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right) d q_{i}-\frac{\partial \mathcal{L}}{\partial t} d t \\
& =\dot{q}_{i} d p_{i}-\dot{p}_{i} d q_{i}-\frac{\partial \mathcal{L}}{\partial t} d t .
\end{aligned}
$$

Compare with

$$
d H=\frac{\partial H}{\partial q_{i}} d q_{i}+\frac{\partial H}{\partial p_{i}} d p_{i}+\frac{\partial H}{\partial t} d t .
$$

Example: Electromagnetism

Consider the Lagrangian for a particle in a magnetic field:

$$
\mathcal{L}=\frac{1}{2} m|\dot{\mathbf{r}}|^{2}-e(\phi(\mathbf{r})-\dot{\mathbf{r}} \cdot \mathbf{A}) .
$$

We construct the Hamiltonian. The conjugate momentum is:

$$
\mathbf{p}=\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{r}}}=m \dot{\mathbf{r}}+e \mathbf{A} .
$$

Thus the Hamiltonian is

$$
\begin{aligned}
H & =\mathbf{p} \cdot \dot{\mathbf{r}}-\mathcal{L} \\
& =\mathbf{p} \cdot\left(\frac{\mathbf{p}-e \mathbf{A}}{m}\right)-\frac{(\mathbf{p}-e \mathbf{A})^{2}}{2 m}+e\left(\phi-\frac{(\mathbf{p}-e \mathbf{A}) \cdot \mathbf{A}}{m}\right) \\
& =\frac{(\mathbf{p}-e \mathbf{A})^{2}}{2 m}+e \phi .
\end{aligned}
$$

Hamilton's equations recover the Lorentz force law.

4.4 The principle of least action

The principle of least action can be recovered from the Hamiltonian formalism.

Theorem: Particles take the path in phase space that extremises the action

$$
S[\mathbf{q}, \mathbf{p}]=\int_{t_{1}}^{t_{2}}\left(p_{i} \dot{q}_{i}-H(\mathbf{q}, \mathbf{p}) d t\right.
$$

Note: The integrand is just the Lagrangian, i.e. the Legendre transform of the Hamiltonian.

Proof: We vary p_{i} and q_{i} separately to get:

$$
\begin{aligned}
\delta S & =\int_{t_{1}}^{t_{2}}\left(\dot{q}_{i} \delta p_{i}+p_{i} \delta \dot{q}_{i}-\frac{\partial H}{\partial p_{i}} \delta p_{i}-\frac{\partial H}{\partial q_{i}} \delta q_{i}\right) d t \\
& =\int_{t_{1}}^{t_{2}}\left(\left(\dot{q}_{i}-\frac{\partial H}{\partial p_{i}}\right) \delta p_{i}+\left(-\dot{p}_{i}-\frac{\partial H}{\partial q_{i}}\right) \delta q_{i}\right) d t+\left[p_{i} \delta q_{i}\right]_{t_{1}}^{t_{2}} .
\end{aligned}
$$

Assuming the variation has fixed end-points, the boundary terms vanish. Thus Hamilton's equations are recovered, which are equivalent to Newton's equations.

4.5 Liouville's theorem

Theorem: Consider a point in phase space ($\mathbf{q}_{0}, \mathbf{p}_{0}$). Let the system evolve via Hamilton's equations, so that at time t, the particle is at $(\mathbf{q}(t), \mathbf{p}(t))$. This is called Hamiltonian flow.

Liouville's theorem states that Hamiltonian preserves volumes in phase space: $\operatorname{Vol}(D(0))=\operatorname{Vol}(D(t))$, where D is a region in phase space that changes with time according to Hamiltonian flow.

Proof: Let

$$
\operatorname{Vol}(D(t))=\int_{D(t)} d q_{1} d q_{2} \ldots d q_{n} d p_{1} d p_{2} \ldots d p_{n}=\int_{D(t)} d V(t)
$$

We have $d V(0)=\left.d q_{1} \ldots d q_{n} d p_{1} \ldots d p_{n}\right|_{t=0}$. As we evolve according to Hamiltonian flow, we have

$$
\begin{aligned}
& q_{i}(t)=q_{i}(0)+t \frac{\partial H}{\partial p_{i}}(0)+O\left(t^{2}\right)=: \tilde{q}_{i} \\
& p_{i}(t)=p_{i}(0)-t \frac{\partial H}{\partial q_{i}}(0)+O\left(t^{2}\right)=: \tilde{p}_{i}
\end{aligned}
$$

We wish to compute $\operatorname{det}(J)$, where $d \tilde{q}_{1} \ldots d \tilde{q}_{n} d \tilde{p}_{1} \ldots d \tilde{p}_{n}=$ $d V(t)=\operatorname{det}(J) d V(0)$, i.e.
$\operatorname{det}(J)=\left(\begin{array}{ll}\frac{\partial \tilde{q}_{i}}{\partial q_{j}} & \frac{\partial \tilde{q}_{i}}{\partial p_{j}} \\ \frac{\partial \tilde{p}_{i}}{\partial q_{j}} & \frac{\partial \tilde{p}_{i}}{\partial p_{j}}\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}\delta_{i j}+\frac{\partial^{2} H}{\partial p_{i} q_{j}} t & \frac{\partial^{2} H}{\partial p_{i} \partial p_{j}} t \\ \frac{\partial^{2} H}{\partial q_{i} \partial q_{j}} t & \delta_{i j}-\frac{\partial^{2} H}{\partial q_{i} \partial p_{j}} t\end{array}\right)$
Now use $\operatorname{det}(1+t M)=1+\epsilon \operatorname{tr}(M)+O\left(t^{2}\right)$. It then follows that
$\operatorname{det}(J)=1+t \sum_{i}\left(\frac{\partial^{2} H}{\partial p_{i} \partial q_{j}}-\frac{\partial^{2} H}{\partial q_{i} \partial p_{j}}\right)+O\left(t^{2}\right)=1+O\left(t^{2}\right)$.

4.6 The Poincaré recurrence theorem

Theorem: Let P be a point in a finite volume phase space. For any neighbourhood D_{0} of P, there exists $P^{\prime} \in D_{0}$ that will return to D_{0} under a Hamiltonian flow in finite time.

Proof: Evolve D_{0} to D_{1} for a time T, then D_{1} to D_{2} for a time T, etc, until be get to D_{k}. Liouville's Theorem implies all of these regions have the same volume.

Suppose that $D_{k} \cap D_{k^{\prime}}=\emptyset$ for all distinct integers k and k^{\prime}. Then

$$
\operatorname{Vol}\left(\bigcup_{k=0}^{\infty} D_{k}\right)=\sum_{k=0}^{\infty} \operatorname{Vol}\left(D_{k}\right)=\infty
$$

which contradicts the finite volume assumption. So there exist distinct k and k^{\prime} with $D_{k} \cap D_{k^{\prime}} \neq \emptyset$. Suppose $k^{\prime}>k$ without loss of generality, and let $\Omega_{k k^{\prime}}=D_{k} \cap D_{k^{\prime}}$.

Since Hamiltonian flow is invertible, by uniqueness of solution to ODEs, we have $\Omega_{0, k^{\prime}-k}=D_{0} \cap D_{k^{\prime}-k} \neq \emptyset$. Hence there exists $P^{\prime} \in D_{0}$ such that P^{\prime} returns to D_{0} after $k^{\prime}-k$ steps of time T.

4.7 Poisson brackets

Definition: The Poisson bracket $\{f, g\}$ of f and g, two functions on phase space, is defined by

$$
\{f, g\}=\sum_{j=1}^{n}\left(\frac{\partial f}{\partial q_{j}} \frac{\partial g}{\partial p_{j}}-\frac{\partial g}{\partial q_{j}} \frac{\partial f}{\partial p_{j}}\right)
$$

Theorem: The Poisson bracket obeys:
(i) antisymmetry, $\{f, g\}=-\{g, f\}$;
(ii) linearity, $\{\alpha f+\beta g, h\}=\alpha\{f, h\}+\beta\{g, h\}$;
(iii) the Leibniz rule, $\{f, g h\}=\{f, g\} h+\{f, h\} g$;
(iv) the Jacobi identity, $\{f,\{g, h\}\}+\{g,\{h, f\}\}+$ $\{h,\{f, g\}\}$.
Proof: Trivial from the definition.

Theorem: If Hamilton's equations hold, then

$$
\frac{d f}{d t}=\{f, H\}+\frac{\partial f}{\partial t}
$$

Proof: Just use chain rule and Hamilton's equations.

Definition: A function f is a first integral of the Hamiltonian H if f is constant under Hamiltonian flow. If $\frac{\partial f}{\partial t}=0$, then by the above Theorem, f is a first integral if and only if $\{f, H\}=0$.

In particular, if $\frac{\partial H}{\partial t}=0$, then H is a first integral, which we call the energy.

More generally, if two functions f and g satisfy $\{f, g\}$ they are said to Poisson commute or to be in involution.

4.8 Canonical transformations

Notice if we define $\mathbf{x}=(\mathbf{q}, \mathbf{p})$, Hamilton's equations can be written more compactly as

$$
\dot{\mathbf{x}}=J \frac{\partial H}{\partial \mathbf{x}}
$$

where

$$
J=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
$$

Theorem: The coordinate transform $\mathbf{y}=\mathbf{y}(\mathbf{x})$ preserves the form of Hamilton's equations if and only if $D \mathbf{y}$ is a symplectic matrix, i.e. $D \mathbf{y} J D \mathbf{y}^{T}=J$.

Proof: We have

$$
\dot{y}_{a}=\frac{\partial y_{a}}{\partial x_{b}} \dot{x}_{b}=\frac{\partial y_{a}}{\partial x_{b}} J_{b c} \frac{\partial H}{\partial x_{c}}=\frac{\partial y_{a}}{\partial x_{b}} J_{b c} \frac{\partial y_{d}}{\partial x_{c}} \frac{\partial H}{\partial y_{d}}
$$

Hence

$$
\dot{\mathbf{y}}=\left(D \mathbf{y} J D \mathbf{y}^{T}\right) \frac{\partial H}{\partial \mathbf{y}}
$$

Theorem: A transformation is canonical if and only if the Poisson bracket structure is conserved.

Proof: Write out the previous Theorem in matrix form.

4.9 Infinitesimal canonical transformations

Consider the transformation, for $\epsilon \ll 1$:

$$
\begin{aligned}
q_{i} & \mapsto Q_{i}=q_{i}+\epsilon F_{i}(\mathbf{q}, \mathbf{p})+O\left(\epsilon^{2}\right), \\
p_{i} & \mapsto P_{i}=p_{i}+\epsilon E_{i}(\mathbf{q}, \mathbf{p})+O\left(\epsilon^{2}\right) .
\end{aligned}
$$

Theorem: If this transformation is canonical, then there exists a function $G(\mathbf{q}, \mathbf{p})$ such that

$$
F_{i}=\frac{\partial G}{\partial p_{i}}, \quad E_{i}=-\frac{\partial G}{\partial q_{i}} .
$$

Proof: Use that the Poisson bracket structure is conserved. We have:

$$
\begin{aligned}
0= & \left\{Q_{i}, Q_{j}\right\}=\frac{\partial Q_{i}}{\partial q_{k}} \frac{\partial Q_{j}}{\partial p_{k}}-\frac{\partial Q_{i}}{\partial p_{k}} \frac{\partial Q_{i}}{\partial q_{k}} \\
& =\epsilon \delta_{i k} \frac{\partial F_{j}}{\partial p_{k}}-\epsilon \frac{\partial F_{i}}{\partial p_{l}} \delta_{j k}+O\left(\epsilon^{2}\right) .
\end{aligned}
$$

Similarly,

$$
\delta_{i j}=\left\{Q_{i}, P_{j}\right\}=\delta_{i j}+\epsilon\left(\frac{\partial E_{j}}{\partial p_{i}}+\frac{\partial F_{i}}{\partial q_{j}}\right)+O\left(\epsilon^{2}\right) .
$$

Hence we get the conditions:

$$
\frac{\partial F_{j}}{\partial p_{i}}=\frac{\partial F_{i}}{\partial p_{j}}, \quad \frac{\partial F_{i}}{\partial q_{j}}=-\frac{\partial E_{j}}{\partial p_{i}} .
$$

These consistency conditions imply the existence of the required G. If such a G exists, the condition $0=\left\{P_{i}, P_{j}\right\}$ is also fulfilled.

Idea: Infinitesimal canonical transformations are generated by a Hamiltonian flow, with Hamiltonian G. A special case is time evolution, where $G=H$.

4.10 Noether's theorem

Definition: A symmetry of the Hamiltonian is an infinitesimal canonical transformation generated by some G that gives $\delta H=0$ (to order ϵ).

Theorem: If G generates a symmetry, $\{G, H\}=0$.
Proof: We have

$$
\begin{gathered}
\delta H=\frac{\partial H}{\partial q_{i}} \delta q_{i}+\frac{\partial H}{\partial p_{i}} \delta p_{i} \\
=\epsilon\left(\frac{\partial H}{\partial q_{i}} \frac{\partial G}{\partial p_{i}}-\frac{\partial H}{\partial p_{i}} \frac{\partial G}{\partial q_{i}}\right)+O\left(\epsilon^{2}\right)=\epsilon\{H, G\}+O\left(\epsilon^{2}\right) .
\end{gathered}
$$

Theorem (Noether's Theorem): If G generates a symmetry of the Hamiltonian, and is time-independent, then G is a first integral.

Proof: Follows immediately from the above, since $\{G, H\}=0$.

4.11 Generating functions

This is a general method of constructing canonical transformations.

Theorem: Let $F(\mathbf{q}, \mathbf{Q})$ be an arbitrary function. Then if we define

$$
\mathbf{p}=\frac{\partial F}{\partial \mathbf{q}}, \quad-\mathbf{P}=\frac{\partial F}{\partial \mathbf{Q}},
$$

and solve for \mathbf{Q} and \mathbf{P}, the result is a canonical transformation.

Proof: Write the actions for the two sets of variables as

$$
S=\int_{t_{1}}^{t_{2}}\left(p_{i} \dot{q}_{i}-H(\mathbf{q}, \mathbf{p})\right) d t=\int_{t_{1}}^{t_{2}}(\mathbf{p} \cdot d \mathbf{q}-H(\mathbf{q}, \mathbf{p}) d t),
$$

and

$$
S^{\prime}=\int_{t_{1}}^{t_{2}}\left(P_{i} \dot{Q}_{i}-H^{\prime}(\mathbf{Q}, \mathbf{P})\right) d t=\int_{t_{1}}^{t_{2}}\left(\mathbf{P} \cdot d \mathbf{Q}-H^{\prime}(\mathbf{Q}, \mathbf{P}) d t\right)
$$

Setting $\delta S=0$ and $\delta S^{\prime}=0$ gives Hamilton's equations for the two sets of variables. But then $\delta\left(S-S^{\prime}\right)=0$, which implies that the integrands differ by any total derivative,

$$
d F=\mathbf{p} \cdot d \mathbf{q}-\mathbf{P} \cdot d \mathbf{Q}-\left(H-H^{\prime}\right) d t .
$$

Comparing with:

$$
d F=\frac{\partial F}{\partial \mathbf{q}} \cdot d \mathbf{q}+\frac{\partial F}{\partial \mathbf{Q}} \cdot d \mathbf{Q}
$$

gives the result. In particular, we get $H=H^{\prime}$.

By taking the Legendre transform, we can obtain the generating function $F(\mathbf{q}, \mathbf{P})$ with

$$
\mathbf{p}=\frac{\partial F}{\partial \mathbf{q}}, \quad \mathbf{Q}=\frac{\partial F}{\partial \mathbf{P}}
$$

which we know from Integrable Systems.

4.12 Integrability and action-angle variables

Definition: Suppose there exists a canonical transformation $(\mathbf{q}, \mathbf{p}) \mapsto(\boldsymbol{\theta}, \mathbf{I})$ with $H \equiv H(\mathbf{I})$. Then $(\boldsymbol{\theta}, \mathbf{I})$ are called action-angle variables.

Trivially, Hamilton's equations in action-angle variables can be integrated.

Definition: An integrable system if a $2 n$-dimensional phase space M together with n first integrals $f_{i}: M \rightarrow \mathbb{R}$, $i=1,2, \ldots, n$ such that:

- ∇f_{i} are linearly independent vectors at all points in M;
- the functions f_{i} are all in involution.

This definition makes sense because of...

4.13 The Arnold-Liouville theorem

Theorem: Let $\left(M, f_{1}, f_{2}, \ldots, f_{n}\right)$ be an integrable system with $H=f_{1}$, say. Define

$$
M_{\mathbf{c}}=\left\{(\mathbf{q}, \mathbf{p}) \in M: f_{i}(\mathbf{q}, \mathbf{p})=c_{i}\right\} .
$$

If $M_{\mathbf{c}}$ is compact, then
(i) M_{c} is diffeomorphic to the torus T^{n};
(ii) there exists a local canonical transformation $(\mathbf{q}, \mathbf{p}) \mapsto$ $(\boldsymbol{\theta}, \mathbf{I})$ where $\boldsymbol{\theta})$ are coordinates on M_{c}, I are first integrals, and $H=H(\mathbf{I})$ (i.e. these are action-angle coordinates, so we can easily integrate Hamilton's equations).

Proof: See Integrable Systems. Here, we only construct the $(\boldsymbol{\theta}, \mathbf{I})$. Define

$$
I_{k}=\frac{1}{2 \pi} \oint_{\Gamma_{k}} \mathbf{p} \cdot d \mathbf{q},
$$

where Γ_{k} is the k th cycle on the torus. This definition does not depend on the choice of cycle (see Integrable Systems - use Green's Theorem). Since the actions depend only on \mathbf{c}, they are first integrals.

Use the generating function

$$
F(\mathbf{q}, \mathbf{I})=\int_{\mathbf{q}_{0}}^{\mathbf{q}} \mathbf{p} \cdot d \mathbf{q}
$$

to construct the angle coordinates via

$$
\theta_{k}=\frac{\partial F}{\partial I_{k}} .
$$

Since we used a generating function, the transformation is canonical.

4.14 Adiabatic invariants

Definition: A function $I(\mathbf{q}, \mathbf{p}, \lambda)$, with $\dot{\lambda}=O(\epsilon), \epsilon \ll 1$, is an adiabatic invariant of a system with Hamiltonian $H(\mathbf{q}, \mathbf{p}, \lambda)$ if $|I(t)-I(0)|=O(\epsilon)$ for all $0<t<T / \epsilon$.

Idea: I doesn't change very much. We can treat it as almost constant.

Theorem: The action variable \mathbf{I} is an adiabatic invariant.

Proof: Use action variables $H=H(\mathbf{l}, \lambda)$. Introduce the generating function $F(\mathbf{q}, \mathbf{l}, \lambda)$. If $\lambda=\lambda(t)$, then

$$
\frac{\partial F}{\partial t} \neq 0
$$

so in our earlier construction of the generating function, we need instead

$$
H^{\prime}=H+\frac{\partial F}{\partial t}=H+\epsilon \dot{\lambda} \frac{\partial F}{\partial \lambda} .
$$

Hence by Hamilton's equations:

$$
\mathbf{i}=-\frac{\partial H^{\prime}}{\partial \theta}=-\epsilon \dot{\lambda} \frac{\partial^{2} F}{\partial \lambda \partial \theta}=O(\epsilon),
$$

assuming $\dot{\lambda}=O(\epsilon)$. Hence \mathbf{I} is slowly-varying.

Example: Let $H=\frac{1}{2} p^{2}+\frac{1}{2} \lambda(t) q^{4}$. We can easily construct the action:

$$
I=\frac{1}{2 \pi} \oint \mathbf{p} \cdot \mathbf{q}=\frac{2}{2 \pi} \int_{q_{1}}^{q_{2}} \sqrt{2 E-\lambda(t) q^{4}} d q
$$

where q_{1}, q_{2} are the real roots of $2 E-\lambda(t) q^{4}=0$. Changing variables, we can put this in the form:

$$
\mathbf{I}=\frac{\sqrt{2 E}}{\pi}\left(\frac{2 E}{\lambda}\right)^{1 / 4} \int_{-1}^{1} \sqrt{1-x^{4}} d x
$$

Since I is almost constant, it follows that $E \sim \lambda^{1 / 3}$.

4.15 Poisson structures

Definition: A Poisson structure is a pair (M, J) such that M is a phase space of dimension $m, J=J^{a b}$ is a skewsymmetric matrix with components that are functions of M, and the bracket

$$
\{f, g\}=\sum_{a, b=1}^{m} J^{a b} \frac{\partial f}{\partial x^{a}} \frac{\partial g}{\partial x^{b}},
$$

obeys the Jacobi identity. For the Poisson structure, Hamilton's equations are $\dot{\mathbf{x}}=\{\mathbf{x}, H\}$.

Most properties of Poisson structures are proved using $\left\{x^{i}, x^{j}\right\}=J^{i j}$, where x^{i} and x^{j} are the coordinate functions of the phase space.

