
Part II: Classical Dynamics - Revision

Lectures by Maciej Dunajski, notes by James Moore

1 Lagrangian mechanics

1.1 Definitions

Definition: Consider N particles with positions ri. Let xA

be their coordinates in the space R3N . In this context, we
refer to C = R3N as the configuration space of the system.

Definition: The Lagrangian of a system of particles
(with masses mA) is a function L : C × C → R on
configuration space C of the form

L(xA, ẋA) =
1

2

∑
A

mAẋ
AẋA︸ ︷︷ ︸

kinetic

−V (xA, ẋA)︸ ︷︷ ︸
potential

.

That is, the Lagrangian is the kinetic minus the potential
energy.

Definition: Let γA be a curve in configuration space,
parametrised by time t, with coordinates (xA(t), ẋA(t)).
We define the action of the curve as the functional:

S[γ] =

tfinal∫
tinitial

L(xA(t), ẋA(t)) dt.

1.2 The Principle of Least Action

Theorem: The curve taken in configuration space by a
system is an extremum of the action functional S.

Proof: Replace xA(t) by xA(t) + δxA(t) in the ac-
tion functional, and assume end-points are fixed, i.e.
δxA(tinit) = 0 and δxA(tfin) = 0. Then S 7→ S + δS where:

δS =

tfin∫
tinit

(
∂L
∂xA

δxA +
∂L
∂ẋA

δẋA
)
dt

=

tfin∫
tinit

(
δxA

(
δL
δxA

− d

dt

(
∂L
∂ẋA

)))
dt+

[
∂L
∂ẋA

δxA
]tfin
tinit

,

by parts. Assuming the end-points are fixed, boundary
term vanishes. Demanding the action is an extremum, we
have δS = 0 for all δxA. Thus we must have:

∂L
∂xA

− d

dt

(
∂L
∂ẋA

)
= 0.

It remains to check the equivalence of these equations to
Newton’s equations.

We have

∂L
∂xA

= − ∂V

∂xA
,

d

dt

(
∂L
∂ẋA

)
=

d

dt
(mAẋA),

and so the above equation holds if and only if Newton’s
equations hold.

Definition: We call the equations

∂L
∂xA

− d

dt

(
∂L
∂ẋA

)
= 0

the Euler-Lagrange equations, or just Lagrange’s equa-
tions.

Theorem: The Euler-Lagrange equations hold in any
coordinate system.

Proof: Let qa(x1, x2, ..., x3N , t) be some coordinate
transformation. Assuming these relationships are invert-
ible, we can write xA = xA(q1, q2, ..., q3N ). Then by the
chain rule:

ẋA =
∂xA

∂qa
q̇a +

∂xA

∂t
.

Now consider the derivatives of L. We have:

∂L
∂qa

=
∂L
∂xk

∂xk

∂qa
+

∂L
∂ẋk

∂ẋk

∂qa

=
∂L
∂xk

∂xk

∂qa
+

∂L
∂ẋk

(
∂2xk

∂qa∂qb
q̇b +

∂2xk

∂qa∂t

)
︸ ︷︷ ︸

using ẋA expression

.

∂L
∂q̇a

=
∂L
∂ẋk

∂ẋk

∂q̇a︸︷︷︸
can remove

dots by chain
rule

=
∂L
∂ẋk

∂xk

∂qa
.

d

dt

(
∂L
∂q̇a

)
=

d

dt

(
∂L
∂ẋk

)
∂xk

∂qa
+

∂L
∂ẋk

(
∂2xk

∂qa∂qb
q̇b +

∂2xk

∂qa∂t

)
︸ ︷︷ ︸

using ẋA expression

.

Thus, putting everything together, we have:

∂L
∂qa
− d

dt

(
∂L
∂q̇a

)
=
∂xk

∂qa

(
∂L
∂xk
− d

dt

(
∂L
∂ẋk

))
= 0.
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1.3 Constraints & generalised coordinates

Definition: A set of holonomic constraints is a set of
relations of the form {fα(xA, t) = 0}, A = 1, 2, ..., 3N ,
where α = 1, 2, ..., 3N − n for some 0 ≤ n ≤ 3N .

Definition: If a set of holonomic constraints can be
solved in principle by parametrising xA = xA(q1, q2, ..., qn)
(note n degrees of freedom available), then the qi are
called generalised coordinates.

We can incorporate holonomic constraints into the
Lagrangian formalism in two ways:

1. Lagrange multipliers: Define a new Lagrangian

L′(xA, ẋA, λα, t) = L(xA, ẋA, t) +

3N−n∑
α=1

λαfα(xA, t),

so that the Euler-Lagrange equations for L′ are given by:

∂L′

∂λα
= 0 ⇒ fα(xA, t) = 0,

d

dt

(
∂L
∂ẋA

)
− ∂L
∂xA

=

3N−n∑
α=1

λα
∂fα
∂xA︸ ︷︷ ︸

constraint forces

.

We can now solve these equations as usual.

Example: Consider the pendulum shown.

The kinetic energy is 1
2m(ẋ2 + ẏ2), the potential energy is

−mgy and the holonomic constraint is x2 + y2 − l2 = 0.
Hence by the above method of Lagrange multipliers, we
obtain the three equations:

x2 + y2 = l2

mẍ = λx

mÿ = mg + λy.

The Lagrange multiplier is proportional to the tension, λ =
−T/l, in the Newtonian formalism, so we indeed see that
the Lagrange multipliers correspond to constraint forces.

2. Generalised coordinates: This method is useful when
we don’t care about the constraint forces’ values.

Theorem: For constrained systems, the equations of
motion can be derived directly from the Lagrangian

L(qi, q̇i, t) := L(xA(qi, t), ẋ
A(qi, q̇i, t)),

where the qi are the generalised coordinates.

Proof: Define L′ = L + λαfα = L + λαfα (summa-
tion convention applies) and use the Lagrange multiplier
method. We can first change coordinates to

yA :=

{
qi for i = 1, ..., n, A = 1, ..., n

fα for α = 1, 2, ..., 3N − n, A = n+ 1, n+ 2, ..., 3N.

By coordinate invariance of the Euler-Lagrange equations,
we know that the equations of motion are, for the first n
coordinates:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=
∑
α

λα
∂fα
∂qi

= 0,

since fα independent of qi, by definition. So we have
equations for the dynamics entirely in qi, which hold only
on the surface of constraints.

Example: Consider the same pendulum as before.
The constraint is solved by introducing the generalised
coordinate θ so that x = l sin(θ) and y = l cos(θ). Then
the Lagrangian becomes L = 1

2mθ̇
2l2 + lmg cos(θ), which

gives the Euler-Lagrange equation:

mθ̈ = −mg
l

sin(θ).

Example: Consider a bead on a wire:

This has Lagrangian

L =
1

2
(ẋ2 + ẏ2) + gy.

We can parametrise the wire as x = q, y = f(q) say, giving
ẏ = df

dq q̇. Then the Lagrangian can be written as:

L =
1

2

(
q̇2 +

(
df

dq
q̇

)2
)

+ gf(q),

and the equation of motion is then easy to derive.
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1.4 Noether’s theorem and symmetries

Definition: A function F (qa, q̇a, t) is called a first integral
or constant of the motion if dF

dt = 0 holds whenever the
Euler-Lagrange equations hold.

Definition: If ∂L
∂qb

= 0, then the momentum pb = ∂L
∂q̇b

is clearly a first integral. We call qb ignorable or cyclic.

Definition: Suppose that there exists a one-parameter
family of transformations qa(t) 7→ Qa(s, t) such that
Qa(0, t) = qa(t), where s ∈ R is a parameter for the
family of transformations. We call this transformation a
continuous symmetry of the Lagrangian L if

d

ds
(L(Qa(s, t), Q̇a(s, t), t)) = 0.

Theorem (Noether’s theorem): If Qa(s, t) is a con-
tinuous symmetry of L, then∑

a

∂L
∂q̇a

∂Qa
∂s

∣∣∣∣
s=0

is a first integral.

Proof: By the definition of a continuous symmetry,
we have

0 =
dL
ds

∣∣∣∣
s=0

=
∂L
∂qa

∂Qa
∂s

∣∣∣∣
s=0

+
∂L
∂q̇a

∂Q̇a
∂s

∣∣∣∣
s=0

,

where we can replace the derivatives ∂L
∂Qa

, ∂L
∂Q̇a

with
∂L
∂qa

, ∂L∂q̇a because qa = Qa at s = 0 (also note summation
convention applies). Now use the Euler Lagrange equa-
tions:

0 =
d

dt

(
∂L
∂q̇a

)
∂Qa
∂s

∣∣∣∣
s=0

+
∂L
∂q̇a

d

dt

(
∂Q̇a
∂s

)∣∣∣∣
s=0

=
d

dt

(
∂L
∂q̇a

∂Qa
∂s

) ∣∣∣∣
s=0

.

1.5 Applications of Noether’s theorem

Theorem: Spatially homogeneous systems obey conser-
vation of momentum.

Proof: Consider a spatially homogeneous Lagrangian:

L =
1

2

∑
mi|ṙi|2 −

∑
i,j

V (|ri − rj |).

A continuous symmetry of the system is Ri(s, t) = ri + sn,
where n is an arbitrary constant vector. So by Noether’s
Theorem,

∑
i

∂L
∂ṙi
· ∂Ri
∂s

∣∣∣∣
s=0

=
∑
i

∂L
∂ṙi
· n =

∑
i

pi · n

is a conserved quantity. Since n was arbitrary, total
momentum is conserved.

Theorem: Spatially isotropic systems obey conser-
vation of angular momentum.

Proof: This time, a continuous symmetry is
Ri(s, t) = A(s)ri where A(s) is an orthogonal matrix,
and A(0) = I. Taylor expanding, we find:

Ri = ri + sn̂(s)× ri +O(s2),

where n̂(s) is the axis of rotation. The proof now proceeds
just as before.

Theorem: Homogeneity in time implies the Hamilto-
nian

H =
∑
n

q̇n
∂L
∂q̇n
− L

is a conserved quantity.

Proof: Homogeneity in time requires

∂L
∂t

= 0.

Thus (with the summation convention applying):

dH

dt
= q̈n

∂L
∂q̇n

+ q̇n
d

dt

(
∂L
∂q̇n

)
− ∂L
∂t
− ∂L
∂qn

q̇n −
∂L
∂q̇n

q̈n.

Now simply use the Euler-Lagrange equations, and we’re
done. (Note: this didn’t use Noether’s theorem.)

1.6 Applications of Lagrangian mechanics

Example: Geodesics
We call Lagrangians of the form L = 1

2gab(q)q̇aq̇b, where
gab is symmetric, kinetic Lagrangians. The Euler-Lagrange
equations are given by:

1

2
q̇aq̇b

∂gab
∂qc

− gcbq̈b − q̇bq̇a
∂gcb
∂qa

= 0

⇒ 1

2
q̇aq̇b

∂gab
∂qc

− gcbq̈b −
1

2
q̇aq̇b

∂gcb
∂qa

− 1

2
q̇bq̇a

∂gbc
∂qa

= 0,

splitting the term up using gcb = gbc. Now relabel a 7→ b,
b 7→ a in the third term.
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We get:

1

2
q̇aq̇b

(
∂gab
∂qc

− ∂gcb
∂qa

− ∂gac
∂qb

)
− gcbq̈b = 0.

Multiplying through by −gkc, we obtain the equation

q̈k + q̇aq̇bΓkab = 0,

where Γkab are the Christoffel symbols:

Γabc =
1

2
gad
(
∂gbd
∂qc

+
∂gcd
∂qb

− ∂gbc
∂qd

)
.

Example: Electromagnetism
The Lagrangian for particles in an electromagnetic field is

L =
1

2
m|ṙ|2 − φ+ ṙ · A,

where φ is the scalar potential, and A is the vector po-
tential. This recovers the Lorentz force law via the Euler-
Lagrange equations:

d

dt

(
∂L
∂ṙ

)
=
∂L
∂r

⇒ d

dt
(mṙ + A) =

∂L
∂r
.

Writing out in suffix notation:

mr̈a +

(
∂Aa
∂rb
− ∂Ab
∂ra

)
ṙb +

∂Aa
∂t

+
∂φ

∂ra
= 0.

Now recall

Ea = − ∂φ

∂ra
− ∂Aa

∂t
, Bc = εcde

∂Ae
∂rd

.

This gives the Lorentz force law as expected.

2 Stability analysis

2.1 Eigenvalue method

Suppose that the Euler-Lagrange equations for a system
reduce to the form

q̈i = fi(q1, q2, ...qn),

for generalised coordinates qi.

Definition: We say q = q0 is an equilibrium solution
of this system if fi(q0) = 0 for all i.

Theorem: A small perturbation ηηη(t) to an equilibrium
solution at q0 evolves as

η̈ηη = Fηηη,

where F is the matrix with elements

Fij =
∂fi
∂qj

∣∣∣∣
q=q0

.

Proof: Let q = q0 + ηηη(t). Then the equations q̈ = f(q)
become:

η̈ηη = f(ηηη + q0) = f(q0)︸ ︷︷ ︸
0

+(ηηη · ∇)f(q0) + ...

hence to first order, η̈ηη = Fηηη for the given matrix F, as
required.

We analyse stability by looking at the eigenvalues of
F. First, we should check that the eigenvalues are real
(since F is not necessarily symmetric).

Theorem: For the Lagrangian

L =
1

2
Tij(q)q̇iq̇j − V (q),

with Tij symmetric, positive-definite and invertible at q0,
the eigenvalues of the matrix F (governing stability at q0)
are real.

Proof: The Euler-Lagrange equations for L are:

1

2

∂Tij
∂qk

q̇iq̇j −
∂V

∂qk
− d

dt
(Tkj q̇j) = 0.

Expanding with q = q0 + ηηη(t), we have to first order in ηηη,

− ∂2V

∂qi∂qj

∣∣∣∣
q=q0

ηj = Tij(q0)η̈j = TijFjkηk,

where in the last equality we used the equation of motion
for ηk from the above Theorem. Redefining:

Tij = Tij(q0), Vij =
∂2V

∂qi∂qj

∣∣∣∣
q=q0

,

we can rewrite our equation as the matrix equation:

−V = TF ⇒ −T−1V = F,

since T is invertible at q0. Now suppose that Fµµµ = λ2µµµ.
This occurs if and only if Vµµµ = −λ2Tµµµ. Take the inner
product with µµµ to obtain:

µµµTVµµµ = −λ2µµµTTµµµ.

Now since V and T are symmetric, both µµµTVµµµ and µµµTTµµµ
are real. Since T is positive definite, µµµTTµµµ 6= 0, and hence
it follows that −λ2 must be real (if µµµTTµµµ was zero, −λ2

could be anything we liked!).

This Theorem allows us to conduct the following analysis.
Suppose Fµµµa = λ2

aµµµa, a = 1, 2...m (where m ≤ n).

Definition: The vectors µµµa satisfying Fµµµa = λ2
aµµµa

are called the normal modes.

4
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The normal modes are important, since the most general
solution of η̈ηη = Fηηη can be written as:

ηηη(t) =
∑
a

µµµa
(
Aae

λat +Bae
−λat

)
.

The Aa and Ba are unimportant constants of integration.
The λ2

a determine the behaviour of the perturbation. There
are two cases:

Case 1 - λ2
a < 0 for some a: In this case, λa = ±ωai,

for ωa real. Hence the perturbation is linearly stable in the
direction µµµa.

Case 2 - λ2
a > 0 for some a: In this case, λa = ±ωa,

for ωa real. Hence the perturbation is linearly unstable in
the direction µµµa.

Definition: An equilibrium point q0 is called linearly
stable if λ2

a < 0 for all a; otherwise, it is called linearly
unstable.

2.2 Example: linear triatomic molecules

Consider a triatomic molecule with atoms of masses m,
M and m respectively (see diagram).

The Lagrangian is

L =
1

2
mẋ2

1 +
1

2
Mẋ2

2 +
1

2
mẋ2

3 − V (x1 − x2)− V (x2 − x3),

where the V are chemical potentials (generally compli-
cated). Let xi = x0

i be an equilibrium. By symmetry, we
expect |x0

1 − x0
2| = |x0

2 − x0
3| = r0 at equilibrium. Consider

small perturbations xi(t) = x0
i + ηi(t). Then:

V (r) = V (r0) +
∂V

∂r

∣∣∣∣
r=r0︸ ︷︷ ︸

0

(r− r0) +
∂2V

∂r2

∣∣∣∣
r=r0︸ ︷︷ ︸

=: k

(r − r0)2

2
+ ...

Close the equilibrium point, the Lagrangian then becomes:

L ≈ 1

2
mη̇2

1 +
1

2
Mη̇2

2 +
1

2
mη̇2

3−
1

2
k
(
(η1 − η2)2 + (η2 − η3)2

)
,

which gives an equation of the form η̈ηη = Fηηη when we find
the Euler-Lagrange equations. We find that there are three
normal modes, one corresponding to translation, and the
other to vibrations.

3 Rigid body dynamics

3.1 Kinematics

Definition: A rigid body is a collection of N points
constrained such that the distances between the points
are fixed, |ri − rj | = constant, i, j = 1, 2, ..., N .

Continuous configurations are also possible, where
we have infinitely many points; throughout, to change from
a discrete to a continuous distribution we replace masses
by mass density and sums by integrals.

Definition: The position of a rigid body fixed at a
point P (i.e. non-translating, just rotating) can be specified
by its position relative to either a fixed orthonormal frame
{ẽ1, ẽ2, ẽ3}, called the space frame, or a moving orthonor-
mal frame {e1(t),e2(t),e3(t)} that moves with the body,
called the body frame.

In particular, we have ea(t) · eb(t) = δab = ẽa · ẽb.
We also choose the vectors to be right-handed, in the
sense that ea(t) × eb(t) = εabcec(t) (and similarly for the
space frame).

The first question we should ask is how to go be-
tween the two frames.

Theorem: The 3×3 matrix R(t) defined by Rab = ea(t) · ẽb
is the unique orthogonal transformation such that
ea(t) = Rab(t)ẽb.

Proof: Uniqueness is immediate, since

ea(t) = Rab(t)ẽb ⇒ ea(t)·ẽc = Rab(t)ẽb·ẽc = Rac,

by orthonormality of the frames. Orthogonality follows
from:

[RTR]ab = RacRbc = RacRbdδcd = RacRbdẽc·ẽd = ea·eb = δab.

Using this Theorem, we can count the number of degrees
of freedom of the system. Notice that Rab has 9 elements,
but the equation RTR = I for orthogonality gives 6 con-
straints, hence there are 3 degrees of freedom. We will
characterise these by Euler angles later on.

5
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3.2 Angular velocity

Definition: We notice that

dea(t)

dt
=

d

dt
(Rabẽb) = Ṙabẽb = ṘabR

−1
bc ec(t).

Define ωac(t) = ṘabR
−1
bc = ṘabRcb (using R−1 = RT ). In

dyadic notation, ωωω = ṘRT .

The matrix ωac(t) has some useful properties:

Theorem: We have

(i) ωωωT = −ωωω;

(ii) for any point r(t) = raea(t) on a rotating rigid body, we
have

dr(t)
dt

= raωacec(t).

Proof: (i) follows immediately by differentiating the relation-
ship RRT = I, which gives:

0 = ṘRT + RṘT = ωωω + (ṘRT )T = ωωω +ωωωT .

For (ii), we have:

dr(t)
dt

= ra
dea(t)

dt
= raωacec(t).

From the matrix ωωω, we can construct the angular ve-
locity of a rotating rigid body.

Definition: The angular velocity components of a
rotating rigid body are defined by

ωa =
1

2
εabcωbc.

Conversely, ωab = εabcωc. Written out in full, we have:

ωab =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 .

The angular velocity vector is defined by ωωω = ωaea(t), i.e.
the components ωa are components with respect to the
body frame.

Theorem: We have, for any vector r(t) in the body
frame:

dr(t)
dt

= ωωω × r(t).

Proof: We have

dea
dt

= ωacec(t) = −εabcωbec(t) = −ωbea(t)×eb(t) = ωωω×ea(t),

using right-handedness of the frame. Now use r(t) =
raea(t) and linearity.

3.3 The inertia tensor

Definition: The inertia tensor is defined by

Iab =
∑
i

mi((ri · ri)δab − (ri)a(ri)b).

Notice that this tensor is manifestly symmetric.

Theorem: The kinetic energy of a rotating body is
given by 1

2ωωω
T I ωωω, where I is the inertia tensor, and ωωω is

the angular momentum vector. In components, this is
1
2ωaIabωb.

Proof: The kinetic energy of the body is given by:

T =
1

2

∑
i

mi|ṙi|2

=
1

2

∑
i

mi|ωωω × ri|2 (by above)

=
1

2

∑
i

mi(εabcωb(ri)c · εadeωd(ri)e)

=
1

2

∑
i

miωaωb((ri · ri)δab − (ri)a(ri)b).

In practice, we usually work with the continuous ana-
logue of the inertia tensor:

I =

∫∫∫
ρ(r)

y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 d3r,

which can easily be obtained from the discrete formula.
Since I is symmetric and real-valued, it can be diago-
nalised by an orthogonal transformation and has real
eigenvalues.

Definition: The axes with respect to which I is diag-
onal are called the principal axes. The diagonal elements
of I, when expressed in the principal axis basis, are called
the principal moments of inertia.

Example: We compute the inertia tensor of a disc of
mass M , radius r, fixed at its centre.

6
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3.4 The parallel axis theorem

Theorem: Let Iab be the inertia tensor of a body fixed
about its centre of mass. Then if P ′ is displaced c from
the body’s centre of mass, the inertia tensor of the body
about P ′ is given by:

(Ic)ab = Iab +M(|c|2δab − cacb).

Proof: We have

(Ic)ab =
∑
i

mi

(
|ri − c|2δab − (ri − c)a(ri − c)b

)
=
∑
i

mi(|ri|2δab − (ri)a(ri)b) +
∑
i

mi(|c|2δab − cacb)

+
∑
i

miri · (stuff only dependent on c)︸ ︷︷ ︸
vanishes in COM frame

.

3.5 Euler’s equations

Theorem: The angular momentum of a rotating rigid body
is given by L = I ωωω.

Proof: We have:

L =

N∑
n=1

miri×ṙi =

N∑
i=1

miri×(ωωω×ri) =

N∑
i=1

mi(|ri|2ωωω−(ri·ωωω)ri),

which gives L = I ωωω.

Theorem: The motion of a free rigid body under the
action of no external forces, with no translation, is
determined by Euler’s equations:

I1ω̇1 + ω2ω3(I3 − I2) = 0

I2ω̇2 + ω3ω1(I1 − I3) = 0

I3ω̇3 + ω1ω2(I2 − I1) = 0,

where Ii are the principal moments of inertia of the body,
and ωi are the components of the angular momentum in
the principal axis basis.

Proof: For a free rigid body, we have conservation of
total angular momentum by Noether’s Theorem. Hence
writing L = La(t)ea(t).

0 =
dL
dt

=
dLa(t)

dt
ea(t) + La(t)

dea(t)

dt

= L̇aea(t) + La(t)ωωω × ea(t)

= L̇aea(t) + La(t)(ωbεbacec(t)).

Thus we have L̇c + εcbaωbLa = 0. In the principal axes,
L1 = I1ω1, L2 = I2ω2 and L3 = I3ω3. Substituting this in,
we have Euler’s equations.

3.6 First integrals

There are two useful first integrals of Euler’s equations:

Theorem: The kinetic energy 1
2 (I1ω

2
1 + I2ω

2
2 + I3ω

2
3),

and the square norm of the angular momentum,
|L|2 = I2

1ω
2
1 + I2

2ω
2
2 + I2

3ω
2
3 , are both constants of

the motion.

Proof: Multiply by I1ω̇1 + ω2ω3(I3 − I2) = 0 by ω1,
and similarly for others, and then add all of Euler’s equa-
tions together. Then integrate directly. Same for angular
momentum but multiply through by Iiωi.

3.7 Light spinning tops

We now see some example applications of Euler’s equa-
tions to spinning tops.

Example 1: Sphere
For a sphere, I1 = I2 = I3 = I. Hence Euler’s equations
imply ω̇a = 0 for all a. Thus the angular velocity is constant.

Example 2: Symmetric top
For a symmetric top, we have I1 = I2, I1 6= I3 and I2 6= I3.
Since I1 = I2, by Euler’s equations we have ω̇3 = 0. The
remaining equations reduce to:

ω̇1 =

(
I1 − I3
I1

)
ω2ω3, ω̇2 = −

(
I1 − I3
I1

)
ω1ω3.

Set Ω = ω3(I1 − I3)/I1, which is a constant. Then we can
write the equations as ω̇1 = Ωω2, ω̇2 = −Ωω3. Decoupling,
we have ω̈1 = Ωω̇2 = −Ω2ω1.

In general, we have:

(ω1, ω2, ω3) = (A sin(Ωt), B cos(Ωt), ω3(0)).

Hence there is spin precession around the ẑ axis.

Example 3: Asymmetric top
For an asymmetric top, I1 6= I2, I2 6= I3, I1 6= I3. Consider
the special case ω1 = Ω, ω2 = ω3 = 0; this is an equilib-
rium position. We ask if it is stable.

Let ω1(t) = Ω + η1(t), ω2(t) = η2(t) and ω3(t) = η3(t).
Euler’s equations become:

I1η̇1 = O(η2)

I2η̇2 = Ωη3(t)(I3 − I1) +O(η2)

I3η̇3 = Ωη2(t)(I1 − I2) +O(η2).

Differentiating the second equation and inserting into the
third, we have:

I2η̈2 = Ω2 (I1 − I2)(I3 − I1)

I3
η2 +O(η2).

Hence there is an instability if I2 < I1 < I3 or I3 < I1 < I2.

7
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3.8 Euler angles

We now try and deal with heavy tops, rather than just free
tops. This requires even further machinery.

Theorem (Euler’s Theorem): A general rotation in
R3 may be expressed as a product of three successive
rotations about 3 (in general) different axes.

Proof: We want to find the matrix Rab(t) such that
ea(t) = Rab(t)ẽb, the matrix we showed existed and was
unique earlier on. We proceed in three steps:

Step 1: Rotation of φ about the ẽ3 axis:

Step 2: Rotation of θ about the ẽ′1 axis:

Step 3: Rotation of ψ about the ẽ′′3 axis:

Composing all the matrices of these rotations gives
an overall matrix:

R(φ, θ, ψ) = R(ẽ′′3 , ψ)R(ẽ′1, θ)R(ẽ3, φ),

and so indeed we can represent the rotation matrix as a
product of three successive rotations, with varying angles
φ, θ and ψ.

Definition: We call the angles φ, θ and ψ the Euler
angles.

3.9 Angular velocity revisited

Theorem: The angular momentum in the body frame may
be expressed in terms of the Euler angles as:

ωωω = (φ̇ sin(θ) sin(ψ) + θ̇ cos(θ))e1(t)

+(φ̇ sin(θ) cos(ψ)− θ̇ sin(ψ))e2(t) + (ψ̇ + φ̇ cos(θ))e3(t).

Proof: We prove the result through two steps:

Step 1: We show that if the rotation matrix is R(n̂, φ),
then angular velocity is ωωω = φ̇n̂. WLOG, take n̂ = (1, 0, 0),
and so

R =

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 .

Compute ṘRT to get:

ṘRT = φ̇

0 0 0
0 0 1
0 −1 0

 .

Compare to expected form of ωab, and then use

ωa =
1

2
εabcωbc = φ̇na.

Step 2: Show ωωω is additive under composition of rotations.
We have:

d

dt
(R1R2)(R1R2)T = (Ṙ1R2 +R1Ṙ2)RT2 R

T
1 = ωωω1 +ωωω2.

where ω1 and ω2 are the angular velocity matrices. Hence
the angular velocity vectors are also additive.

Step 3: From Steps 1 and 2, we can immediately
conclude that the rotation R(ẽ′′3 , ψ)R(ẽ′1, θ)R(ẽ3, φ) gives
angular velocity vector

ωωω = ψ̇ẽ′′3 + θ̇ẽ′1 + φ̇ẽ3.

Now we carefully construct ẽ′′3 , ẽ′1 and ẽ3 in the body frame
using the Euler angle diagrams. We have:

ẽ′′3 = e3(t), ẽ′1 = cos(ψ)e1(t)− sin(ψ)e2(t),

ẽ3 = cos(θ)ẽ′′3 + sin(θ)ẽ′′2
= cos(θ)e2(t) + sin(θ)(cos(ψ)e2(t) + sin(ψ)e1(t)).

Combining all this gives the result.
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3.10 The heavy symmetric top

We finally have enough machinery to deal with the heavy
symmetric top. Consider the heavy symmetric top as
shown:

We assume that the top has principal moments of in-
ertia I1 = I2 and I1 6= I3, and the top has mass M .

The Lagrangian is:

L =
1

2
I1(ω2

1 + ω2
2) +

1

2
I3ω

2
3 −Mgl cos(θ).

Using our Euler-angle expressions for ω1 and ω2, we get:

ω2
1 + ω2

2 = φ̇2 sin2(θ) + θ̇2.

Substituting this, and the expression for ω3 in terms of Eu-
ler angles, into the the Lagrangian, we have:

L =
1

2
I1(θ̇2 + sin2(θ)φ̇2) +

1

2
I3(ψ̇2 + φ̇2 cos2(θ) + 2ψ̇φ̇ cos(θ))

−Mgl cos(θ).

Idea: Our aim is to isolate the dynamics in terms of θ
using first integrals.

Theorem: The dynamics can be reduced to 1D mo-
tion of the form:

I1θ̈ = −dVeff
dθ

where

Veff(θ) =
1

2
I1 sin2(θ)

(
b− a cos(θ)

sin2(θ)

)2

+Mgl cos(θ)

for constants a and b.

Proof: There are three first integrals: the momenta
pφ, pψ and the total energy E. Constructing the first
integrals pφ and pψ, we have:

I1b = pφ = I1 sin2(θ)φ̇+ I3 cos2(θ)φ̇+ I3ψ̇ cos(θ),

I1a = pψ = I3ψ̇ + I3φ̇ cos(θ),

for constants a and b. Solving for φ̇ and ψ̇ in terms of θ, we
obtain:

φ̇ =
b− a cos(θ)

sin2(θ)
, ψ̇ =

I1
I3
a−

(
b cos(θ)− a cos2(θ)

sin2(θ)

)
.

Trick: we notice that ω3 = φ̇ cos(θ) + ψ̇ = I1a/I3, so is a
constant (called the spin). Now use the total energy as the
final first integral:

E = θ̇
∂L
∂θ̇

+ φ̇
∂L
∂φ̇

+ ψ̇
∂L
∂ψ̇
− L

=
1

2
I1(θ̇2 + sin2(θ)φ̇2) +

1

2
I3ω

2
3 +Mgl cos(θ).

Define E′ = E− 1
2I3ω

2
3 , which is also necessarily constant,

since the spin ω3 is constant. It then follows that:

E′ =
1

2
I1θ̇

2 + Veff(θ),

where Veff is of the required form. Differentiate, and we’re
done.

Theorem: Defining u = cos(θ), the equations of mo-
tion for the top can be written in the form

u̇2 = f(u),

φ̇ =
b− au
1− u2

,

ψ̇ =
I1a

I3
− u(b− au)

1− u2
,

where f(u) is a cubic polynomial.

Proof: Use the energy equation in the form

E′ =
1

2
I1θ̇

2 + Veff(θ).

Redefining u = cos(θ), we have

u̇ = −θ̇ sin(θ) ⇒ θ̇2 =
u̇2

1− u2
.

Also redefining α = 2E′/I1, β = 2Mgl/I1, we find that we
can put the equations in the required form, with

f(u) = (1− u2)(α− βu)− (b− au)2.

To plot the cubic described above, we note that f(u)→∞
as u → ∞, and f(u) → −∞ as u → −∞. We also note
that f(±1) < 0. Physically, we require −1 ≤ u ≤ 1 and
u̇2 = f(u) > 0. Hence f(u) looks generally like:

9
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3.11 Types of heavy top motion

The types of motion the top undergoes depend on the sign
of φ̇ at the roots of f(u) in −1 ≤ u ≤ 1, say u1 and u2,
corresponding to maximum and minimum θ, say θ1 and θ2.
There are three cases:

• φ̇ > 0 at u1 and u2;

• φ̇ > 0 at u1 and φ̇ < 0 at u2;

• φ̇ > 0 at u1 and φ̇ = 0 at u2.

Note we don’t include φ̇ < 0 at u1, u2 etc, as these are the
same motions but in different directions. Sketching gives
the diagrams:

We have names for the different types of motion:

Definition: Motion in the φ direction is called pre-
cession. Motion in the θ direction is called nutation.

We now examine uniform precession, i.e. for all time
we have φ̇ = constant and θ̇ = 0.

Theorem: The requirement for uniform precession
is

ω2
3 ≥

4MglI1 cos(θ0)

I2
3

.

Proof: For uniform precession to occur, f(u) must have a
double root u0. So f(u0) = f ′(u0) = 0. From f(u0) = 0,
we have

0 = (1−u2
0)(α−βu0)−(b−au0)2 = (1−u2

0)(α−βu0)−(1−u2
0)2φ̇2

Hence
φ̇ =

α− βu0

1− u2
0

.

Substituting into the condition f ′(u0) = 0 gives a quadratic
in φ̇, and the condition on its discriminant gives the uniform
precession condition.

Finally we look at the sleeping top, i.e. we initially have
θ̇ = θ = 0.

Theorem: The sleeping top is stable if

ω2
3 >

4I1Mgl

I2
3

,

and unstable otherwise.

Proof: We know that f(u) needs a root at θ = 0, i.e.
u = +1. This implies a = b. From the definition of α and β,
we have α = β in this case. In particular, these properties
show that f(u) has a double root at +1. Thus there are
two cases:

Let the other root be u2 = a2/α − 1. The graphs
show that if u2 > 1, the motion is stable, since we are
forced to stay in −1 ≤ u ≤ 1 and f(u) > 0; we can also
see that if u2 < 1, the motion is unstable.

4 Hamiltonian mechanics

4.1 Phase space

Definition: Let L(qi, q̇i, t) be a Lagrangian for N particles.
We call

pi =
∂L
∂q̇i

the conjugate momentum associated to qi. We call the
6N -dimensional space R6N with coordinates (qi, pi) phase
space.

4.2 The Legendre transform

Definition: Let f : R2 → R, f = f(x, y). Define

u =
∂f

∂x
,

and use u and y as coordinates. Define

g(u, y) = ux(u, y)− f(x(u, y), y),

where to obtain x(u, y) we solved the relation u = ∂f
∂x . We

call g the Legendre transform of f .

10
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Theorem: The Legendre transform is involutive, i.e. the
transform of the transform gives back the original function.

Proof: We take the Legendre transform of the above
g. We have:

x =
∂g

∂u
,

The Legendre transform is then:

h(x, y) = xu(x, y)− g(u(x, y), y)

= xu(x, y)− ux(u, y) + f(x(u, y), y) = f(x, y).

4.3 Hamilton’s equations

Definition: The Hamiltonian is the Legendre transform of
the Lagrangian, given by

H(q,p, t) =
∑
i

piq̇i − L(qi, q̇i, t),

where q̇i = q̇i(q,p, t) are implicitly given by

pi =
∂L
∂q̇i

.

Theorem: Hamilton’s equations hold:

q̇i =
∂H

∂ṗi
, ṗi = −∂H

∂q̇i
,

∂H

∂t
= −∂L

∂t
.

Proof: We have

dH = pidq̇i + q̇idpi −
∂L
∂qi

dqi −
∂L
∂q̇i

dq̇i −
∂L
∂t
dt

=
�
�
��∂L

∂q̇i
dq̇i + q̇idpi −

∂L
∂qi︸︷︷︸

use Euler-
Lagrange

dqi −
�
�
��∂L

∂q̇i
dq̇i −

∂L
∂t
dt

= q̇idpi −
d

dt

(
∂L
∂q̇i

)
dqi −

∂L
∂t
dt

= q̇idpi − ṗidqi −
∂L
∂t
dt.

Compare with

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂t
dt.

Example: Electromagnetism
Consider the Lagrangian for a particle in a magnetic field:

L =
1

2
m|ṙ|2 − e(φ(r)− ṙ · A).

We construct the Hamiltonian. The conjugate momentum
is:

p =
∂L
∂ṙ

= mṙ + eA.

Thus the Hamiltonian is

H = p · ṙ− L

= p ·
(

p− eA
m

)
− (p− eA)2

2m
+ e

(
φ− (p− eA) · A

m

)
=

(p− eA)2

2m
+ eφ.

Hamilton’s equations recover the Lorentz force law.

4.4 The principle of least action

The principle of least action can be recovered from the
Hamiltonian formalism.

Theorem: Particles take the path in phase space
that extremises the action

S[q,p] =

t2∫
t1

(piq̇i −H(q,p) dt.

Note: The integrand is just the Lagrangian, i.e. the
Legendre transform of the Hamiltonian.

Proof: We vary pi and qi separately to get:

δS =

t2∫
t1

(
q̇iδpi + piδq̇i −

∂H

∂pi
δpi −

∂H

∂qi
δqi

)
dt

=

t2∫
t1

((
q̇i −

∂H

∂pi

)
δpi +

(
−ṗi −

∂H

∂qi

)
δqi

)
dt+

[
piδqi

]t2
t1
.

Assuming the variation has fixed end-points, the boundary
terms vanish. Thus Hamilton’s equations are recovered,
which are equivalent to Newton’s equations.

4.5 Liouville’s theorem

Theorem: Consider a point in phase space (q0,p0). Let
the system evolve via Hamilton’s equations, so that at time
t, the particle is at (q(t),p(t)). This is called Hamiltonian
flow.

Liouville’s theorem states that Hamiltonian preserves
volumes in phase space: Vol(D(0)) = Vol(D(t)), where
D is a region in phase space that changes with time
according to Hamiltonian flow.

Proof: Let

Vol(D(t)) =

∫
D(t)

dq1dq2...dqn dp1dp2...dpn =

∫
D(t)

dV (t).

11
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We have dV (0) = dq1...dqn dp1...dpn
∣∣
t=0

. As we evolve
according to Hamiltonian flow, we have

qi(t) = qi(0) + t
∂H

∂pi
(0) +O(t2) =: q̃i,

pi(t) = pi(0)− t∂H
∂qi

(0) +O(t2) =: p̃i.

We wish to compute det(J), where dq̃1...dq̃n dp̃1...dp̃n =
dV (t) = det(J)dV (0), i.e.

det(J) =


∂q̃i
∂qj

∂q̃i
∂pj

∂p̃i
∂qj

∂p̃i
∂pj

 = det


δij +

∂2H

∂piqj
t

∂2H

∂pi∂pj
t

∂2H

∂qi∂qj
t δij −

∂2H

∂qi∂pj
t


Now use det(1 + tM) = 1 + εtr(M) +O(t2). It then follows
that

det(J) = 1+t
∑
i

(
∂2H

∂pi∂qj
− ∂2H

∂qi∂pj

)
+O(t2) = 1+O(t2).

4.6 The Poincaré recurrence theorem

Theorem: Let P be a point in a finite volume phase space.
For any neighbourhood D0 of P , there exists P ′ ∈ D0

that will return to D0 under a Hamiltonian flow in finite time.

Proof: Evolve D0 to D1 for a time T , then D1 to D2

for a time T , etc, until be get to Dk. Liouville’s Theorem
implies all of these regions have the same volume.

Suppose that Dk ∩ Dk′ = ∅ for all distinct integers k
and k′. Then

Vol

( ∞⋃
k=0

Dk

)
=

∞∑
k=0

Vol(Dk) =∞,

which contradicts the finite volume assumption. So there
exist distinct k and k′ with Dk ∩Dk′ 6= ∅. Suppose k′ > k
without loss of generality, and let Ωkk′ = Dk ∩Dk′ .

Since Hamiltonian flow is invertible, by uniqueness of
solution to ODEs, we have Ω0,k′−k = D0 ∩ Dk′−k 6= ∅.
Hence there exists P ′ ∈ D0 such that P ′ returns to D0

after k′ − k steps of time T .

4.7 Poisson brackets

Definition: The Poisson bracket {f, g} of f and g, two
functions on phase space, is defined by

{f, g} =

n∑
j=1

(
∂f

∂qj

∂g

∂pj
− ∂g

∂qj

∂f

∂pj

)
.

Theorem: The Poisson bracket obeys:

(i) antisymmetry, {f, g} = −{g, f};

(ii) linearity, {αf + βg, h} = α{f, h}+ β{g, h};

(iii) the Leibniz rule, {f, gh} = {f, g}h+ {f, h}g;

(iv) the Jacobi identity, {f, {g, h}} + {g, {h, f}} +
{h, {f, g}}.

Proof: Trivial from the definition.

Theorem: If Hamilton’s equations hold, then

df

dt
= {f,H}+

∂f

∂t
.

Proof: Just use chain rule and Hamilton’s equations.

Definition: A function f is a first integral of the Hamilto-
nian H if f is constant under Hamiltonian flow. If ∂f∂t = 0,
then by the above Theorem, f is a first integral if and only
if {f,H} = 0.

In particular, if ∂H
∂t = 0, then H is a first integral,

which we call the energy.

More generally, if two functions f and g satisfy {f, g}
they are said to Poisson commute or to be in involution.

4.8 Canonical transformations

Notice if we define x = (q,p), Hamilton’s equations can be
written more compactly as

ẋ = J
∂H

∂x
,

where

J =

(
0 In
−In 0

)
.

Theorem: The coordinate transform y = y(x) pre-
serves the form of Hamilton’s equations if and only if Dy
is a symplectic matrix, i.e. DyJDyT = J .

Proof: We have

ẏa =
∂ya
∂xb

ẋb =
∂ya
∂xb

Jbc
∂H

∂xc
=
∂ya
∂xb

Jbc
∂yd
∂xc

∂H

∂yd
.

Hence
ẏ = (DyJDyT )

∂H

∂y
.

Theorem: A transformation is canonical if and only if
the Poisson bracket structure is conserved.

Proof: Write out the previous Theorem in matrix form.
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4.9 Infinitesimal canonical transformations

Consider the transformation, for ε� 1:

qi 7→ Qi = qi + εFi(q,p) +O(ε2),

pi 7→ Pi = pi + εEi(q,p) +O(ε2).

Theorem: If this transformation is canonical, then there
exists a function G(q,p) such that

Fi =
∂G

∂pi
, Ei = −∂G

∂qi
.

Proof: Use that the Poisson bracket structure is conserved.
We have:

0 = {Qi, Qj} =
∂Qi
∂qk

∂Qj
∂pk

− ∂Qi
∂pk

∂Qi
∂qk

= εδik
∂Fj
∂pk
− ε∂Fi

∂pl
δjk +O(ε2).

Similarly,

δij = {Qi, Pj} = δij + ε

(
∂Ej
∂pi

+
∂Fi
∂qj

)
+O(ε2).

Hence we get the conditions:

∂Fj
∂pi

=
∂Fi
∂pj

,
∂Fi
∂qj

= −∂Ej
∂pi

.

These consistency conditions imply the existence of the
required G. If such a G exists, the condition 0 = {Pi, Pj}
is also fulfilled.

Idea: Infinitesimal canonical transformations are gen-
erated by a Hamiltonian flow, with Hamiltonian G. A
special case is time evolution, where G = H.

4.10 Noether’s theorem

Definition: A symmetry of the Hamiltonian is an infinitesi-
mal canonical transformation generated by some G that
gives δH = 0 (to order ε).

Theorem: If G generates a symmetry, {G,H} = 0.

Proof: We have

δH =
∂H

∂qi
δqi +

∂H

∂pi
δpi

= ε

(
∂H

∂qi

∂G

∂pi
− ∂H

∂pi

∂G

∂qi

)
+O(ε2) = ε{H,G}+O(ε2).

Theorem (Noether’s Theorem): If G generates a sym-
metry of the Hamiltonian, and is time-independent, then G
is a first integral.

Proof: Follows immediately from the above, since
{G,H} = 0.

4.11 Generating functions

This is a general method of constructing canonical trans-
formations.

Theorem: Let F (q,Q) be an arbitrary function. Then if we
define

p =
∂F

∂q
, −P =

∂F

∂Q
,

and solve for Q and P, the result is a canonical transfor-
mation.

Proof: Write the actions for the two sets of variables
as

S =

t2∫
t1

(piq̇i −H(q,p)) dt =

t2∫
t1

(p · dq−H(q,p)dt),

and

S′ =

t2∫
t1

(PiQ̇i −H ′(Q,P)) dt =

t2∫
t1

(P · dQ−H ′(Q,P)dt).

Setting δS = 0 and δS′ = 0 gives Hamilton’s equations for
the two sets of variables. But then δ(S − S′) = 0, which
implies that the integrands differ by any total derivative,

dF = p · dq− P · dQ− (H −H ′)dt.

Comparing with:

dF =
∂F

∂q
· dq +

∂F

∂Q
· dQ,

gives the result. In particular, we get H = H ′.

By taking the Legendre transform, we can obtain the
generating function F (q,P) with

p =
∂F

∂q
, Q =

∂F

∂P
,

which we know from Integrable Systems.
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4.12 Integrability and action-angle variables

Definition: Suppose there exists a canonical transforma-
tion (q,p) 7→ (θθθ, I) with H ≡ H(I). Then (θθθ, I) are called
action-angle variables.

Trivially, Hamilton’s equations in action-angle variables
can be integrated.

Definition: An integrable system if a 2n-dimensional
phase space M together with n first integrals fi : M → R,
i = 1, 2, ..., n such that:

• ∇fi are linearly independent vectors at all points in
M ;

• the functions fi are all in involution.

This definition makes sense because of...

4.13 The Arnold-Liouville theorem

Theorem: Let (M,f1, f2, ..., fn) be an integrable system
with H = f1, say. Define

Mc = {(q,p) ∈M : fi(q,p) = ci}.

If Mc is compact, then

(i) Mc is diffeomorphic to the torus Tn;

(ii) there exists a local canonical transformation (q,p) 7→
(θθθ, I) where θθθ) are coordinates on Mc, I are first inte-
grals, and H = H(I) (i.e. these are action-angle coor-
dinates, so we can easily integrate Hamilton’s equa-
tions).

Proof: See Integrable Systems. Here, we only construct
the (θθθ, I). Define

Ik =
1

2π

∮
Γk

p · dq,

where Γk is the kth cycle on the torus. This definition does
not depend on the choice of cycle (see Integrable Systems
- use Green’s Theorem). Since the actions depend only
on c, they are first integrals.

Use the generating function

F (q, I) =

q∫
q0

p · dq

to construct the angle coordinates via

θk =
∂F

∂Ik
.

Since we used a generating function, the transformation is
canonical.

4.14 Adiabatic invariants

Definition: A function I(q,p, λ), with λ̇ = O(ε), ε � 1,
is an adiabatic invariant of a system with Hamiltonian
H(q,p, λ) if |I(t)− I(0)| = O(ε) for all 0 < t < T/ε.

Idea: I doesn’t change very much. We can treat it
as almost constant.

Theorem: The action variable I is an adiabatic in-
variant.

Proof: Use action variables H = H(I, λ). Introduce
the generating function F (q, I, λ). If λ = λ(t), then

∂F

∂t
6= 0,

so in our earlier construction of the generating function, we
need instead

H ′ = H +
∂F

∂t
= H + ελ̇

∂F

∂λ
.

Hence by Hamilton’s equations:

İ = −∂H
′

∂θ
= −ελ̇ ∂

2F

∂λ∂θ
= O(ε),

assuming λ̇ = O(ε). Hence I is slowly-varying.

Example: Let H = 1
2p

2 + 1
2λ(t)q4. We can easily

construct the action:

I =
1

2π

∮
p · q =

2

2π

q2∫
q1

√
2E − λ(t)q4 dq.

where q1, q2 are the real roots of 2E−λ(t)q4 = 0. Changing
variables, we can put this in the form:

I =

√
2E

π

(
2E

λ

)1/4
1∫
−1

√
1− x4 dx.

Since I is almost constant, it follows that E ∼ λ1/3.

4.15 Poisson structures

Definition: A Poisson structure is a pair (M,J) such that
M is a phase space of dimension m, J = Jab is a skew-
symmetric matrix with components that are functions ofM ,
and the bracket

{f, g} =

m∑
a,b=1

Jab
∂f

∂xa
∂g

∂xb
,

obeys the Jacobi identity. For the Poisson structure,
Hamilton’s equations are ẋ = {x, H}.

Most properties of Poisson structures are proved us-
ing {xi, xj} = J ij , where xi and xj are the coordinate
functions of the phase space.
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