
Part II: Dynamical Systems - Revision

Lectures by John Lister, notes by James Moore

1 Basic definitions

1.1 Equations

We study equations of the form ẋ = f(x) for x ∈ E ⊆ Rn,
where E is called the state space. Since f has no
t-dependence, the equation is called autonomous.

Non-autonomous ODEs can be written in standard
form by setting y = (x, t) ⇒ ẏ = (f(y), 1). Similarly, higher
order ODEs can be written in standard form.

Theorem: For f Lipschitz, ẋ = f(x) has a unique so-
lution in a neighbourhood of (x0, t0).

Proof: See Analysis II.

1.2 Orbits and invariant sets

Definition: The solution curve x(t), x(t0) = x0 to ẋ = f(x)
is called a trajectory, or orbit or integral curve in the state
space.

Definition: The flow of the vector field f(x) is the
function φφφt(x) obeying ∂tφφφt(x) = f(φφφt(x)), with φφφ0(x) = x.

Slogan: φφφt(x) is our position in state space a time t
after we were at position x.

Definition: An orbit of a flow through x0 is the set
O(x0) = {φφφt(x0) : t ∈ R}. The forwards orbit is
O+(x0) = {φφφt(x0) : t > 0} and the backwards orbit is
O−(x0) = {φφφt(x0) : t < 0}.

Definition: A set Λ is called invariant if x0 ∈ Λ ⇒
O(x0) ⊆ Λ.

Slogan: If we start in Λ, we stay in Λ, both forwards
and backwards in time.

1.3 Periodic trajectories

Definition: A point x0 is a periodic point of f with period
T > 0 if φφφT (x0) = x0 and φφφt(x0) 6= x0 for all 0 < t < T .
The set O(x0) is called a periodic orbit.

Definition: A limit cycle is an isolated periodic orbit
(that is, there exists an open set containing the limit cycle,
but no other periodic orbits).

1.4 Homoclinic and heteroclinic orbits

Definition: Let x0 be a fixed point. If ∃y such that y 6= x0

and φφφt(y) → x0 as t → ∞, and φφφt(y) → x0 as t → −∞,
then O(y) is called a homoclinic orbit.

Definition: Let x0 and x1 be distinct fixed points. If
∃y, not equal to either fixed point, such that φφφt(y)→ x0 as
t → ∞, and φφφt(y) → x1 as t → −∞, then O(y) is called a
heteroclinic orbit.

1.5 Limit sets and properties

Definition: The ω-limit set of x is:

ω(x) = {y : ∃(tn) with φφφtn(x)→ y, tn →∞, as n→∞}.

Definition: The α-limit set of x is:

α(x) = {y : ∃(tn) with φφφtn(x)→ y, tn → −∞, as n→∞}.

Theorem: The following hold:

(1) ω(x) and α(x) are invariant sets;

(2) If O+(x) is bounded, then ω(x) is non-empty.

Proof: (1). Let y ∈ ω(x). Then ∃tn with φφφtn(x) → y,
tn → ∞ as n → ∞. Let T ∈ R. Then by continuity of the
flow map, we have φφφtn+T (x) → φφφT (y), tn + T → ∞ as
n → ∞. Hence O(y) ⊆ ω(x), so ω(x) is invariant. Similar
for α(x).

(2). Suppose O+(x) is bounded. Let φφφn(x) be a sequence
in O+(x). By the Bolzano-Weierstrass Theorem, there is
a convergent subsequence tn, with tn ≥ n ⇒ tn → ∞ as
n→∞. So ω(x) is non-empty.
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2 Linearisation

2.1 Fixed point classification

Near a fixed point x = x0, we can expand ẋ = f(x) to get
ẏ = Ay +O(|y|2), where y = x− x0, and A is the Jacobian
matrix given by:

Aij =
∂fi
∂fj

.

The eigenvalues of A satisfy λ2 − Tλ + D = 0 ⇒ λ =
1
2 (T ±

√
T 2 − 4D), where T = tr(A) and D = det(A). This

gives the classification of fixed points shown in the diagram
below.

T

D
T 2 = 4D

0

saddles saddles

stable foci unstable foci

Definition: Sources are fixed points in the first quadrant
(‘arrows come out’). Sinks are fixed points in the second
quadrant (‘arrows go in’). Saddles are fixed points in the
lower half plane (‘arrows go in and out’).

2.2 Notes on the classification

• For a stable node, need D > 0, T 2 > 4D and T < 0,
hence λ1 < λ2 < 0, WLOG. Linearisation gives y1 =
eλ1t, y2 = eλ2t ⇒ y1/y2 = e(λ1−λ2)t → 0 as t→∞. So
y2 dominates, and we collapse tangent to the y2 axis.

• For a focus, first find the nullclines and then consider
signs to get the direction of the spiral.

• Improper nodes occur when A is non-diagonalisable,
and has eigenvalue not equal to 0. Get equations ẏ2 =
λy2 and ẏ1 = λy1 + y2 = λy1 + eλt, so get resonant
forcing, and y2 ∼ teλt. Also note that to get the Jordan
normal form of A in this case, we need generalised
eigenvectors (those satisfying (A− λI)nv = 0.

• Lines of fixed points come in two varieties; some have
trajectories parallel to the line of fixed point, others
have all trajectories converging onto the line of fixed
points.

2.3 When is linearisation possible?

From the diagram, it is clear that a small perturbation to a
linear system causes only centres and lines of fixed points
to change their topology (e.g. stellar nodes just screw up
or bend out instead). So linearisation around centres and
lines of fixed points is unreliable.

We notice that both these cases have an eigenvalue
with Re(λ) = 0, and are the only cases with this feature.

Definition: A hyperbolic fixed point is a fixed point
where no eigenvalue satisfies Re(λ) = 0. Else, a fixed
point is non-hyperbolic.

Linearisation is only reliable for hyperbolic fixed points.

3 The Stable Manifold Theorem

Definition: The stable, unstable and centre linear invari-
ant subspaces of the linearisation of f at a fixed point x0

are the local linear subspaces spanned by the subsets
of eigenvectors of A (possible generalised) satisfying
Re(λ) < 0, Re(λ) > 0 and Re(λ) = 0 respectively. They
are denoted ES , EU and EC respectively.

Theorem (The Stable Manifold Theorem): Let 0 be
a hyperbolic fixed point of ẋ = f(x) with linear invariant
subspace ES and EU (EC = ∅ since hyperbolic). Then in
some open neighbourhood N of the origin 0, there exists
local stable and unstable manifolds:

WS
loc = {x : φφφt(x)→ 0 as t→∞} ∩N ;

WU
loc = {x : φφφt(x)→ 0 as t→ −∞} ∩N,

satisfying: (i) these have the same dimensions as ES and
EU respectively; (ii) these are tangent to ES and EU at 0
respectively.

We use the Stable Manifold Theorem to get the be-
haviour of trajectories slightly further from the fixed point.

Example: Let ẋ = x − xy and ẏ = −y + x2. Then
ES is x = 0 and EU is y = 0. Let the stable manifold by
x = S(y).

By the Theorem, need S(0) = S′(0) = 0. So ex-
pand as x = S(y) = a2y

2 + a3y
3.... Substitute into the

chain rule:

ẋ =
dS

dy
ẏ ⇒ x− xy = S′(y)(−y + x2)

and insert the series to find the coefficients.

2
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4 Hamiltonian Systems

Linearisation around non-hyperbolic fixed points is un-
reliable - we need more information to determine the
behaviour, e.g.

Definition: A system is Hamiltonian if ∃H such that
ẋ = ∂yH, ẏ = −∂xH.

Theorem: Hamiltonian systems satisfy:

(1) All fixed points are centres or saddles.

(2) Trajectories are lines of constant H.

(3) ∇ · f = 0.

Proof: (1). Jacobian matrix has trace Hyx − Hxy = 0
hence centres or saddles only.

(2). Lines of constant H: 0 = Ḣ = ẋ · ∇H. Hence
trajectories move orthogonal to ∇H ⇒ they move parallel
to contours of H.

(3). ∂x(∂yH)− ∂y(∂xH) = 0.

We can thus use Hamiltonian systems to detect non-
linear centres, say, by finding closed contours around a
fixed point.

Example: Consider ẋ = y and ẏ = −x + x2. This
is Hamiltonian with H = 1

2y
2 + 1

2x
2 − 1

3x
3.

Hence contours of constant H look like the square
root of cubic curves. Sketching, we have:

5 Stability of invariant sets

5.1 Stability of fixed points

Definition: A fixed point x0 is Lypanunov stable if ∀ε > 0,
∃δ > 0 such that |x−x0| < δ ⇒ |φφφt(x)−x0| < ε for all t > 0.

Slogan: ‘If we start close enough, we’ll stay close.’

Definition: A fixed point x0 is quasi-asymptotically
stable if ∃δ > 0 such that |x − x0| < δ ⇒ φφφt(x) → x0 as
t→∞.

Slogan: ‘If we start close enough, we’ll get there
eventually.’

Definition: A fixed point x0 is asymptotically stable if
it is both Lyapunov and quasi-asymptotically stable.

5.2 Stability of invariant sets

Definition: The δ-neighbourhood of the invariant set Λ is
Nδ(Λ) = {x : ∃y ∈ Λ with |x− y| < δ}.

Definition: We say φφφt(x) → Λ as t → ∞ if
infy∈Λ |φφφt(x)− y| → 0 as t→∞.

We get the stability definitions for invariant sets from
fixed points by promoting to δ/ε-neighbourhoods and using
the limit defined above. So:

Definition: An invariant set Λ is Lyapunov stable if
∀ε > 0, ∃δ > 0 such that x ∈ Nδ(Λ) ⇒ φφφt(x) ∈ Nε(Λ) for
all t > 0.

Definition: An invariant set Λ is quasi-asymptotically
stable if ∃δ > 0 such that x ∈ Nδ(Λ) ⇒ φφφt(x) → Λ as
t→∞.

Definition: An invariant set Λ is asymptotically sta-
ble if it is both Lyapunov and quasi-asymptotically stable.

Definition: The domain of stability of an asymptoti-
cally stable set Λ is {x : φφφt(x) → Λ as t → ∞}. If this is
the whole state space, Λ is globally stable.

3
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6 Lyapunov and bounding functions

6.1 Lyapunov functions

Definition: A Lyapunov function for ẋ = f(x) is a contin-
uously differentiable function V (x) : Rn → R for which, on
some domain D containing the origin, we have:

(a) V (0) = 0 and V (x) > 0 for x 6= 0 for all x ∈ D;

(b) V̇ ≤ 0 for all x ∈ D.

Idea: At any point in the domain D, need V̇ ≤ 0; in
particular, need V̇ ≤ 0 on any trajectory. So all trajectories
head ‘downhill’.

Theorem (Lyapunov’s First Theorem): If a Lyapunov
function exists, 0 is Lyapunov stable.

Proof: Let ε > 0 and assume WLOG that it is small
enough for {x : |x| ≤ ε} ⊆ D.

Define m = inf{V (x) : |x| = ε}. Because |x| = ε is
compact, the infimum is attained for some x0 such that
|x0| = ε; so 0 < V (x0) = m.

Define C = {x : V (x) < m} ∩ {x : |x| < ε}. C cer-
tainly contains 0 since V (0) = 0 < m; and hence it also
contains a small open neighbourhood containing zero.
Also, if x ∈ C, then φφφt(x) ∈ C for all t > 0, since V ≥ m
outside C.

Hence take any δ such that {x : |x| < δ} ⊂ C and
we’re done.

Theorem (La Salle’s Invariance Principle): Let V be
a Lyapunov function on a bounded domain D, and let
O+(x) ⊆ D. Then φφφt(x) tends to an invariant subset of
{x : V̇ = 0} ∩D.

Proof: (1). D is bounded, so ω(x) is non-empty.
Thus, by definition, φφφt(x)→ ω(x) as t→∞. So remainder
of proof: show that ω(x) is an invariant set (which we know
already) and a subset of {x : V̇ = 0} ∩D.

(2). Show that V (φφφt(x)) tends to a limit. Since V̇ < 0 in D
and V ≥ 0, V (φφφt(x)) is monotonically decreasing (since
O+(x) ⊆ D ⇒ φφφt(x) ∈ D for all t > 0) and bounded below.
So tends to a limit α ≥ 0.

(3). Let y ∈ ω(x). Then ∃tn such that φφφtn(x) → y
as n→∞, hence V (y) = α by continuity of V .

(4). Finally, since ω(x) is an invariant set, φφφt(y) ∈ ω(x),
and so V (φφφt(y)) = α for all t; thus V̇ (y) = 0, and we’re
done.

Corollary: Let V be Lyapunov on a bounded domain D,
and let the only invariant subset of {x : V̇ = 0}∩D be {0}.
Then 0 is asymptotically stable.

Proof: By Lyapunov’s First Theorem, it’s Lyapunov
stable.

Let k be such that C = {x : V (x) < k} ⊆ D and let
δ be such that {x : |x| < δ} ⊆ C. Trajectories starting in C
cannot escape, so La Salle’s Invariance Principle applies
to C. It follows that trajectories starting in {x : |x| < δ}
must tend to 0, giving quasi-asymptotic stability, and
hence asymptotic stability.

6.2 Example use of Lyapunov function

Consider ẋ = −x + y2x and ẏ = −y + x2y. Try
V = x2 + b2y2, so that V̇ = −2(x2 + b2y2) + 2(1 + b2)x2y2.

Writing (x, by) =
√
V (cos(φ), sin(φ)) gives

V̇ = −2V +
2(1 + b2)V 2 cos2(φ) sin2(φ)

b2
.

But cos2(φ) sin2(φ) ≤ 1/4, and hence V̇ ≤ 0 for
0 < V < 4b2/(1 + b2).

Varying b implies that V is Lyapunov on various el-
lipses; by changing b we get a larger estimate for the
domain of stability.

4
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6.3 Bounding functions

Definition: A bounding function is a function V (x) with
bounded contours, which satisfies V̇ < −δ < 0 for some
δ > 0 for V ≥M .

Idea: All trajectories eventually enter {V (x) ≤ M}
and stay there.

7 Existence of periodic orbits

7.1 The Poincaré index test

Definition: Let Γ be a simple closed curve in R2 passing
through no fixed points, and let ẋ = f1(x, y), ẏ = f2(x, y).
Define the angle ψ(x) = arctan(f2/f1) everywhere on
the curve. The Poincaré index of Γ, denoted I(Γ) is the
integer multiple of 2π by which ψ changes as we move
anticlockwise around Γ once.

Theorem: The Poincaré index has the properties:

(a)

I(Γ) =
1

2π

∮
Γ

dψ =
1

2π

∮
Γ

f1df2 − f2df1

f2
1 + f2

2

.

(b) I(Γ) is unaffected by continuous deformation of Γ not
passing through a fixed point.

(c) If Γ encloses no fixed points, I(Γ) = 0.

(d) The Poincaré index is additive in the sense: I(Γ1) =
I(Γ2) + I(Γ3), as in the below picture.

Proof: (a) by Definition.

(b) follows since the integral in (1) must be integer-
valued, but must also have continuous dependence on Γ
provided f2

1 + f2
2 6= 0 (so no jumps allowed in I(Γ) except

when passing over a fixed point, i.e. f1 = f2 = 0).

(c) - use (b) to contract to a single point, where ψ is
constant.

(d) - by picture below.

Definition: The Poincaré index of a fixed point is the
Poincaré index of any closed curve encircling the fixed
point, and no others.

This is well-defined by (2) in the Theorem above,
and (4) show that I(Γ) is the sum of the Poincaré indices
of the fixed points Γ encloses.

The important Poincaré indices are:

• Periodic orbits have index +1.

• Centres, nodes and foci have index +1.

• Saddles have index −1.

This gives rise to:

Theorem (The Poincaré index test): There are no
periodic orbits of a dynamical system if it is impossible to
encircle a subset of the fixed points so that their Poincaré
indices sum to +1.

Proof: Suppose that there is a periodic orbit. Its
Poincaré index must be +1, so must encircle fixed points
with indices summing to +1. Contradiction.

7.2 Dulac’s criterion

Theorem (Dulac’s criterion): Let φ be a continuously
differentiable function such that ∇ · (φf) 6= 0 on a simply-
connected domain D. Then there are no periodic orbits of
ẋ = f(x) in D.

Proof: Since φ is continuously differentiable and so
is f, we have that φf is continuously differentiable. Hence
∇ · (φf) 6= 0 is single-signed on D, as it can’t cross zero
without a jump. WLOG ∇ · (φf) > 0, else take −φ.

Let Γ be a periodic orbit in D. Then f is tangent to
Γ everywhere. If the orbit encircles the area A and its
outward normal is n̂, we have:

0 =

∮
Γ

φf · n̂ds =

∫∫
A

∇ · (φf)dA > 0,

by 2D divergence theorem. Contradiction.

Dulac’s criterion can also be extended to multiply-
connected domains. For a doubly-connected domain, it
says there is at most one periodic orbit.

You must also be aware of the topology of the state
space when using Dulac’s criterion. E.g. for a cylindrical
topology, an application of Dulac would tell us that there
was at most one periodic orbit, and that it encircled the
cylinder (since it is a doubly-connected domain).

5
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7.3 The Poincaré-Bendixson Theorem

Theorem: Let O+(x) remain in a compact, multiply-
connected set K ⊆ R2 that contains no fixed points. Then
ω(x) is a periodic orbit.

Proof: Non-examinable.

Example: Consider ṙ = r(1 − r2(1 + cos2(θ))) and
θ̇ = 1 + 1

2r
2 sin(2θ). Then r(1− 2r2) ≤ ṙ ≤ r(1− r2).

So trajectories entering the annulus K = { 1√
2
≤ r ≤ 1}

cannot leave it. K is compact since it is closed and
bounded. We can easily check there are no fixed points
in K, and hence there is a periodic orbit by the Poincaré-
Bendixson Theorem.

7.4 Nearly-Hamiltonian flows

Definition: Systems of the form:

ẋ = f1 + εg1,

ẏ = f2 + εg2,

with ε very small, and the system with ε = 0 Hamiltonian
(i.e. f1 = ∂H

∂y , f2 = −∂H∂x ), are called nearly-Hamiltonian
systems.

We can find the periodic orbits of a nearly-Hamiltonian
system using the energy-balance method :

(1) Find the Hamiltonian H of the system with ε = 0.

(2) On a periodic orbit Γ of the full system with ε 6= 0, we
clearly must have:

0 =

∮
Γ

dH =

∮
Γ

Ḣdt = ε

∮
Γ

(g2f1 − g1f2)dt.

(3) For ε small, we can reasonably approximate Γ by a
closed contour of H, say H = H0. We assume this
closed contour is a distance O(ε) from the true peri-
odic orbit. Then:

0 ≈ ε
∮

H=H0

(g2f1 − g1f2)dt+O(ε2).

(4) This gives an equation of the form 0 = F (H0). Solving
gives approximations to the periodic orbits, if there are
any.

Note that simple roots of the equation 0 = F (H0) always
give rise to periodic orbits, but nothing can be inferred from
double roots of the equation. See the diagram.

H0

F (H0)

0

Figure 1: Blue: the approximation to F (H0) - note the dou-
ble root. The true solution may have no periodic orbits near
the double root (green) or two (red).

Example: Consider ẋ = p and ṗ = ε(x − 3)(x + 1)p − x.
Then H = 1

2p
2 + 1

2x
2. The contours H = H0 can be

parametrised as x =
√

2H0 cos(t), p = −
√

2H0 sin(t).

We have Ḣ = ε(x − 3)(x + 1)p2. So energy-balance
implies:

0 = 2εH0

2π∫
0

(
√

2H0 cos(t)− 3)(
√

2H0 cos(t) + 1) sin2(t)dt

= ... = εH0π(H0 − 6).

Thus p2 + x2 = 12 is an approximation to the periodic orbit
of the system.

8 Stability of periodic orbits

8.1 Floquet theory

Let x = X(t) be a periodic orbit with X(0) = X(T ) = X0.
Perturb the orbit: x = X(t)+ηηη(t). Substituting into ẋ = f(x)
yields:

η̇ηη = (ηηη · ∇)f(X) +O(|ηηη|2) ⇒ η̇ηη = Aηηη,

where A is the Jacobian matrix.

Since the solutions of the linear equation η̇ηη = Aηηη
must be linear combinations of the initial conditions, we
can write ηηη(t) = Φ(t)ηηη(0) for some matrix Φ(t).

6
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Definition: Φ(t) is called the Floquet matrix of the
periodic orbit.

Theorem: The Floquet matrix obeys the equations:

Φ̇ = AΦ, Φ(0) = I.

Proof: By definition, ηηη(0) = Φ(0)ηηη(0). But ηηη is some
arbitrary perturbation, hence Φ(0) = I.

For the first equation, substitute ηηη(t) = Φ(t)ηηη(0) into
η̇ηη = Aηηη to get Φ̇ηηη(0) = AΦηηη(0). Again since ηηη(0) is
arbitrary, we get the first equation.

Theorem: ηηη(nT ) = (Φ(T ))nηηη(0).

Proof: Since A is periodic with period T , Φ(t) is pe-
riodic with period T . Thus ηηη(nT ) = Φ(T )ηηη((n − 1)T ) =
... = (Φ(T ))nηηη(0).

The above Theorem shows that whether a perturba-
tion grows or not depends on the size of the eigenvalues
of the Floquet matrix relative to 1.

Definition: The eigenvalues of the Floquet matrix at
t = T , Φ(T ), are called the Floquet multipliers.

Since a perturbation around the periodic orbit itself
does nothing, one Floquet multiplier must always be 1.

Definition: The Floquet multiplier equal to 1 is called the
trivial Floquet multiplier.

Definition: If all non-trivial Floquet multipliers satisfy
|λ| > 1, the orbit is called unstable; if all non-trivial Floquet
multipliers satisfy |λ| < 1, the orbit is called stable.

Definition: If one non-trivial Floquet multiplier satis-
fies |λ| = 1, the orbit is called non-hyperbolic, else it is
called hyperbolic.

Hyperbolic periodic orbits are structurally stable to
small perturbations (compare with linearisation around a
hyperbolic fixed point).

Theorem: det(Φ) satisfies

d

dt
(det(Φ)) = (∇ · f) det(Φ).

Proof (in 2D): Let εij denote the Levi-Civita symbol.
Then det(Φ) = εijΦ1iΦ2j (summation convention applies).
Differentiating:

∂t(det(Φ)) = εij(Φ̇1iΦ2j + Φ1iΦ̇2j)

= εij(A1kΦkiΦ2j +A2kΦ1iΦkj).

7
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Since the determinant of a matrix with two identical
columns is zero, this reduces to:

εij(A11Φ1iΦ2j +A22Φ1iΦ2j) = (∇ · f) det(Φ),

as required.

Definition: In R2, the non-trivial Floquet multiplier is
given by:

exp

 T∮
t=0

∇ · f dt

 ,

where the integral is over the orbit.

Proof: Since the determinant of Φ(T ) is the product
of the Floquet multipliers, and the trivial multiplier is 1.
Simply using the Theorem above, and det(Φ(0)) = I, the
result follows.

8.2 The Van der Pol oscillator

The Van der Pol oscillator has the equation

ẍ+ µ(x2 − 1)ẋ+ x = 0,

which can be written as the system

ẋ = y − µx
(
x2

3
− 1

)
, ẏ = −x.

For µ very large, ẋ is huge compared to ẏ, unless y ≈
µx(x2/3−1). So we get a phase portrait that looks like the
diagram below, showing that we get a periodic orbit.

x

y

0

A(−1, 2µ/3) B(2, 2µ/3)

C(1,−2µ/3)D(−2,−2µ/3)

Along A→ B and C → D, the time taken is of order ∆t ∼
∆y/ẏ ∼ O(µ) (i.e. large), whilst along B → C, D → A, the
time taken is of order ∆t ∼ ∆x/ẋ ∼ O(1/µ) (i.e. small).
So period is approximately:

T ≈ 2

B∫
A

dt = 2

B∫
A

1

ẏ

dy

dx
dx = 2

−1∫
−2

µ(x2 − 1)

−x
dx.

9 Bifurcation theory

9.1 Definition of a bifurcation

Definition: Consider ẋ = f(x;µ) where µ is some param-
eter. A bifurcation is a change in the topological structure
of the flows of the dynamical system as the parameter
µ passes through a critical value µ0, which we call a
bifurcation point.

9.2 Centre manifold theory

Theorem (The Centre Manifold Theorem): Let 0 be a
non-hyperbolic fixed point of ẋ = f(x) with stable, unstable
and centre subspaces ES , EU and EC respectively. Then
there exist stable, unstable and centre manifolds WS ,
WU and WC respectively, with the same dimensions as
their respective subspaces, and which are tangent to their
respective subspaces at 0. The manifolds are themselves
invariant sets.

Using the Centre Manifold Theorem, we can classify
bifurcations via the following method:

(1) Identify the value of µ for which a bifurcation occurs,
µ0, and the fixed point (x0, y0) at which it occurs.

(2) Translate the system via X = x− x0, Y = y − y0 and
µ′ = µ− µ0 so that the bifurcation occurs at the origin
of the extended system (X,Y, µ).

(3) Linearise the extended system as:ẊẎ
µ̇′

 = A

XY
µ

+ higher order terms.

Find the zero (generalised) eigenvectors of A, e1 and
e2. Compute e1 × e2, which is normal to the tangent
plane to the centre manifold at the origin.

(4) To get more terms, series expand, writing aX + bY +
cµ′ = a20X

2 + a11Xµ
′ + a02(µ′)2... . Determine the

coefficients using the chain rule:

Ẏ =
∂Y

∂X
Ẋ.

(Note that µ̇′ = 0, so no need for second term in chain
rule.)

(5) Replace Y by the series expansion in X and µ′ in the
equation for Ẋ to get the evolution equation on the
centre manifold. From this, the type of bifurcation can
be inferred.

8
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9.3 Example using centre manifold theory

Consider ẋ = x(1− y − 4x2), ẏ = y(µ− y − x2). The fixed
point (0, µ) gives a Jacobian with determinant µ(µ− 1), so
there are bifurcations at µ = 0 and µ = 1. We’ll analyse
the one at µ = 1.

Begin by defining X = x, Y = y − µ, and µ′ = µ− 1. Then
the linearised extended system is:ẊẎ

µ̇′

 =

0 0 0
0 −1 0
0 0 0

XY
µ′

 .

Hence the zero eigenvectors are (1, 0, 0)T and (0, 0, 1)T ,
from which it follows that Y = 0 is the first approximation
to the centre manifold. More terms are possible via series
expansion.

9.4 Classification of stationary bifurcations

Definition: A stationary bifurcation occurs when one of
the eigenvalues of a fixed point passes through Re(λ) = 0.

All of the simple stationary bifurcations in this course
can be reduced to one of the following forms:

(1) Saddle-node bifurcations: ẋ = µ− x2.

µ

x

0

(2) Transcritical bifurcations: ẋ = µx− x2.

µ

x

0

(3) Pitchfork bifurcations: ẋ = µx − ax3. Called super-
critical if a > 0, subcritical if a < 0.

9.5 Reduction to normal form

Often it won’t be immediately obvious which bifurcation we
have. We massage the equation

ẋ = f(x, µ) = ν0(µ) + ν1(µ)x+
1

2
ν2(µ)x2 + ...,

where ν0(0) = ν1(0) = 0 (to ensure non-hyperbolic fixed
point) until we reduce to a normal form.

(1) If ν′0(0) 6= 0 (i.e. there is a term linear in µ) and ν2(0) 6=
0, then

ẋ = ν0 + ν1x+
1

2
ν2x

2 + ...

We then rescale time T = −ν2t2 and change the origin
by defining X = x + ν1/ν2. The normal form for a
saddle-node bifurcation follows.

(2) If ν2(0) 6= 0 but ν0 ≡ 0, because the origin is always a
fixed point, then

ẋ = ν1x+
1

2
ν2x

2 + ...

We now rescale T = −ν2t2 . Then the normal form for
a transcritical bifurcation follows.

(3) If ν0 ≡ ν2 ≡ 0 due to a symmetry, then

ẋ = ν1x+
1

6
ν3x

3 + ...,

which gives the normal form for a pitchfork bifurcation
after rescaling the variables in the same manner.

Despite all this, a better way to classify the fixed points is
just to sketch the bifurcation diagram.

9.6 Stability of bifurcations

Consider adding a small positive constant ε to the equation
for ẋ, e.g. ẋ = ε+µx−x2. Addition of the constant causes:

• unstable branches to move down the bifurcation dia-
gram;

• stable branches to move up the bifurcation diagram.

Thus we see that the only structurally stable bifurcation is
the saddle-node bifurcation.

Again, the best way to check this is to sketch the
bifurcation diagram.

9
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9.7 Hopf bifurcations

Definition: A Hopf bifurcation occurs when a pair of
complex eigenvalues cross Re(λ) = 0 at µ = 0.

The normal form for a Hopf bifurcation is:

ṙ = r(µ− ar2) +O(r5),

θ̇ = ω + µc− br2 +O(r4).

where a > 0 is the supercritical case, and a < 0 is the sub-
critical case. The origin is a fixed point with eigenvalues
λ = µ± i(ω + µc).

Hence, a Hopf bifurcation is:

• A transition from a stable focus to a stable limit cycle
containing an unstable focus, in the supercritical case.

• A transition from an unstable limit cycle containing a
stable focus, to an unstable focus, in the subcritical
case.

The bifurcation diagrams look like:

10 Bifurcations in maps

10.1 Definitions of properties for maps

Definition: A fixed point of a map F is a point x0 such that
F(x0) = x0.

Definition: An N -cycle of a map F is an N -tuple
(x0,x1, ...xN−1) with x1 = F(x0), x2 = F(x1) ... and
x0 = F(xN−1) = FN (x0), provided that xi 6= x0 for
i = 1, 2, ...N − 1.

Definition: A set A is called invariant if F(A) ⊆ A.

Definition: The forwards orbit O(x) is defined as
{x,F(x),F2(x)...}.

Backwards orbits are often not well-defined because
F is not necessarily invertible.

Stability definitions extend as follows:

Definition: An invariant set Λ is Lyapunov stable if
for any open neighbourhood U of A, there exists an open
neighbourhood V of A such that for any x ∈ V , we have
Fn(x) ∈ U for all n ≥ 0.

Definition: An invariant set Λ is quasi-asymptotically
stable if there exists an open neighbourhood U of A such
that for all x ∈ U and for any neighbourhood V of A, there
exists an n0 such that Fn(x) ∈ V for all n ≥ n0.

Stability of a fixed point x0 of xn+1 = F(xn) can be
determined by considering y = x − x0, which obeys
yn+1 = F(xn) − x0 ⇒ yn+1 = Ayn + O(|y|2), where A is
the Jacobian matrix:

Aij =
∂Fi
∂xj

.

We can show that a fixed point x0 is:

• asymptotically stable if all eigenvalues of A satisfy
|λ| < 1;

• Lyapunov unstable if there is an eigenvalue of A with
|λ| > 1;

• non-hyperbolic (definition) if there is an eigenvalue of
A with |λ| = 1.

The stability of an N -cycle is determined by repeatedly ap-
plying this theory: y1 = A(0)y0, y2 = A(1)y1, ... up until
yN = A(N−1)...A(0)y0. The stability of the N -cycle is then
determined by the eigenvalues of A(N−1)...A(0).

10
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10.2 Local bifurcations in 1D maps

Bifurcations occur in maps when an eigenvalue cross
|λ| = 1. So in 1D maps, xn+1 = F (xn, µ), we simply need
F ′ = ±1 for a bifurcation.

WLOG put fixed point at x = 0 and bifurcation point
at µ = 0. We can then classify bifurcations as for ODEs.

In general, for the F ′ = +1 case, we have:

xn+1 = xn + ν0(µ) + xnν1(µ) +
1

2
x2
nν2(µ) + ... .

When ν0, ν1 = O(µ) and νi = O(1) for i ≥ 2, we get a
saddle-node bifurcation. When ν0 = O(µ2), we get trans-
critical and pitchfork bifurcations.

(1) Saddle-node bifurcations: Normal form is
xn+1 = xn + µ− x2

n.

(2) Transcritical bifurcations: Normal form is
xn+1 = xn + xn(µ− xn).

(3) Pitchfork bifurcations: Normal form is
xn+1 = xn + xn(µ ∓ x2

n). Supercritical if minus
sign, subcritical for plus sign.

In the F ′ = −1 case, we get a period-doubling bifur-
cation. This can be shown via some gruesome algebra,
where the idea is to show that F2 has a pitchfork bifurca-
tion.

The bifurcation diagram could look like one of two
cases, depending on whether there is supercritical or
subcritical period doubling:

10.3 Example: the logistic map

The logistic map equation is xn+1 = µxn(1 − xn). Fixed
points are at x = 0 and x = 1− 1/µ.

Checking the stability of the fixed points, at x = 0
we have F ′ = µ and at x = 1 − 1/µ we have F ′ = 2 − µ.
Hence there is a transcritical bifrucation at µ = 1, and
period-doubling bifurcations at µ = −1, 3.

The bifurcating two cycles satisfy F 2(x) = x, which
reduces after some algebra (and using x = 0 and
x = 1− 1/µ are roots of this equation) to:

µ2x2 − µ(µ+ 1)x+ µ+ 1 = 0

which implies

x1,2 =
1

2µ

(
µ+ 1±

√
(µ+ 1)(µ− 3)

)
,

so the 2-cycles appear in µ > 3 and µ < −1, so we are in
the supercritical case.

The stability is determined by the trick:

[F (F (x))]′ = F ′(x1)F ′(x2) = µ2(1− 2x1)(1− 2x2)

= µ2

(
1− 2(µ+ 1)

µ
+

4(µ+ 1)

µ2

)

= 4 + 2µ− µ2.

So stable if 3 < µ < 1 +
√

6. At µ = 1 +
√

6, there is a fur-
ther period-doubling bifurcation. This continues to happen,
forever. We get the bifurcation diagram:
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11 Chaos

11.1 Devaney’s versus Glendinning’s chaos

Definition: Let F be a continuous map F : I → I on a
bounded interval I ⊆ R. Let Λ ⊆ I be an F -invariant set.

(i) We say that F has sensitive dependence to initial con-
ditions on Λ if there exists δ > 0 such that ∀x ∈ Λ and
∀ε > 0 there exists y ∈ Λ and some n > 0 such that
|x− y| < ε, but |F (n)(y)− F (n)(x)| > δ.

(ii) We say that F is topologically transitive on Λ if for all
open sets U , V such that U ∩ Λ 6= ∅ and V ∩ Λ 6= ∅
there exists n such that F (n)(U)∩V 6= ∅. (Idea: Apply
map enough times to U , get something in V .)

Definition (Devaney’s): A map F is chaotic on Λ if
F is sensitively dependent to initial conditions on Λ,
topologically transitive on Λ, and periodic points of F are
dense in Λ.

Definition: A map F has a horseshoe if there is an
open interval J ⊆ I and disjoint sub-intervals K0,K1 ⊆ J
such that F (K0) = F (K1) = J (see diagram).

Definition (Glendinning’s): A map F is chaotic on
Λ if Fn has a horseshoe for some n ≥ 1.
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