Part lll: General Relativity - Revision

Lectures by Malcolm Perry, notes by James Moore

1 Review of special relativity

Definition: Minkowski spacetime is the set R*, together
with a metric described by the line element:
ds? = —dt* + da® + dy? + dz>.

The distance between (¢,z,y,2) and (z + dz,y + dy, z +
dz,t + dt) is ds. More compactly, the line element can be
written ds? = ng,dz*dx®, where n = diag(—1,1,1,1).

Points are spacelike-separated if ds> > 0, timelike-
separated if ds*> < 0, and null-separated if ds? = 0.

Definition: The proper time of a timelike curve is
the time experienced by an observer travelling along that
curve. Equivalently, the tangent vector to the curve, u,
obeys u®ubn,, = —1.

The Minkowski metric is clearly invariant under transla-
tions. So restrict attention to symmetries which fix the
origin.

Theorem: Let x — x’ = Ax be a symmetry of Minkowski

spacetime fixing the origin. Then ATnA = 7.

Proof: Since the transformation is a symmetry, it must
map straight lines to straight lines. So A is a linear map.
We need the line element to be invariant, hence:

ds"? = dz'Tndz’ = de? ATnAdx = deTndx = ds.

Holds for all dz, so result follows. [

Note this generalises rotations, for which we have:
RTI3R =1s.

Definition: Any A obeying A"TnA = 75 is called a
Lorentz transformation.

Theorem: Lorentz transformations A form a group.

Proof: Note det(ATnA) = det(n) = det(A)? So

= 1.
always invertible. Axioms are then trivial to check. [

Definition: The group of Lorentz transformations is
called the Lorentz group, written O(1,3). If we add the
translations back in, the group is called the Poincaré group.

Example: A familiar example of a Lorentz transfor-
mation is the Lorentz boost. For example, for a boost by
velocity v in the z-direction, the formula is:

g Y x,:x;vt y =y, =z
V1—02’ 1—02 ’

To get a general Lorentz boost, first rotate coordinates,
apply the boost in the x-direction, then rotate back, viz
RTA,R.

Definition: An object with a single upstairs index, v¢, is a
contravariant vector.

Definition: Given a contravariant vector v*, we can
define a covariant vector via: v, = na,v°.

Conversely, given a covariant vector v, we can use
the inverse metric to recover the contravariant vector:
v® = n®,. Remember the slogan:

The metric can be used to lower indices. The inverse
metric can be used to raise indices.

Clearly we want contravariant vectors to transform in the
natural way: v® — A% v,.

Definition: A scalar quantity is invariant under Lorentz
transformations.

We want inner products to be scalars, so we have:

Theorem: Under a Lorentz transformation, covariant
vectors transform as w, — Abawb.

Proof: Consider scalar ¢ = w,v®* and insert trans-
formation law for vector. Use scalars invariant under
Lorentz transformations. OJ
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Definition: A tensor of type (r, s) in special relativity is an
object 7124, . which transforms under a Lorentz
transformation as:

! !’ !
Ta1a2...a,‘
/ ’ /

bbb,

’ !’ !
_aay ay a,. aias...a, by ba b
= A A%y AT T AP AP A,

Definition: Denote derivatives in special relativity by

0

= fza

Oa

Definition: The electromagnetic field strength tensor is:

0o E. E, E.
-E, 0 B. -B,
~E, -B. 0 B,
~E. B, -B, 0

Fab _

The four current is j* = (p,j), where J is the 3-current
density and p is the charge density.

Theorem: Maxwell’s equations may be written:
8anc + 8cha + 80Fab = 07 6aFab = _jb'

Proof: Expand out and check. OJ

2 Differential geometry

Principle 1: Inertial and gravitational mass are the same.
Inertial mass appears in Newton's law: F' = mijnertiala.
Gravitational mass appears in the law of gravitation:

- Gmgrav 1Mgrav 2

F =

Principle 2: In a freely-falling frame, the laws of physics
are those of special relativity.

Definition: A manifold M is a space we can label with
coordinates. Let the coordinates be 2 in general.

Definition: A vector at a point p on a manifold is a
differential operator of the form

y—yad

— —| .
axp

Vectors give derivatives of functions along curves. Let f be
a function and x*(t) be a curve. The derivative of f along
x®(t) at pis:
df|  0x* Of
|, ot dxe

p
This is indeed a vector acting on the function f.

Note also that vectors as we've defined them natu-
rally form a vector space at any point p.

Definition: The vector space of vectors at p is de-
noted 7,(M) and is called the tangent space. We can
choose a basis for this space to be

{aia}'

This basis is called a coordinate basis.

Theorem: Under a bijective, differentiable transformation
i = 7% (z), the components of a vector V = V49,
transform as: )

ox®

ox®
Proof: The vector V is coordinate independent, so does
not change. However, the coordinate basis vectors do,

using the chain rule. The result follows immediately. O

Ve~ ve.

Definition: An element of 7,;(M), the dual space, is
called a covector or one-form.

We can define a natural inner product between one-
forms and vectors as follows. Let V = V*E, be the
expansion of a vector in a (not necessarily coordinate)
basis. Let {E*} be the dual basis of one-forms, then
mirror the expansion by writing one-forms as w = w,E*.
The inner product is then clearly defined as:

(W, V) = w, VP (B, Ey) = w, V7,

using (E“, Ey) = 6%, as is natural for a dual basis.

Theorem: Under a bijective, differentiable transfor-
mation ' = & (z%), the components of a one-form
(written in the dual basis to a coordinate basis of vectors)
transform as:
foling
Wy H W%'

Proof: Same as for vectors. Use invariance of inner prod-
uct (w, V) = w,V* and transformation law for a vector. [J
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Definition: The differential of the function f at the point p
is the one-form df at p obeying:

(df, X) = X(f),
for all vectors X at p.
Theorem: {dxz"} is the dual basis to {9, }.

Proof: We have

a axa a
<dm ,ab>:w:(sb. O
We can interpret the differential geometrically. If
(df,X) = 0 in n dimensions, this gives 1 equation,

so X has n — 1 degrees of freedom. So the equation
defines an n — 1 dimensional surface.

On the surface, (df, X) = X(f) = 0, so f = constant on
the surface. Finally, (df, X) = 0 implies df is orthogonal to
tangents on the surface. So df is the normal to the n — 1
dimensional surface f = constant.

Definition: Let { E*} be a basis of one forms and {E,} be
a basis of vectors. A type (r, s) tensor is an object:

T=T""% , E,®.QFE E"®..0FE".
This immediately gives the transformation law for tensors:

~ 7 - 7
0% 9x% 9zbr  Oxbs
<bi ggar T 9ger gpbt T OFbs

’ ’
aj...a, aj...a,.
T b, T b

sor. Then the symmetrisation of X has components:

Definition: Let X,, ,. be the components of a ten-

1
X(al...ar) = ﬁ Z Xo’(al...ar)~
ocS,

The antisymmetrisation of X has components:
1
X[al...ar] = ﬁ Z 6(0—))(0(a1...olr)7

" o€eS,

where ¢ is the sign of the permutation.

Definition: An antisymmetric (0, p) tensor is called a p-
form. If A,, . .., are the components of a p-form, antisym-
metry means that we have: A, o, = Afa,...a,)-

There is a natural multiplication of p-forms through the
wedge product:

Definition: The wedge product of the p-form A, .,
and the g¢-form By, is defined to be the (p + ¢)-form
with components:

p+q)
plg!

Hence we can write a normal p-form as the sum over the
products of basis one-forms:

1
A=—Aq o E“A..NE™,
p! i

(A A B)al...apbl..‘bq = ( A[al...apBbl...bq]-

Theorem: The wedge product obeys () A A B =
(=1)PIB A A; (i) ANA=0if pis odd.

Proof: (ii) follows immediately from (i).
for any two coordinates z¢, z*:

For (i), notice

(dz®Adz®)eq = (dz®)e(dzb)g—(dz®)4(dz®). = —(dz’ Adz®)eq.

So just write A A B out in components, and drag the B
basis one-forms to the left of the A ones. O

Definition: The exterior derivative of the p-form A is
the (p + 1)-form with components:

0
(dA)balmap = (P + 1)wAa1...ap]-

Note: We can rewrite this as:

1
(dA)bal...ap = ﬁabAal...apy

because the components of a p-form are totally antisym-
metric.

Theorem: The exterior derivative obeys (i)
d(ANB) = dAANB+ (-1)PA AN dB (A is a p-form
and B is a ¢g-form); (ii) d(dA) = 0.

Proof: (i) We have:

1 . . .
d(ANB) = oy ,3i(Ai1...iij1.__jq)d;vl Adz"™ A ... A\ dxle
plq!

_ p!iq! (0:Asy i) Byr.gu + Airoi 8By ) dat A ... A dads
=dAAB+ p!iq!An..,z‘p (0;Bjy...j,)(—=1)Pdaz™ A ... Adz' A dz'A
dz?t A ... A dxle
=dANB+ (-1)PANdB.
For (ii), simply note that
d(dA) o< (3;0;(A.))dz" Ada? A ..,

which is symmetric on i, j in the derivatives, and antisym-
metric in the wedge product, so must be zero. (O
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In GR, we upgrade the line element to ds? =
Jap(2€)dx*dz®, where now g is a symmetric tensor,
which is a function of spacetime z°.

The fact that ¢g is symmetric naturally encodes the
equivalence principle: symmetric tensors are diagonal-
isable, hence there exists a coordinate transformation
with:
_ Ox° ozt
Na'br = ww%b-

The signs are correct because Sylvester’s Law of Inertia
ensures signature is preserved under change of basis.

Same as Minkowski space, we can raise and lower
indices using the metric and its inverse:

Vo= gabvba Ve = gab‘/b-

Idea: Take an (r, s) tensor, and make an (r,s + 1) tensor
via a ‘derivative’ operation.

Scalar: For a scalar ¢, just use 9,¢.
check this transforms as a vector.

It's easy to

Vector: Try V® — 09,V°. However, under a coordi-
nate transform:

-, b ~a’
oy _ 2 2 <8x V“)

9z 9zt \ Oz
_ 0xb 93 v ozt 92z
T OFY dxa P T Dxboze

So transforms as a tensor plus a non-tensorial term. This
suggests we should define:

Definition: The covariant derivative of a vector V¢
is written V, V¢, and is defined by:

VyVe =V + TV,

where T'f, is a correction ensuring V,V* transforms as a
tensor. We call T" the connection.

Theorem: For the covariant derivative to be tenso-
rial, the connection must transform as:

~q! !

~ 0z 9z 0z° _, 0?7 Oxb Ox°
1Al — = = - o o .
bre oxe Y 9z b 9xbdzc OFY 07

Proof: Clear from transformation law for 9,V 2. O

Theorem: For a covariant derivative V which (i) is a linear
operation; (ii) obeys the Leibniz rule; we have:

ViVa = abVa - Fgan

ai...a, _ ai...a, ai das...a,
V(T b, ) = 0T byt T gl by..b, T
a, ay...d d ay...a, _1d aj...a,
+I ch by...bs r cblT dby...by — * r chT b

Proof: Assuming the covariant derivative formula for a
one-form V,, the tensor formula follows by the Leibniz rule.

To get the one-form formula. Let S = WV,. Then:

81,5 = VbS = (VbWa)Va + (vaa)Wa
= (W )Vo + T, WV + (Vo V)W,

Also, 0,5 = (W *)V, + (06V,)W®. The result follows. O

Theorem: The difference I'j, — I'?%; transforms as a tensor.

Proof: Trivial from above transformation property. O

Definition: The torsion tensor is defined by:

a _ 1a a
Tbc_Fbc_ cb*

Theorem: [V, V]S =TS V.S.
Proof: Just write everything out. O
This shows that the torsion tensor measures how

much covariant derivatives fail to commute when acting
on a scalar. We will assume torsion is zero in this course.

Definition: The metric connection is a torsion-free con-
nection such that V_.g., = 0.

Theorem: With the metric connection, the connec-
tion is given by:

1
4 = 5gad (OvGde + Ocgap — Oagoe) -

Proof: Write out 0 = V,gpe, 0 = Vipgeq and 0 = Vi gap.
Add the first two equations, and subtract the third. Use
symmetry of connection on downstairs indices to finish. [

What's the point of the metric connection? It allows
us to raise and lower indices through a covariant deriva-

tive: vb‘/a :Mc + gacvbvc = gacvbvc-

1...d "’
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To lower indices through a covariant derivative, we need:
Theorem: With the metric connection, V.g* = 0.

Proof: Note that

V(%) = Vi(6%,6%;) = 65 Vi(6%;) + 6%,V (67,) = 2V(5%)).

Hence V.(0%) = 0. So take covariant derivative of
5%, = g*gq, to get result. O

We saw that for a torsion-free connection, covariant
derivatives commute on a scalar. What about on a
one-form?

Definition:
through:

The Riemann tensor R, is defined

Va, Vo]Ve = R, 2V,
Since the LHS is a tensor, and V, is a tensor, the Riemann
tensor is also a tensor.

Theorem: In terms of the connection,

R bcd = _aargc + abrgc - gcr(eia + FZchb'

a

Proof: Via a short calculation. (I

Theorem (Ricci identity): For an arbitrary tensor:

Ve, VAT = Res® pr'”cd... +RebeTapmcd... + .

ef p
+R€fcpTab.“[)d.“ + e

Proof: Simple consequence of linearity and Leibniz rule of
covariant derivative. [

Theorem: The Riemann tensor possesses the following
symmetries:

1. Raped = —Rpacd-
2. Rabed = —Rabde-
3. Rabed = Redab-
4

. Raped + Racay + Raave = 0. This is called the first
Bianchi identity.

Proof: See later when we discuss normal coordinates.
Though notice first is obvious. [

Theorem: As a consequence of these symmetries, the
Riemann tensor has:

1

—d*(d* -1

152 ( )
independent components in d dimensions.

Proof: Consider the possible indices on Rgpcq. [If all
the indices are the same, R,... = 0, by antisymmetry.

By antisymmetry on first and last two indices, only
non-vanishing components with 2 distinct indices
are: Rovars Ravbas Rvavas Rbaab- But these obey
Rapay = —Ravba = —Rpaba = Rbaar, hence only one
independent component. There are (g) ways of picking

the two, so that many components.

For three indices, the only non-vanishing components are
Rabac = _Rabca = Rbaca = _Rbaac = Racab = _Rcaab =
—Racba = Reapa, SO Only one independent component.
There are d(“;") ways of picking the indices.

For four distinct indices, there are d(d — 1)(d — 2)(d — 3)
arrangements of abed. This overcounts by 2 x 2 x 2 = 8
(antisymmetry on first two, last two, and swap symmetry),
and since Rgpeq + Racav = —Raape it Overcounts by a
further factor of 3/2. Hence total:

(;{)er(d; 1)+d(d— 1)(d1; 2)(d—3) _ %dz(dtn. O

Definition: The Ricci tensor is defined by Ryq = Rapeag™®
(i.e. contracting the first and third indices of the Riemann
tensor).

By the symmetries of the Riemann tensor, R,, = Ry, i-€.
the Ricci tensor is a symmetric tensor.

Definition: The Ricci scalar is defined by R = R.;,g%°.
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3 Geodesics

Consider curves on a manifold. The length of a curve z%()\)
between points p and ¢ is:

- fu- |

Definition: A curve that extremises the distance func-
tional is called a geodesic.

dz® dab

Jab =3 ax |

Theorem: Geodesics z*(\) obey the geodesic equation:

4+ Teabi = 0.
q

Proof: Choose to extremise I = /dsg. Doing so, get the

P
result. At one point, we need to split a term and swap
dummy indices. O

dz®

Note: Introducing the tangent vector V¢ = <,

can rewrite the geodesic equation as:
VbV Ve = 0.

we

Example 1: Consider the metric:
ds® = —t72dt* + t2da®.
The associated Lagrangian is
L=—t"%2+t722

with =d/d\. This has no explicit = dependence, so we get
a first integral 2¢—2& = constant = & = Ct2.

There is also no explicit dependence on the parame-
ter . Hence the quantity

0L 0L

is constant. It follows that {2 — 42 = Kt2 for K a constant.

Eliminate # from our conserved quantities to get an
equation for ¢: 2 — C%t* = K. Change variable from ) to

z via:
dz dt dt ot 5d

T dhdr da: d:c
Then the equation becomes:

C%tt (dt) — C*t* = Kt
dx

This is now easily integrated to find that the geodesics take

the form (x —2¢)? —t? = A, for constant zo and A, i.e. they

are hyperbolae.

Example 2: Consider the action for a charged particle
travelling in spacetime:

I= /ds (fm\/ —Gap Dozt + qAai“) )

This is a generalisation of the distance functional we saw
above. Here, ¢ is the charge of the particle, m is the mass
and A, is the four-potential of the electromagnetic field.
The field strength tensor is Fy,, = 0, Ay — OpAq.

Suppose we work with proper time 7. Then we can

set \/—gapi®i® = 1 along the geodesic. Computing the
relevant derivatives for the Euler-Lagrange equations, we
find:

8

= mjjbgab + qAa-
oL
dza 2

Thus the Euler-Lagrange equation is:

(3agcd)$ i (D, Ap)i®

0= mjbgab + mgbbicacgab + qibabAa

= qF%i" = mi® + T§,3%¢.

Theorem: Under a transformation of the parameter \
A(A), the geodesic equation transforms to:

a2z dab dx© dx®
—_— @ —_— = = )\ — =
a2 " an d I )d)\
where %) s
d“\/d\
fny = L EAD)
(dX/dN)

Proof: Simple calculation. OJ

In terms of the tangent vector, V¢ = dxz%/d)\, the
geodesic equation becomes:

VOV, Ve = f(N)V

Both of these are the geodesic equation! But in a more
general form.

Definition: If f(A) = 0, we say the geodesic is affinely
parametrised.  Clearly, a geodesic remains affinely
parametrised under a transformation iff the transformation
is such that A = a\ + b for some constants a and b.

Theorem: For an affinely parametrised geodesic,
the length of the tangent vector is preserved along the
geodesic.

Proof: VoV (VW) = 23, VeV, VP = 0. O

1
- 5m:b8:'cdaagcd — qi%9, Ay
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Theorem: The coordinate transform:

- 1

i = (2" — af) + 5Tiu(e” —af) (e —7§) + ...
sends the connection to zero at .

Proof: Compute:

o0z
e 6%, + ¢ (2b — :Eg)éce + ...
0%z
— =T
Ozedzf ef T

Insert into transformation law for connection to see that in
these coordinates it is zero. [

In such coordinates, the derivatives of the metric must
vanish, since 0 = V,gbe = Gugbe — 21'%, gac = Ougse in these
coordinates. Hence the metric is of the form:

Jab = Cap + O((z — 20)?).
A change of basis then sends cy; +— 74p-

Definition: Coordinates in which the metric takes
the above form are called normal or inertial coordinates.

Theorem: The symmetries of the Riemann tensor hold.

Proof: In normal coordinates, Rapcd = gve (0al'Sy — 0.IG,)-
Expand the connection in terms of the metric to find:

1
Rabcd = 5 (aaadgbc + acabgad - abadgac - 8aacgqbd) .

From here, the standard symmetries are easily verified. O

Theorem: In normal coordinates at the point z(, the
metric takes the form:

1
Gab = Nab = 3 Racwa(2° = 2) (@ = 2§) + O((@ = 0)*).

Proof: We know the first two terms in normal coordinates.
For the second order term, we need to compute:

8cadgab = ac(M+F2dgeb+F§dgae) = gebacrfla+geaacF3bv

using 0.g.», = 0 in normal coordinates.

To make further progress, need an identity for the
connection. In normal coordinates, the geodesic equation
is & = 0, so geodesics take the form x%(s) = x8 + s&%, for
some constant vector £ = %(0).

d2xo dxb dxc
Near zy, the equationis;: —— +T'¢. —— =0
o 9 ds? + ke ds ds

Take derivative wrt s and impose normal coordinates
to get, at zo:
dalp.£7¢°¢" = 0.
Since ¢ are arbitrary, have 041"y, +9,1'%; +0.I'g, = 0. Using
this identity, we have
Sacadgab = 2acadgab + acadgab
= Qerac]-—‘Za + QQeaacFZb + gebadrga + geaad]-—‘gb
= 9eb(0cl'Gy — 0al'Ca) + gea(0cLg, — Op1G.)
= _Rdbca - Rdacb

using normal coordinates for Riemann tensor (in terms of
connection). Just need to tidy up now. We have:

1
Yab = Tab — E(Rdbca + Ryacy) (2 — x§)(x? — §)

1
= Nab — E(Rdbca + Reaay) (2€ — 2§) (2 — 28)

symmetric on ¢,d

1
= Nab — gRacbd(xc - mg)(xd - lg) O

(can swap ¢, d)

Consider a continuous family of geodesics, labelled by
a parameter s, with parameter ¢ along the geodesics.
Denote T* = 922 /0t and S® = 9x®/Js.

Lemma: 7°V,S% = S*V,1°.

Proof: Writing out in full, we find: 7,V,S* — S°V, T =
79,5 — 59, T". Also:

ox® 9%xb B 92xb _ 0x° 92xb

Ta . b _ Il — gL
0a’S ot 0x®0s  Otds 0s O0xeot

= 5%9,T°. O

Theorem: We have the geodesic deviation equation:
d%se
— =

Proof: We have:

d%se

a2

R%, T°TS.

=TV (T"V,5%) = T°V.(5°V,5%)

= (T°V.S*)V,T* + S*T°V .V, 5°

= (T°V.S8°)V, T + S*T¢(V, V.S + R, ;S%)

= (TS T + SV (TVT?) — (S PG T
+ S*T°R_,, 5.

Using symmetries of Riemann tensor, get result. O

This result shows that curvature gives rise to ‘forces’: via
stretching between geodesics.
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Definition: Let z%(\) be a curve, and let {* = dz*/d\
be its tangent vector. We say that the vector V@ is
parallel-transported around the curve if 1°V,V® = 0.

Theorem: Suppose V*(\) is parallel-transported once
around a closed loop, starting and finishing at A = .
Then the change in V() is:

d e
AV® = _lRacde(AO)VC(AO) fxd(/\/) TN,

2 AN

Proof: The parallel transport equation is (°V,V?, which
can be written out as:

dx® (avb

o b c| —
= axa+racv> 0.

Since z%()\) is a general curve, need bracket to vanish.
Rewrite bracket as the integral equation:

A
VO = V2(Ao) — / dN Th,(X)
Ao

dz®

V).

Taylor-expand the connection and the vector near A = A,
and use the parallel transport equation to substitute for the
derivative term (9V¢/0z7)(\o). We have: V?()\) =

A
dz® ore,
V(o) —/d)\’ e (Ffw(/\o)+ o

Ao
(Ve(ho) — FZf()\o)Ve(Ao)(xf()\/) —2f(No)) +..).

(z'(N) — wd(/\o))> X

Ao

Multiply out and evaluate each term as A — )y around a
closed loop. The lowest order term contains the integral:

dx®
f{d/\' = j{d:ca =z%Ng) — x%(No) = 0.

The first order term is:

e al—‘ge
V(o) ( Ozd

- <rzdrzc><Ao>> F xS 30— 00).

Ao

Note the integral in this term is antisymmetric under a +
d. This follows from integration by parts. Thus we can
antisymmetrise over the prefactor in a and d; the prefactor
becomes:

1 ore,
2\ Oz

which is just 2R"_,,. The result follows. O

B ors,
o ox®

— (PeaT6e) (o) + (FZGFZC)(/\o)> ;

Ao

Theorem: V .R*, , + V.R%, + VqR%, . = 0. This is
called the second Bianchi identity.

Proof: Using normal coordinates, find that
VCRabcd = 3e3cfgb - 868d1“2b.

Permute indices and add resulting equations. OJ

Theorem: V. Ry + V. R%,;, — VaR,, = 0.
called the contracted Bianchi identity.

This is

Proof: Contract on ¢ and c in above. O

Theorem: V, (R%, — $R6%,) = 0.
Proof: Contract on b and d in above. [
Definition: G,, = R., — 3Ryga is called the Einstein

tensor. By the above Theorem, the derivative of the
Einstein tensor is zero: V*Gg, = 0.

4 Action principles for GR

Principle: The equations of general relativity are the Ein-
stein equations:

Gab + Agab = SWGTaba

where Ty, is a tensor called the energy-momentum ten-
sor, determined by the matter present (and constructed
below). A is a constant called the cosmological constant.

Theorem: VeI, = 0, i.e.
tensor is conserved.

the energy-momentum

Proof: Since derivatives of Einstein tensor and met-
ric are zero.

It would be good to write the Einstein equations as an
action principle, consistent with other theories in physics.
To do so, need to be able to integrate in curved space.

Definition: A fensor density is an object which transforms
as a tensor, up to factors of the Jacobian.
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Theorem: The Levi-Civita symbol 7,,.,, is a tensor
density.

Proof: The determinant of a matrix obeys:
77611724..ban1a1 "'Mbnan = Nay...an det(M)'

Let 2 ~ % be a change of coordinates. Set M’ =
0x"/0z°, the Jacobian matrix, then

b1 b” a
2 0o (25)

Ublbz...bﬂ,% 65;7‘171 = MNay...a D7
and we’re done, by moving the Jacobian to the LHS. O

Theorem: The square root of the determinant of the
metric, /| det(gaqs)| transforms as a tensor density.

Proof: Use transformation law for metric tensor, then
take determinant of both sides. [

Using the above, we can arrange for the Jacobian
factors from the Levi-Civita symbol and +/det(g.) to
cancel:

Definition: The alternating tensor e, ., is defined
bY €ar..an = 9"/ Na,...a,» Where g = det(gyy). This trans-
forms as a tensor by the above.

The alternating tensor provides us with a tensorial
integration measure:

Theorem: The measure ¢'/2d"z = ¢'/2dz' A ... A dz™ is
tensorial.
Proof: Notice that ¢'/2dz' A ... A dz™ =

1

1
Egl/znalmandxal A Ndx = ﬁeal,,,andxal Ao ANdx®.

Everything on the RHS is tensorial. [

Definition: The integral of a scalar ® in a curved
spacetime is defined by:

/<I> g ?d" .

This is independent of the coordinates chosen.

Theorem: The alternating tensor has the following prop-
erties:

H - by...bg_
(|) 6"’10'2'"“”[“mbdip€a1a24..apc14..cd,p = _p!(scl...cd,z, where

621;’{23;6 is the generalised Kronecker delta, taking the
value +1 if ¢;...cq—p, are distinct integers, and by...bq—),
is an even permutation of them, —1 if b;...b4_, is an
odd permutation of them, and zero otherwise.

(i) Vpeq,...a, =0.

Proof: (i) By definition, €,,..a; = \/97a,...a,- Raising in-
dices:

1

%nal‘..ada

by a property of the determinant (note det(g,,) < 0). Note
the RHS is just treated as a collection of numbers, so the
indices do not need to agree.

! ’
a...aq __ aja aqa _
€ - \/gg 1.9 dna/l...a’d =

Thus:

aij...apby.
13

ba
+Od—p I
€ Eal..‘apcl..‘cd_p 77a1...apbl..‘bd_pnal...apcl...cd,_p'

Considering the possible cases, it is clear this is equal to
the given result.

For (ii), simply note that Vi(es,..ay) = Vu(y/9May...au)-
Note that 7,, ..., are just numbers so can come out of hte
covariant derivative, and /g is some function of the metric
entries g.p, SO its derivative is zero. [J

Lemma 1: We have the following matrix identity:

% log(det(M (z))) = tr (M~ M'(z)).
Proof: Standard result; see Symmetries for proof. I
Lemma 2: V,V® = g~ 1/29,(¢"/?V*).
Proof: We have: V,V* = 9,V* + I'? V¢. So need
connection I'¢ .. From the expression for the connection in

terms of the metric, we have T'?, = 3¢%9.gqq. Write G for
the matrix of g,;,. Then

I'ge = %tr (G710.G) = %ac log(det(G)) = d.(log(g*/2)),

where in the last step we just took % inside the log. O

Stokes’ Theorem: Let ¥ be a region in spacetime,
and 0% its boundary. Let n, be a unit normal to the
boundary, and let v be the determinant of the metric
restricted to 9. Then:

/vava gl/anJT — /nava ’Yl/an_ll‘.
P 0%
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Proof: From the Lemma, the LHS can be written:
/3a(gl/2V“) d"z.
b

Choose coordinates where z™ is constant on 0%, and

where
_ (i 0
Gab = ( 0 NQ)

Define the normal by n, = (0,0,...,N), then raising in-
dices, n® = (0,0, ...,1/N). Integrate over =™, and replace
g = yN2. Then we're left with

/ VN ’}/1/2dn_1$ :/ nava ’}/1/2dn_1$. O
% o)

Theorem: Let w be a p-form. Then

/dw:/w.
by o%

Proof: Expand w in a basis of one-forms:

1

w= —'walmapdxal Adx® A ... ANdz®.
D

Since wy, ..., is being contracted with something totally
antisymmetric, it itself must be antisymmetric. Hence write
it as iwal.“ap = Eal...a,,bvb-

Also, rearrange the wedge product to the form:

dz®™ A ... ANdx® = Ual...apdajl A NdaP = —\/ye® - dP,

where ~ is the determinant of the metric restricted to 9%.
Then we have:

/w = /Vbealmapbdx“l...dm“” = (—1)p+1/Vbnbfyl/2dpx,
[9)>

0% ox

where ny, = €pq,...a,€* 7. If bis anything other than p + 1,
then n, = 0, so ny, is normal to 9% in these coordinates.

Now deal with LHS. Using the form above, we have
(dw)cal‘.,ap = (p + ]-)a[ceal...ap]bvb = (p + l)v[ceal...ap]bvb7

since this holds in normal coordinates. Recalling Ve = 0,
we can move the covariant derivative through to get:
(dw)cal...ap = (P + 1)€[a1...a,,|b|vc]vb~

There’s still work to be done. Let (dw)cq,..a, = féca,..a, fOr
some scalar f. Contracting both sides with e“*1---%» |leaves
us with —(p + 1)!f. Doing the same with the expression
above:

(p+ 1) g, a,p VgV’ = (p+1)(—p!)(=1)P6%, V.V,

and so f = (=-1)?V,V’ Combining this with
daf A ... Ndz» = —,/gdP 'z, we're done by the other form
of Stokes’ Theorem. O

Definition: The Einstein-Hilbert action is defined by:
1
I = w /(R — 2A) gl/zd4$ + /ﬁmatter 91/2d4$7
M M

where Lmater iS SOMe matter Lagrangian.

Lemma: For symmetric M, det(M) = exp(tr(log(M))).

Proof: M is symmetric, so diagonalisable. Let \; be
the eigenvalues. Then

det(M) = ...\, = exp(log(A1)+...+log(A1)) = exp(tr(log(M))).

Hence we'’re done. O

Theorem: The gravitational part of the action gives
rise to the vacuum Einstein equations when extremised.

Proof: Replace g., by ga» + hay to vary the action
(with hg, infinitesimal). Note 0% = g¢%g. must remain
invariant, so g% — g% — h®. Note we raise and lower
indices with respect to g,5, the background metric.

Now compute how ¢'/? changes. We have

det(gap + hap) = exp(tr(log(gap + hap)))
= exp(tr(log(gac) + log (6% + hcb)))
= exp(tr(log(gac))) exp(tr(log(h%))) = det(gac)(1 + h),

where h is the trace of the matrix h,,. Hence variation of
gt — g1/? (1 + %h)
Now want variation of 2. We have:

6R = 6(Rapg™®) = (6Rap)g"* — Raph®.

using variation of inverse metric. So need variation in Ricci
tensor. Write Ricci tensor using normal coordinates:

Ree = VI, — V. IY,

Here, V, = 0, because working in normal coordinates.
But this is covariant, so must hold in all coordinates. Take
variation:

SRee = VyoTb, — V,.0T%,.

So remains to find variation in I". After a short calculation,
we find that:

(=V%pe + Vph®, + VR .

N =

5Fgc = Fgc(g—’_h)_rgc(g) =

Hence the variation of the Ricci tensor is:

1
0Ree = 3 (=VoVPhee + Vi Veh?, + Vi Vb, — V. V.h)

10
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and so the variation of the Ricci scalar is:
R = —VgVeh + ViV.h — Raph.

Computing the change in the gravitational part of the ac-
tion, we find §Igray =

1 1/2 44 o d de de
el /g d*z| =VagVh+ ViV h Rach
M

0 by Stokes’ Theorem

+;hR—Ah).

Hence stationary iff Ra, — 3 Rgas + Agay = 0. O

When matter is present, to get the full Einstein equa-
tions, we define:

Definition: The energy-momentum tensor of a mat-
ter Lagrangian Lmater is defined by the variation of the
matter part of the Einstein-Hilbert action:

1
0l matter = / iTabhab 91/2d4x-
M

Note: This definition automatically gives us the Einstein
equations. It also forces T, to be conserved, by the
Einstein equations, and also forces T,, to be symmetric
(any antisymmetric part would be annihilated by ha).

Example 1: The energy momentum tensor of a the-
ory with

1 1 1
Lmatter = —§g“b8a¢€)b¢> - 5m2¢2 - ZA&’
is given by:
1 , 1
Tab = 02905 — 59ab (g°dac¢8d¢ +m*¢” + 4>\¢4) :

To obtain this, we need to use the fact ¢ = 0 under
variation of the metric (it is called inert under variation of
the metric).

Example 2: The energy momentum tensor of the
electromagnetic Lagrangian:

1
L=—-F%F,
4 by
where Fy;, = 0, A, — 0y A, is given by:
c 1 cd
Tab = Fach - ZgachdF .

Here, §A, = 0, so A, is inert.

5 Vacuum solutions of the Einstein
equations

Consider the vacuum Einstein equations:
1
Rab - iRgab + Agab =0
with A > 0.
Theorem: This equation is equivalent to R,, = Agas-
Proof: Contract on a, b in Einstein equation. Then

R — 3R+ 4A =0, implying R = 4A. Substituting back into
the equations, we’re done. [

Let’s guess a solution for the metric of the form
ds® = Q*(t) (—dt® + da® + dy® + d2”) .

Computing the Ricci tensor (via very messy calculation, or
the conformal transformation theorem - see later), we find
that the equation ©2 must obey is:

Q2 4
a3
The general solution is Q(t) = A+DBt+/ % Substituting

this back into R,;, = Agap, we can determine the constants
asA=B=0.
Definition: The spacetime with metric

3
= e

is called de Sitter space.

ds? —dt? 4 da® + dy? + dz?)

As t — 0, we get a singularity. But this is actually
an artefact of the coordinates we are using - it is a
coordinate singularity.

Introduce new coordinates ¢ = \/%eT A3, The metric
becomes:

ds® = —dT? 4+ e 2TV3/N da? + dy? + d2?).

Over time, the space shrinks, as the spatial part contracts.

We could have chosen ¢ = \/%e*TV A/3 Then the
metric becomes:
ds? = —dT? 4+ 2TV3/Mda? + dy? + d2?).

So in these coordinates, the space expands! What'’s going
on?

11
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The trouble is our coordinates are local - they only de-
scribe parts of the spacetime. As an inspired guess, define
new coordinates:

T¢3b v+w x¢3X
VAU s ) T VaAvew

_ 3 Y _/3_Z
Y=Vavew ““Navew

with the condition —V?2 + W? + X2 +Y? + Z2 = 3/A. View
this as a map (T,z,y,2) — (V + W, XY, Z). The metric
becomes:

ds* = —dV? +dW? + dX? + dY? + dZ>.

It is now clear that at constant time (V' = const) the space-
time looks like a 3-sphere. In general, a further coordinate
transformation given by:

V= \/f cosh <T\/§> W \/i sinh <T\/§> cos(x),
X =/ 5 sinh (ﬁ) sin(x) cos(0),
v =/ simn (T\E) sin(x) sin(6) cos(9).
z= /% san (ﬂg) sin(x) sin(6) sin().

puts the metric in the form:

3
A
where do3 is the metric on a 3-sphere. This shows that de

Sitter space shrinks to a minimum size of /3/A, and then
expands again, indefinitely. The spacetime looks like:

ds? = —dr? + = cosh?(3rV/A)do2,

How do we know we've found the whole spacetime?
Trial and error.

We can repeat the above calculation for a negative cosmo-
logical constant. This time we must guess:

ds® = Q(x)*(—dt? + da® + dy* + d2?).

Via very nasty calculation, similar to the above, or via
the conformal transformation Theorem from later in the
course, we find that Einstein’s equations reduce to:

d*Q _2A 03

dz2 ~ 3

. . 3
The general solution is: Q(z) = A + Bz + v

Substituting this back into R, = Agas, We find A = B —0.

Definition: The spacetime with metric

3
ds? = ———(—dt?® + dz? + dy?® + d2*
Ax?

is called anti-de Sitter space.

Definition: The Weyl tensor C,;,.q is the traceless part of
the Riemann tensor.

Theorem: In n dimensions, the Weyl tensor is:

1
CVabccl = Rabcd - m (Racgbd + Rbdgac - Radgbc - Rbcgad)

1
(n—1)(n—2)
Proof: For any symmetric tensor H,;, we can define a new
tensor H, ., satisftying H, ., = —H},,.and H, . = H, .
by:

+ R(gacgbd - gadgbc)

H;bcd = Hacgbd + Hbdgac - Ha,dgbc - Hbcga,d~
Take H,, = Rqp, and Hyp, = gqp in turn, and guess:
Rabcd = Cabcd + QR:bcd + BRgacd'

Contract on a and ¢, and impose condition that Weyl tensor
is traceless. We get:

Rpq = aRgpq + a(n — 2)Rpg + BR(2n — 2)gpa.

Compare coefficients to get result. O

From the above, it is clear that the Weyl tensor has
the same symmetries as the Riemann tensor; in addition,
it also obeys:
Cabad =0.

The interpretation of the Weyl tensor is as follows. Note
that R,;, is determined by the Einstein equations, from
the cosmological constant and the energy-momentum
tensor. The Weyl tensor is left undetermined; it tells us the
gravitational degrees of freedom.

Theorem: The Weyl tensor has d(d + 1)(d + 2)(d — 3)
independent components.

Proof: The Weyl tensor has all the symmetries of
the Riemann tensor, together with the condition C%,,, = 0.
This constraint is symmetric on the b and d indices, so we
get an additional 1d(d + 1) constraints. Hence answer is:

%d2(d2 —1)— %d(d+ 1) = %d(dJr D(d+2)(d+3). O

12
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Theorem: For de Sitter spacetime, the Riemann tensor is:

A
Rabcd - g(gacgbd - gadgbc)7

and the Weyl tensor is zero.

Proof: This follows from a result later in the course.
The Weyl tensor is zero in Minkowski space (since
Rapeda = 0 in Minkowski space), and is invariant under
conformal transformations, so the Weyl tensor of de Sitter
space is zero. Using the definition of the Weyl tensor, and
the equations R, = Aga, R = 4A, we get the result. O

6 Conformal transformations

A conformal transformation of the metric
022g.,, where

Definition:
is a transformation of the form g,, =
Q = Q(t7 I? y7 Z)'

Theorem: Conformal transformations preserve the
causal structure of the spacetime.

Proof: Clearly if ds?> > 0, ds> = 0 or ds®> < 0, we
have that Q2ds? > 0, Q%ds? = 0 or Q%ds? < 0, respectively.
So timelike, null and spacelike separations of points is
preserved. [

Theorem: Null geodesics are mapped to null geodesics
by conformal transformations.

Proof: Need to work out how connection transforms. Note
9%gep = 0% must be preserved, so need g — Q~2g%.
By a short calculation, the connection transforms as:

e 1 . . .
be(9) = Tie(9) + (=96 VIQ+ 8%V Q2 + %, Ve Q)

Note we upgraded to covariant derivatives, because the
difference of two connections is a tensor. Hence the
geodesic equation transforms to: 0 =

dxb dz°

0 ds ds

d2xa a 1 a a a

ez T Ihe(9) + 5 (90 VIQ 4 6. V2 4 69,V Q)
This is horrible for spacelike and timelike geodesics. But
for null geodesics, g,.2%i¢ = 0, so this simplifies to:

d?z® dxb dz° 2 dx® dzxb

— T (g)——— = —= O— ).

ds? +The(9) ds ds Q ds (vb ds)

So maps to a geodesic (although not affine!). Also

Gpeili = 0 = Gpeibic = Q2gp.abi¢ = 0, SO new geodesic
is still null. O

Theorem: Under a conformal transformation in d dimen-
sions, the Riemann tensor, Ricci tensor, Ricci scalar and
Weyl tensor transform as R, .,(9) = R%, .4

+Q71 (6% V.V — gbaVeVIQ — 6%V gV + b VaVIQ)
d

+Q_2 (26“CVbQVdQ - Zgbcande - gbdéacveﬂveQ

—26%,VyQVQ + 2g,aVIQV,.Q + gbcéadvmveﬂ> ,

Rya(9) = Roa(g) + Q271 ((2 — d)VsVaQ — goaldy0)
+0Q72(2(d — 2)VpQVaQ + gpa(3 — d)V,.QVQ),

R(§) = Q2R(g) — 2(d — 1)Q730,Q
—(d—1)(d - 4)Q7*V,QVveQ,

CV(;Lbcd (g) = Cabcd (g) .

Proof: This is a long and messy calculation. From above
the connection transforms as:

be(9) = (@) +H(=g6cV* In(2) + 6%,V In(Q2) + 69,V In(Q)) .
Hence the Riemann tensor transforms as:

R%ca(9) = 0cL3a(9) + Tee(9)T5a(9) — (¢ <2 d) =

R%ca(9) = 0c (Tpy + (—=gpaV* In(Q) + 693V In(Q) + 6% V4 In(£2)))
+ (T4 4+ (—gee Vi In(Q) + 6%,V In(Q) + 6%,V In()))

“(Tig + (—gpaVeIn(Q) + 6%,V In(2) 4+ 6%, VaIn(Q))) — (c < d).

Now work in normal coordinates for the original metric; the

result is quite easy to derive from there. An intermediate
step is:

R%.a(9) = R%ca(9) + (= 96aVeV*In(Q) + 69V Vy In(Q)
+0%. (Ve In(2)V41In(2) — gpa Ve In(Q) V. In(2))
— eV In(Q)V4In(Q) — (c > d)).

Contracting indices, we get the Ricci tensor (no inverse
metric as a is up and c is down).

To get transformation of R, note R = Rug"" —
Rap(9)§™ = Rap ()29, and we're home dry.

The Weyl transformation law follows from the above
work, by a very bold calculation. [J

13



J. M. Moore, 2019

Theorem: Maxwell’s equations are conformally invariant
only in four dimensions.

Proof: In GR, Maxwell’s equations are: V,Fy. + VyFeo +
VeFy =0, V., F = 0. Writing both equations out in full:

6anc + 6cha + 8cFab = 07
Do F + T2 F =0.

First equation conformally invariant as independent of
connection. Recall T¢, = ¢~'/29,(¢"/?), then second
equation becomes: 9, (g'/?F) = 0.

Under a conformal transformation, F,, ~ Fj,,, SO
Fab — gucgbchd — Q_4Fab, and

gl/? _ det(gab)1/2 — ngl/27

where d is the dimension. So equation transforms to
D, (Q2~%g1/2 ) = 0, and result follows. [

7 Symmetries and Killing vectors

Theorem: The infinitesimal transformation z® — z%+£® is
a symmetry if and only if £2 obeys Killing’s equation:

vafb + bea =0.

Proof: A symmetry leaves the line element invariant. So
consider:

ds® = gap(z 4 &)d(z® + £*)d(z® + £°)
= gab(x)dwadxb + (feaegcd + gadacga + gbcadé-b)dxcdxd7

by Taylor expanding gu.»(xz + &) and using d(z® + &%) =
dzc(0°, + 0:.£*). So we need:

€eaegcd + gadacfa + gbcadgb = 0.

Substitute 0.£* = V.£¢ — T'2,£% in the ¢ derivatives. Write
out connection in terms of metric to see all terms cancel,
leaving Killing’s equation. OJ

Definition: Solutions of Killing’s equation are called
Killing vectors.

Theorem: Killing vectors form a Lie algebra.

Proof: The Lie bracket of two Killing vectors k¢, [* is
given by:

m® = [k, 1" = k"V,1° — 1°V k.

Antisymmetry of bracket is clear. Need closure (i.e. m is
a Killing vector), and Jacobi identity (this is hard and we’ll
assume it can be proved). For closure, we compute:

Vamp + Vemg = Vo kViely — VIV ik + VikV
—Vul°V ko + k°V Vel — 19V Veky + KV Vol — 19V V kg
Some terms cancel. Note: V k°V., — Vul°V .k, =
VakV I — V.1, V.k¢ = 0, using Killing’s equation. Simi-
larly V,1¢V .k, cancels with V£V .l,. To finish, commute
all remaining covariant derivatives past one another:

v117774) + mea :M+ chacbdld + K eV blat
K Rocaal! — 1N aRy — 1°Rochak” — 1N 5Fg — 1°Rycadk”

= kcldRacbd + kcldecad - lcdeacbd - lcdebcad = 07

using Killing’s equation to cancel all second covariant

derivatives. Final equality follows from symmetries of Rie-
mann tensor, and the fact we can swap ¢ <> d at will. O

14
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Noether’s Theorem: Killing vectors give rise to conserved
quantities via the following. Let k® be a Killing vector, and
let u® be the tangent to a geodesic. Then the quantity u’k;,
is preserved along the geodesic.

Proof: uV,(u’ky) = u®(Veub)ky + uu’V,.ky, = 0,
using geodesic equation, and symmetry of u%u®, antisym-
metry of V k;. O

Theorem: For any Killing vector, V.V,k, = R, %ka.

Proof: Note we have V,Vik. + V.,V k, = 0 by Killing’s
equation. Add various forms of this equation, with indices
permuted, in a way that we can apply the Bianchi identity:
2R, ‘= -R,. "+ R, — R,,* We have:

VieVeka + ViVoke = Ve Vipke — V Vioky — Vo Vike — Vo Veky

+VVaiky + V Vipke =0
Rbcadkd - Rabcdkd + Rcabdkd + VVieks = VeViky = 0.

And hence by Killing’s equation and the Bianchi identity,
we're left with V.V, k, = R, kq. O

The Killing vectors of Minkowski spacetime are:

e k* = (1,0,0,0), corresponding to time translation.
The associated conserved quantity is energy.

e k% = (0,1,0,0), k* = (0,0,1,0) and k* = (0,0,0,1)
corresponding to spatial translations. The associated
conserved triple of quantities is linear momentum.

e k* = (0,0,2z,—y), k* = (0,2,0,—x) and k* =
(0,y, —x,0) corresponding to spatial rotations. The
associated conserved triple of quantities is angular
momentum.

o k% = (x,t,0,0), k* = (y,0,£,0) and k® = (2,0,0,1)
corresponding to Lorentz boosts. The associated con-
served triple of quantities is just the position of the
particle at time ¢t = 0.

It's possible to verify that 9, and sin(¢)dg + cot () cos(¢)dy
are Killing vectors for the 2-sphere metric ds? =
df? + sin?()d¢?, via a long, tedious calculation.

To get a third, we use the fact that the Killing vectors
form a Lie algebra. The commutator is:

m® = [k, 1]* = K"Vl — 1°Vyk® = kP0y1" — 1°0pk";
that is, the commutator is independent of the connection,
which is helpful in practice. From here it is easy to find the

third Killing vector: — cos(¢)0s + cot () sin(8)0.

8 The Newtonian limit

Theorem: The metric ds? = —(1+2®)dt? + (1 —2®)(dz? +
dy? + dz?), for ® < 1, reproduces Poisson’s equation
for gravitation via the Einstein equations, and reproduces
Newton’s law of gravitation via the geodesic equation.

Proof: The non-zero connection components are:

0;® )
~ 1(1) I, = ~ i(I),

1429 g 1929 g

1

0;®

t _pt
Ftifrit*

~ 628;@ + 51kaj(b — 5jk31<1>
The non-vanishing Ricci tensor components are then:
Ry~ V?®, Ry, =~0, Rij~—6;V?®—20,0;®.

Thus R = —6V2®. Assuming T; = p, density, Einstein’s
equation for the ¢t component then just gives V2® = —47p
as required.

The geodesic equations are:

0~ i+ 2i2'0;®,
0= i +{20'® + 20'370;® — ;372" 9'®.

To simplify, note #'9,® = & = 0 (for a time-independent
gravitational potential), and 2 — §,;3%i7 ~ 1 + O(®) by the
form of the metric.

Then the equations reduce to { = 0, i.e. t can be
chosen to be proper time, and 0 = i + §'®, i.e. Newton’s
law of gravitation. [

9 Tests of general relativity

Definition: The Schwarzschild metric is defined by ds? =
-1
— <1 — 2M> dt*+ (1 - 2M) dr?+12(d6? +sin®(0)d¢?).
r T

All tests of GR we will see will involve studying motion of
particles in this metric.

Theorem: Particles in the Schwarzschild metric have two
conserved quantities:

E = (1 - W) i, L=r%sin*(0)¢.
r

Proof: These are clearly first integrals, since the metric is
independent of ¢ and ¢. O
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We can get a third conserved quantity as follows:

Theorem: For any geodesic (not necessarily in
Schwarzschild), if u® is a tangent vector, then u’u, is
conserved along the geodesic.

Proof: u®V,(ubu,) = 2upu®Veu® = 0, by geodesic
equation. O
In particular, wbu, = gqu®u® is conserved. Since

this is tensorial, it is independent of coordinates. In normal
coordinates, this is n,,u®u’, which is 0 for null geodesics
(light) and —1 for timelike geodesics (matter).

So: —e = wubu, is conserved, with ¢ = 0 for light,
and ¢ = 1 for matter. In terms of Schwarzschild, this gives:

Theorem: Particles in the Schwarzschild metric have the
conserved quantity:

.2 . .
—e= Vit 4+ TV + 726 4 12 sin?(0) 2,
where V =1 —2M/r, and e = 0 for light, 1 for matter.

Proof: Direct from above. [

Theorem: In the Schwarzschild metric, we can with-
out loss of generality set 6 = /2.

Proof: Consider the 6 equation of motion:

d

%(729) —r%sin(0) cos(9)¢'52 =0.

Suppose initially 6 = /2, 6 = 0. Expanding above equa-
tion, get # = 0 initially, so # = = /2 for all time. O

Summary: The following quantities are conserved in
the Schwarzschild metric:

L=1%, E=4tV,

—e=-Vi* + ﬁ + r2¢?
= 7 ,

where V =1—2M/r, and e = 0 for light, 1 for matter.
We have set 6 = /2 without loss of generality.

Theorem: We have the radial equation:

_E2+,];.2+L2
—e= —— + —.
1% r2

Proof: Eliminate ¢, i from the conserved quantities. [J

This has a nice interpretation. Rewrite the radial equation

1., 1 oM\ [ L? 1,
2y (128 (2 he) - ZE2 =0
2r+2( r>(r2+€> 2 0

v(r)

This should be interpreted as a Newtonian-style energy
equation with V' (r) the potential energy. Considering V' (r)
graphically can help us determine things like stability,
orbits, and where particles will travel to.

Differentiating the energy equation, we find:

eM L? 3ML?
T2 7’3 T4
~— ~—
inverse square law  centripetal force

T+ 0.

This is the same as in Newtonian theory, except with a GR
correction 3M L?/r*. We find that for ¢ = 0, the inverse
square law vanishes, i.e. light is unaffected by gravity in
Newtonian theory.

Theorem: The equation of orbital shape is:

d?u Me

where u(¢) = 1/r. Here, 3Mwu? is the GR correction to the
Newtonian orbital shape equation.

Proof: Use the chain rule:
du _dudrds _ 1% P
dp drdsdp 2"’ L L’

Insert into radial energy equation, then differentiate. O

Suppose Alice orbits the Earth at height R + h, with Bob
stationary on its surface, at height R. Alice starts above
Bob, orbits once, then looks at her watch to see time ¢4
has passed. Bob does the same, and looks at his watch
to see time tp has passed.

Claim: The delay is given by t4 — tp =
2W\/(R+h)3 “3ME+h? ([ J1-2M/R
M V1-3m/(R+h))

Proof: Alice is massive and moves in a circular orbit.
So using the equation of orbital shape with v = 1/r =
constant, and L = r2¢, we find that

Mu? . / M
2 _ — _
u—3Mu* — <ﬁ2 =0 = o¢= Y VT=h
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Hence

\/(R+ h)3 —3M (R + h)?
ta =27 i .

For Bob, # = ¢ = # = 0, and so the Schwarzschild metric

gives:
/ 2M

where At is the change in the coordinate time. Now need
coordinate time. Use equation for e to write, using our ex-
pression for ¢:

N JNS S
r—3M 1 -3M/r
We deduce that At = t4/4/1—3M/(R+h), and the

result follows. [

—1= —V£2+<

Consider a light ray (¢ = 0) passing the Sun in Newtonian
theory:

The orbital equation is v” + v = 0, with boundary
condition v = 0 when ¢ = 0. So solution is:

_sin(¢)

==

which is a straight line with impact parameter b.

In GR, we must work perturbatively. Let ug be the
Newtonian solution, and let u; be a small correction.
Substitute into GR orbital shape equation to get:

d?uy , 3Msin®(¢) 3M

W + uy = 3MU0 = T = ﬁ(l — COS(2¢)).
This is simple and can be solved by a homogeneous solu-
tion and a particular integral:

3M M

ﬁ + @ COS(2¢5)

2M M sin?(¢)

2

Use BCs such that the photon falls in from the left, ¢ = =,
so ui(m) = 0. Thus A = 2M /b?. Also WLOG set B = 0.

u1 = Acos(¢p) + Bsin(¢) +

= Acos(¢) + Bsin(¢) +

At the right, ¢ = ¢, considered small. Then
e 2M 2M )
g + bT + bT + 0(6 )

So € = —4M /b, so the deflection angle is 41 /b.

0=

Same problem as light deflection, but now ¢ = 1. Best to
try and solve:

du\> E?-1 2Mu 5
GR bit

In the Newtonian case, we get conic sections:

g = %(1 + ecos(9)).

For GR, write u = ug+wu4, where u; is a small perturbation.
Then to first order we get:

2du0 dU1 o 2MU1

%% = 12 - 2UOUI + 2Mug

L 2Mesin(¢) duy  2M _ 2M*(1 + ecos(¢))?

7 dp Tz ees@m = o

Use an integrating factor to get into form:

(14 ecos(¢))>.

is (i) ~ 7

do \sin(¢) )  eL*sin?(¢)
Most terms on the RHS give rise to periodic behaviour in
u; however, 3e? cos?(¢) does not! Since:

3e? cos?(¢) _ 3¢ 362,

sin?(¢) sin?(¢)

on integrating, we get an interesting term that grows with-
out bound. Considering only this term leaves the simple
equation:

d( Ul )z—MS(_362):—36M3

dp \sin(¢) ) eL? L
Hence:
3
u= ﬁ(l + ecos(¢)) + ?Wéfd) sin(¢) + periodic terms.

This is only the first order term in an approximation. It
agrees, to first order, with:

u:g<1+ecos<¢<1—3ﬁ422)>).

Thus we get a precessing orbit. The angle between the
distances of closest approach is:

2 6 M?2
Ap=—"  ~2r+——" for M? < L2
=T ompye S T oM<

This offset from a 27 periodic orbit is called the precession
of the orbit.
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Consider light (ds? = 0) emitted radially (df = d¢ = 0) from
a large spherically symmetric body. The metric reduces to:

dr? [ dr
dt* = — At= [ —.
vz / V)
This is the time to propagate in coordinate time from r,
(the radius of emission) and r.

Now let A7, be the proper time interval between succes-
sive maxima of the light wave at radius r., and A7 be the
proper time interval between successive maxima of the
light wave at radius r.

For light, we know 0 = —V#%? + #2/V. So for an ob-
server at r, At? = V(r)At?, and for an observer at r,,
AT? = V(r.)At?. But for our case, we know At, and it is
equal in both cases. So we find the redshift is:

AT, Vre) M M
= ~]1— — 4+ —.
AT V(ro) Te r

Suppose a radio signal is sent from Earth to Venus, which
is directly on the opposite side of the Sun, then reflected
and sent back to Earth. Let Ry be the Schwarzschild
coordinate of Venus and R the Schwarzschild coordinate
of the Earth. Suppose the radio signal just grazes the
surface of the sun, at Schwarzschild coordinate Rj.

Claim: The total travel time of the signal is
T ~2(\/R%L — RZ+ /R — R?).

Proof: The radial equation for a null geodesic is
E2 7-,2 L2
VvV
We just graze the Sun, so r = Ry when 7 = 0. Hence we

find that £2/L? = (1 — 2M/Ry)/R3%. Using this, and the
conserved quantity £ = £V, we find that:

ﬁ — i —4(1 % 1 %ﬂ

dt & r r21—2M/Ry’
The Sun’s Schwarzschild radius, 2M, is tiny compared to
its radius Ry. So assume 1 — 2M /r = 1 throughout. Then:

Since R > 2M, the proper time on Earth is approxi-
mately the same as the global coordinate time. So just
integrate this between Rg and Ry, then Ry and Ry (pick-
ing the correct minus signs in each case), and double the
answer to get result. O

10 Black holes

The Schwarzschild metric also describes black holes. This
is most easily seen by introducing Eddington-Finkelstein
coordinates:

Definition: Ingoing Eddington-Finkelstein coordinates for
the Schwarzschild metric are given by (v, r, 0, ¢), where

—2M
v:t—|—7“+2Mlog(T Wi )

Outgoing Eddington-Finkelstein coordinates for the
Schwarzschild metric are given by (u,r, 0, ¢), where

—2M
u—t—r—2M10g<r2M )

Theorem: In ingoing Eddington-Finkelstein coordinates,
the Schwarzschild metric takes the form:

ds® = —Vdv* + 2dvdr + r?(d6* + sin*(0)d¢?).
Proof: Short calculation. O

For radial null geodesics, we need either v = constant, or
Vdv = 2dr, which implies v —2r —4M log((r —2M)/2M) =
constant.
For r large, these look like:

constant=v~t+r, constant~uv—2r=~t—r.
So look like Minkowski space lightcones:

As we approach r ~ 2M, one of the lines tilts giving
us the diagram:

t
10M

A |
SM\QE </

0 2M 10M
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We see that if you are at r < 2M, and move along a
timelike curve, your r must decrease. So you can never
escape if you fall to r < 2M.

Definition: We call r = 20 the event horizon.

Also note that photons on r = 2M stay there, so
you can’t see them. This is why it is a black hole.

The Hoop Conjecture: If matter of mass M is confined to
a proper distance [ < 2M, then an event horizon will form.

Note in Eddington-Finkelstein coordinates, the singu-
larity in Schwarzschild at » = 2M vanishes. But there is
still a singularity at » = 0. What is its interpretation?

We can see that » = 0 is pathological by consider-
ing the scalar invariant R,,.qR°?. It can be shown

that:
2

m
RabcdRade ~

3

7‘6
so this scalar blows up in all coordinate systems as r» — 0.
Classical physics suggests that this singularity is thus the
boundary of spacetime.

Penrose’s Theorem: |If there is an event horizon in
a spacetime, there is necessatrily a singularity.

Theorem (Hawking): Particle-anti particle pair creation at
the surface of a blackhole means the blackhole acts as a
blackbody of temperature 1/8/7M.

Boltzmann’s Law: The energy flux of a blackbody
per unit area is oT*, where o = 72/15.

Write the energy of the blackhole (equal to its mass
in these units) as M = 1/8xT. Then the specific heat of
the black hole is:

oM 1

M
T — &ar2 <

C
So by the laws of statistical mechanics, black holes are
unstable. The black hole breaks down over time. The black
hole loses its mass as:

dM

1
= —(energy flux) oc T*M? o —

M2

since r = 2M at the surface of the blackhole, and area
r? o« M2. So the black hole’s lifetime is O(M3).

The laws of physics are invariant under time reversal.
In outgoing Eddington-Finkelstein coordinates, as defined
above, we find the time-reversed black hole metric:

ds? = —Vdu® — 2dudr + r*(d6? + sin®(0)d¢?).

This reverses the diagram above, and shows that all
matter inside r < 2M is ejected from the region.

Definition: Such a region in spacetime is called a
white hole.

No one knows why white holes are not observed.

Theorem: There is an unstable circular photon orbit
around a black hole at r = 3M.

Proof: Use the radial equation of motion, which for a
photon is:
. L? 3ML?
7)_7“73—’_ T

0.

For a circular orbit, we need r = constant, which from this
equation gives r = 3M. To check if this is stable, consider
the effective potential energy:

1 oM\ L2 1
——(1-28) = g2
Vir) 2( r>r2 2

We find that V(3M) < 0, so the orbit is unstable. [

Theorem: The photon absorption cross-section of a
black hole is 277 M?2.

Proof: Let a photon be incident on the black hole
with impact parameter b. Far away from the black hole, it’s
as if itisn’t there. So set r = b, M = 0 7 = 0 in the energy
equation, to get b = L/E. Since these are conserved
quantities, this holds as we approach the black hole too.

At r = 3M, the maximum of the effective potential
energy, the effective potential energy itself is:

VM) = — B2 (1— i )

BM)=—3 27M?

The photon falls into the black hole if this is less than zero,
since if V(r) < 0, 7 < 0. It follows that the minimum impact
parameter a photon can have without being absorbed is
b2. = 27M?2. The absorption cross-section follows. [

min
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Theorem: For radial free fall into a black hole from a dis-
tance r = 10M, starting at rest, you would survive a time:

T = 57v5M.

Proof: The effective potential for a massive particle with no
angular momentum is:

1 2M

Since starting from rest, E = 2/+/5. Substituting into the
radial equation 72 4+ 2V (r) = 0, we find:

0

. or 1 = B or d
"o =+ = ) Viom ="
10M

where we take the negative root since we are infalling. Let
r = 10M sin?(z); integrating then gives result. O

Theorem: With additional angular momentum, it is
possible not to fall in. Also, even if you do fall in, the time it
takes is longer than the above.

Proof: With angular momentum, the energy becomes:

2 L2

E2= /14—
AV To0are

and so the potential may be written:

1 10M L? 212
= (1) (- ) - 2.
Vi) 107’2( r >(< 25M2>r s’ " )

Considering the roots of this function, we see there are
three roots if 202 > 25M2, and one root if 2% < 25M?2.
These correspond to the graphs:

W w

> T

/—\/ 10M

So if we have sufficient angular momentum, we can oscil-
late forever in a region outside the black hole. If have more
than zero angular momentum, we have a little bump we
need to get over in the potential, so it takes longer than if
we had no angular momentum. OJ

YN > T
/ \\—_//‘ 10M

11 Cosmology

Friedmann, Robertson and Walker developed metrics that
describe the whole Universe. It turns out there are three
possibilities (derivation not required):

Definition: The Friedmann, Robertson, Walker met-
rics are ds* = —dt* + a(t)*doi. Here, do} is a spatial
metric dependent on a parameter k called the curvature
taking the values k = 0,1 or —1. The function «(¢) is called
the scale factor of the Universe.

The spatial part of the metric is given by:

dog = dr? + r*(d6* + sin®(0)dp?)
do? = dr® 4 sin® (1) (df? + sin?(0)dp?)
do? | = dr? + sinh?(r)(d6? + sin?(0)dp?).
Note that for £ = 0,—1, space is of infinite extent, but for

k = 1, the metric is just hyperspherical coordinates on S2,
the three-sphere, so space is of finite extent.

The Universe contains stuff so need an energy momentum
tensor.

Definition: The energy-momentum tensor of the Universe
is
Tap = (p + p)uatip, + pab,

where u® is a velocity four vector, p is energy density and
p is pressure. Energy-momentum tensors of this form are
said to describe perfect fluids.

This energy-momentum tensor captures all possible
types of stuff:

e Galaxies, dark matter, are essentially free objects and
don’t interact very much. Thus they have zero pres-
sure: p = 0. Cosmologists call this type of matter
aust.

o Radiation obeys the equation of state p = %p, from
statistical mechanics.

e Dark energy obeys the equation of state p = —p, as
far as anyone can tell experimentally. Note for dark
energy, we have T,, = —pgas, SO the Einstein equa-
tions become:

1
Rop — iRgab + (A +87p)gap = 0.

We can thus trade dark energy for a cosmological con-
stant.
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Theorem: We have the mass conservation equation:

_ 3(p+pa

=-=—
Proof: ~ Choose u* = (1,0,0,0) (i.e. comoving
coordinates), so that w, = (-1,0,0,0). Recall

V. T = V.((p + p)utu® + pg®®) = 0, which in these
coordinates gives the result. O

Example: For dust, p = 0 so p(t) = poag/a(t), with
a(to) = ao, p(to) = po for some time ty. This is conserva-
tion of mass:

p(t)  -a’(t) = poag -

~~ —_ =~

energy density volume constant

Example: For radiation, p(t) = poag/a*(t), and for dark
energy p(t) = constant. Thus in an expanding Universe,
radiation is diluted faster than matter, which in turn is
diluted faster than dark energy. So we expect a radiation-
dominated era of the Universe, then a matter-dominated
era, then a dark-energy dominated era.

Theorem: We have the Friedmann and Raychaud-
huri equations:

dr(p+3p) — A = —3i/a
36 = 8mpa® + Aa® — 3k.
Proof: Not required. [

We should think of the Raychaudhuri equation as an
energy equation:

3a® = 8mpa® + Aa®> — 3k
NN el i

KE potential energy  total energy

Example 1: In the case there is no matter or radiation, i.e.
only dark energy. Then we have seen for A > 0 we have
de Sitter space, for A = 0 we have Minkowski space, and
for A < 0 we have anti-de Sitter space.

Example 2: Suppose there is only dust, and con-
sider a flat Universe. Then p = &k = A = 0. This

implies
2/3
t
a(t) = ag (to> .

Also py = 1/67t, so we can relate density of matter today
to the age of the Universe.

At t = 0, we find the scale factor a(t) is zero. So
there is a singularity (scale can’t be zero!).

Penrose’s Theorem: In an expanding Universe with no
dark energy, there must be a singularity at t = 0.

Proof: Not required. [

That is, there is a very early time where this descrip-
tion of the Universe fails.

Example 2: Consider a dust-filled closed (k = 1)
Universe with no dark energy (i.,e. A = p = 0). The
Raychaudhuri equation becomes:

3

o8P
3a

Make the substitution a() = 8mpoag sin®(0)/3. This im-

plies that:

3
167T%/sin%@)dﬁ =t

3 1
= 1(f) = 8”20“0 (0 - 25111(29)> .

So we have a parametric solution. This is a cycloid:

We see that the Universe undergoes initial expan-
sion, reaches a maximum size at § = 7/2, then contracts.
There is a Big Crunch at t = 8wpgad /3.

Example 4: Consider a dust-filed open (¢ = -1)
Universe with no dark energy. Via the similar substitution
a(f) = 8mpoa sinh?(#) /3, we have

371
t— 8”2““0 (251nh(29) - 9) .

There is continuous expansion.

For all cases, we see that at small ¢, a(t) ~ /5.
However, we've seen that at late times the behaviour is
dramatically different:

Since t is small at the moment, it's difficult to know
what type of Universe we live in.
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Example 5: Consider a radiation-dominated Universe, p =
+p, A = 0. Mass conservation gives p(t) = poag/a*(t) as
we saw above. The Raychaudhuri equation becomes:

_ 8mpoag
= — k.
“ 3a?

This can be integrated directly in each of the three k cases,
giving:

4N\ 1/4
- (3271'?[))()&0) 12 (k=0),

4 1/2
a:\/Qt(&Tgﬂao> 2 (k=1),
3 an 1/2
a:\/t2+2t< Wgoa()) (k=—1).

Let’s find the null geodesics in a £k = 1 Universe. Begin
generally: another form of the FRW metric is

dr?
1—kr?

ds? = —dt? + 42 ( +r2dh? + r? sin® (0)d¢2> .

Defining dT" = Ldt, this becomes:

dr?
1— kr2

ds* = a? (—dT2 + +r2do* + r? sinz(ﬁ)dq§2> .
Under a conformal transformation, null geodesics are pre-
served. So we may work with metric:

dr?

ds® = —dT?
5 Jr1—k:7“2

+ 72d6? + r%sin’(0)dp?.

We are interested in &k = 1. Without loss of generality
(since the metric is isotropic and homogeneous), let’s con-
sider radial null geodesics through r = 0, with = /2. So
the metric is:

2

1—1r2

ds? = —dT? + +r2de?.

From this metric, it's clear we have the conserved quanti-
ties:

E=-T (noT dependence)

L=r%$ (no ¢ dependence).

Since goes through » = 0, L = 0. Finally, since this is null,
we get the equation:

’f‘2

0=E>—
1—1r2

1
= T-—1= iﬁ arcsin(r).

Hence r = |sin(E?(r — 7)), so the geodesic returns to
its initial point after a time. Since E = T, we have r =

|sin(T")|, so the time light takes to circle the Universe is
AT = . Inverting, we have

At = /a(T)dT.
0
This is the time it takes for the light to encircle the Uni-

verse. So you can see your younger self if you look off into
the distance!

Einstein tried to solve the above equations to show the
Universe was static. Indeed, for a Universe containing only
dust and a cosmological constant, we find that a = a¢ = 0 if
and only if

k
a—g =4mp = A.

Since p > 0 for dust, A > 0. In a closed Universe,
k = 1, however, this gives an unstable solution when
a(t) = ag + da(t). We find that da(t) = Ada(t), which has
exponentially growing solutions.

12 Gravitational radiation

Consider perturbations of spacetime around a background

space, so that the metric takes the form g,, = gig) + hap,

where h,; is a small perturbation. In general, we will take

gg?)) = Nap, Minkowski spacetime. Then:

Theorem: The linearised Einstein equations are:
—Dhab—s—adaahdb+6d8bhda—aaﬁbh+(Dh—8dacth)nab = 1671y,
where 00 = V,V* is the d’Alembertian.

Proof: Recall we already calculated the change in
the Ricci tensor 0R,, and Ricci scalar §R when we
considering the Einstein-Hilbert action. We found:

1
0Ray = 5 (~Ohay + VaVeh?, + VaVph?, — Vo Vih) ,

where h = hayg©@“" = hoyn® is the trace of h, and
R = —0Oh + V4V h — Rypyh?.

Assuming there’s no matter for the background metric, we
have T,;, = O(h), so compare the O(h) terms in the Ein-
stein equations, given by:

1 1
SRap — iéRg((l(;) — 5 Rhay = 87T,

to get the result. In particular, all covariant derivatives turn
into partials because the background is Minkowski. Also
note that R,;, = 0, R = 0 in Minkowski spacetime. [
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In GR, we have the freedom to make a coordinate trans-
formation z* — 2'* = 2% + €. If the line element is
constant, then we have seen that the metric is changed
by V.e, + Vye,. However, there are no physical conse-
quences of the coordinate change.

Therefore, in our linearised theory, two metrics hl,,
hap related by:

h:zb = hgp + Og€p + Opeq

are physically equivalent. Transforming between two
metrics in this way is called a gauge transformation.

Definition: The condition on the metric i/,

1
777abh/) =0

/(lb _
Ol = 3

is called harmonic gauge.

Theorem: It is always possible to gauge-transform
the metric to some &/, obeying the harmonic gauge
condition.

Proof: Let h,, be our initial metric and let ), be our
transformed metric:

B b = hap + Oaep + Opeq.

Then 8, (W'*" — Ly™h') =

D <h“b —

The last two terms cancel, and we’re left with the equation:

1
= -0, (h“b — 2nabh> = -

So as long as we can solve the equation Oe? = —c?, then
we can transform to harmonic gauge.

1 1
27}“%) + 0,0 + 9,0% — gn“baa@acec),

Let's prove that this equation always has solutions.
We do so by constructing the Green’s function for O
Written out in full, the equation Oe® = —¢? is

62 b
o

Let the Fourier transform of ¢ with respect to both space
and time be:

P = /d3x dt e(x, t)e ™" TP (: /d4x e(x)emm> :

Inverting, we have

+ V2l = —h

€(X,t) = - /d3p dw &(p, w)elt =P,

Hence the equation in Fourier space is:

. __ ep,w)

G(p,LU) - wg _ ‘p|2
The Green’s function, G(x,¢;x’,t) obeys the equation
when —c(x,t) = §3(x — x')d(t — t'), and so

N . efiwt’+ip<x’
Gp,w; X', t') = W
Inverting,
ﬂwt +ip-x’ )
G(x,t; X', t") p dw P eI,

This integral has poles on the real line at w = £|p|. We
must shift them off in order to carry out the integral. Here,
we choose to move both of them a tiny bit into the upper
half-plane (cf. QFT where we move one to the UHP, the
other to the LHP). This results in us getting the retarded
Green'’s function.

Im(w)

= —|p| w = |p|

Ift —¢ > 0, close in the UHP, and if t — ¢ < 0, close in
the LHP. Then we can apply Jordan’s Lemma to say that
the contribution from the arc tends to zero as it becomes
infinitely large. The residues at the poles are:

eLilpl(t—t")—ip-(x—x')

iw(t—t")—ip-(x—x")
Res(£|p|) = lim (e >:

w—£[pl w £ [p| 2|p|

So by the residue Theorem, the integral reduces to 0 if
t—t' <0,and to

i /d3p eiIpPl(t—t")—ip-r B e—ipl(t—t")—ip-r
(2m)3 2|p| 2|p| '

when ¢t — ¢’ > 0, where r := x — x’. It remains to do this
integral, by switching to spherical polars, where p - r =
|p||r| cos(0) = prcos(d). We find (doing the ¢ integral):

.2 /dp do psm(Q) (eip(t—t’)—ipr cos(0) e—ip(t—t’)—ipr cos(@))
8T

_ o /dp<ezp(t—t ) e—zp(t—t ))(ezm _ e—zpr)
1 (oo}
= - dp sin(p(t —t')) si
sy [ o sl — ) sinGor)
1 <1 , ,
= 2 3 (cos(p(t —t"' + 7)) — cos(p(t —t' —1)))
1

Re </OO eip(tft/Jrr) _ eip(tt/)> )
= Sr2r oo
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Performing this final integral, we get
1 _ 4! D 4

The first 6 function disappears since ¢t — ¢’ > 0. So we're
left with the final expression for the Green’s function:

1
GO X 1) = 4 g Ot fort—17>0
0 otherwise.

Thus the solution to (e = —c is

€(X,1) = /de' dt’ G, ;X ¢)e(X,¢). O

This Green’s function tells us something about causality.
The ¢ function here is 6(t —t' — [x —X/|), so ¢(X’, ") can only
affect e(x,t) in the past lightcone of (x,¢). This encodes
our desire for causality.

Unfortunately, the Green’s function as it stands does
not look covariant. It can be made covariant using the
formula for 6(f(z)); we have:

St—t' —r) o(t—t' +r)

(Je—a/[?) = 8((t~t')? —r?) = T — S

This gives:

e(z) = —% /d4x §((x — 2")2)e(X ¢ YH(t — 1),

where H is the Heaviside function. This is Lorentz invari-
ant, but is not all that useful in practice.

Theorem: In harmonic gauge, the linearised Einstein
equations reduce to the simple wave equation:

1
Ohgy = —167 (Tab - 277abT> )

where T = T%n,, is the trace of the energy-momentum
tensor.

Proof: In harmonic gauge, we can replace 949.h%,
in the linearised Einstein equations by 10,9,h. Thus the
equations become:

—~Ohap + NapOh — Nap0e0gh® = 16Ty

Again, we can replace 1,,0.04h°¢ by %Wﬂh in harmonic
gauge. So the equation becomes:

1
—hgp + inath = 1671 4.

Take the trace of this expression by contracting with 7,4,
the back-substitute. [J

Notice that this is an equation of the form O(-) = ..,
which we spent ages trying to solve when we proved
harmonic gauge worked! We can use the same Green’s
function formula to solve this wave equation for the metric
perturbation.

Consider first the unsourced equations: T,, = 0. Then the
equations reduce to:

1
Ohay =0, O, (h“b — 2nabh> =0.
Using these equations, we have:

Theorem: Consider a wavelike solution to these equa-
tions, ha, = Aeqp Re(e**"), where A is the amplitude of
the perturbation, e, is the polarisation tensor, which must
be symmetric since h,;, is symmetric. Then we have:

(i) k.k* = 0, so gravitational waves travel at the speed of
light;

(ii) ikqe® = 1n°’ik,ec,, the harmonic gauge condition.

Proof: Just substitute in the ansatz. O

At first glance, it looks like ey, being symmetric, has
10 independent components, so gravitational waves have
10 possible polarisations. However, the gauge condition
(i) above gives 4 equations constraining e,. In fact, there
are another 4 constraints on e,;, which we will now derive.

Consider a gauge transformation hu, — hap + Oa€p + Op€a,
where ¢, = —AiA e*<*°, so that

Bap — hly = hap + A(Aaky + Apkg )e ™"

Hence the new theory has the polarisation tensor e,;, =
eapt+ A kp+Apk,. Remarkably though, the harmonic gauge
condition is unchanged:

1
kaeab o 5770,bkaecc =0
_>

1 1
koe — §nabkaecc + ko (A" 4+ APE®) — in“bka(%cAC) = 0.

=0

The big brace equals zero by two terms cancelling, and &
being null.

Therefore, it is apparent that we have not fully fixed
the metric by specifying harmonic gauge. There are still
four extra degrees of freedom counted by A,. These are
degrees of freedom associated with the metric - not with
eabs SO €45 has 2 possible polarisations.
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Example: Consider a wave travelling in the positive
z-direction, i.e. k* = k(1,0,0,1), k, = k(—1,0,0,1). Write
z* = (t,z,y, z). Then the exponential in the wave solution
is indeed ™ (~+2) a wave travelling in the z direction at
the speed of light.

By fixing the A,, we can fix the possible polarisa-
tions of the wave. Under a gauge transformation, we
have

€p1 — €91 + Aokl -+ Alko = €91 — Alk
Fix eg1 = e19 = 0, by appropriate choice of A; then. Simi-
larly,

€p2 — €2 + AOkQ + Agko = €02 — Agk
Fix ego = eo9 = 0, by appropriate choice of A,. Continuing
to egs3, we find that

€p3 — €3 + Aokg + Agko = €03 + Aok — Agk

So we've got two things we can use to fix eg3 = e3g =
0. We can use one of them to also set the trace of the
polarisation tensor to zero:

e’, = —ego + e11 + ez + €33
— —epo + €11 + €22 + €33 — 2A0k0 + 2A1]€1 + 2A2]€2 + 2A3]€3
= —egp + €11 + €22 + es3 — 2Aok + 2A3k.

So choose Ay, A3 such that both e, = 0 and eg3 = 0.

Finally, examine how this affects the harmonic gauge
condition. Recall this is given by k,e® = L1kPec, = 0.
Hence we have

b=0 = koe?® + k33 =0 = €% =0,

b=1 = koe” +k3e?' =0 = ¥ =0,

b=2 = koe” + ke =0 = ¥ =0,

b=3 = koe®” + k3™ =0 = ¥ =0
Here, we've used our earlier results, that eg3 = eq1 =
eg2 = 0. Therefore we are left with only e;5 = es1, and
€11 = —eég9 NoN-Zero.

We can separate these into the two possible polari-
sations:

Definition: The x polarisation takes e;s # 0.
e11 = —ege =0, SO that
0 0 0 O
oy — 0 01 0
e 01 0 0
0 0 0 O
The + polarisation takes e;; = —eqy # 0 and e;o = 0, SO
that
00 0 0
- 01 0 0
@ 0 0 -1 0
00 0 O

Definition: A choice of A, gauge in which e, = 0 is
called transverse, trace-free gauge. It’s called transverse
because the harmonic gauge condition then implies
kq.e®® = 0, i.e. the polarisation is orthogonal to the
direction of travel.

In order to detect gravitational waves, we need to look at
the relative motion of particles, i.e. we need to examine
their geodesic deviation.

Let a family of geodesics be labelled by s, with coor-
dinate ¢ along the geodesics. Define the tangent vector
to the geodesics by U* = 9x*/dt, and the vector taking
us between geodesics V¢ = 9z¢/0s. Recall the geodesic
deviation equation:

d2va u by e rd dQV(z,
W :R deU U(.V = dt2

In a particle’s rest frame, U¢ = (1,0,0,0). Then the equa-
tion reduces to:

+ R, UUVE = 0.

d*ve “ .
W - R OCOV == O

Let’s work out the linearised form of R%_,:

Theorem: In transverse trace-free gauge, R%., =
_lnab82h

2 0/tbe-

Proof:  Recall the Christoffel symbols are O(h) in

perturbation theory, so I'> = O(h?) can be ignored. Thus
R%co = 0I5 — 0oL’y

1
=0, <2nab(3bhoo + Oohyo + 30hb0)>

1
-0y (277ab(_6bhoc + dohpe + aChOb)> :

In transverse trace-free gauge, hog = hor = hg2 = 0 = hos.
So get result. [

Thus the geodesic deviation equation reduces to

Ve 1 s

— —nhp V= 0.
az 27"
We deduce that gravitational waves make it appear as if
there is a force between the two particles.

Consider two particles in the zy plane now and con-
sider V* = (t,z,y,0) to be a genuine displacement (with
t the displacement in time). Then we get two equations
from the geodesic deviation equation:

Pr 1. 1. d’y 1. 1.
az "Mt =0 g e gy =0
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For + polarisation, e,, = 1 and e,, = —1, so these equa-
tions reduce to:
d’r A,

prolieT cos(wt)x = 0,

>y A
%g + §w2 cos(wt)y = 0.

In x polarisation, e;, = e, = 1, so these equations re-
duce to:

d? A
Wf - §w2 cos(wt)y = 0,

d? A

E?; + 5(.02 cos(wt)x = 0.
These types of equations are known as Hill's equations
and are not solvable by elementary methods. However,
we can get an idea of the behaviour of the solutions.

Imagine a ring of particles around a fixed particle.
Then the two polarisations oscillate the ring as:

Recall that we computed the linearisation of the Einstein
equations at 1st order. In order to include the fact that
the gravitational waves carry energy and momentum, we
need to go to second order. The Einstein equations then
become:

1 1
[Rab - iRgab](l) = 877Tab - [Rab - §Rgab](2)7
where (1), (2) denotes the first order terms, second
terms, etc. Therefore the second order terms generate an

effective energy-momentum tensor in our theory.

Definition:
is defined by

The effective energy-momentum tensor

1
87Ttab = _[Rab - §Rgab](2)-

We now just have to calculate this!

Theorem: The second order terms in R, are:
RE) = 10ucadih™ + Sh (0uhhea + Dedahas — 0.0l
~0had) + 50" Ouhea — Oohaa)
—% <8ch0d — ;adh> (Oahap + Ophda — Oahap) -

Proof: Let g., + hg, be a perturbation to a background
spacetime. Let X[g,;] be a quantity dependent on the met-
ric. Then

X[gab + hab] = X[nab] + 6X[gabv hab] + O(h2)7

where 6 X depends on g, and h,;,. Then taking the varia-
tion again, we have:

6 X [gab + habs Pad) = X [gap] + 0° X [gav, hap] + O(R?).

That is, 62X [gap, has) = 5(6X)), the variation of the varia-
tion. This can help us calculate the second order terms in
h, which are given by %62X (think of a Taylor series).

We apply this to R,,- We must work with a general
metric, then specialise to the Minkowski metric at the end.
Recalling that to linear order, g*® — ¢® — h?®, we first note

1
oy, =0 <29ab (Obged + Ocgba — 3dgbc)>

1 1
= —ihad (Obged + Ocgva — Oagee) + igab (Ovhecd + Ochpa — Oahue)

1
= —hqg"Th + §9ab (Ophed + Ochoa — Oqhee) -
Therefore 6°I'¢, =

1
Reqh®Td, — heqg®®oTd, — ih“b (Ophed + Ochpg — Oghue)
= hgeh®T§, — 21 ,0T..

Restricting to Minkowski background, we can setT" = 0 in
all the above formulas.

Recall that

Rap = 0Ly, — 0p1G, + To 6y — Th Ty

a

Thus the variation in R, is:
§Rap = 001G, — 0,01 +0T 0, D6+ 10, 01— 0T Ty —Te 0T,
The second variation is (dropping any lone I'’s):

6% Rap = 0.6°TC, — 0p0°T¢, + 20T%,0T¢, — 26T 2 0T,
Now simply substitute in the formulae for the variation in T’
and the second variation of I, with g,, = 7., Remember
to divide by 2 at the end! O
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There’s still work to be done to get an explicit formula for
tqp. For simplicity, we’ll assume there’s no matter present,
i.e. T,, = 0. Then we have:

Theorem: In the absence of an energy-momentum
tensor, we have

1 2 1 a2
tap = _87 (Rgb) - 577 dRE;d)nab> .

Proof: The first order variation in the Einstein equations is:
RY — L5(Rgu) = 0
ab T 9 (Rgab) = 0,

since there is no matter present. Now 6(Rgas) = hay RV,
since R = 0 for Minkowski spacetime. Therefore the
first order Einstein equations are Rfj} — thaRY = 0.
Contracting on a, b, we get RV — IhR(MW = 0, and since
thﬂi ho(l)ds for arbitrary perturbations h, we must have
RY =0.

Now move to second order variation. The second

order variation in the Einstein tensor is:
1
Ry = 70*(Rga)-
Evaluating the variation of the second term, we have:
6%(Rgap) = 0(gapd R+Rhap) = (2 R)Nap+2(0R)hap = (62 R)nap

since we found R(Y) = 0 already. We can also evaluate
52R, as follows: 62(g°“R.q) =
(2) + ncngi) — nCdRSi)'

C

6(_thRcd + gcdRSi)) — —9heR

Back-substituting, we get the result. O

This is still rather complicated. But in practice we're
not really interested in this quantity itself, but its average
value, defined as follows:

Definition: Let w be a weight function on a volume
V,and letw|,, =0, dw < 1, and

/ d4xg1/2w: 1.
v

Suppose that the volume has typical size a, and that the
variation in X has typical size A\. Then the average of X
on V is defined by

(X) :/ diz g'? wX,
1%

fora > M.

Theorem: (V,Y*) = 0, i.e. the average of a total deriva-
tive is zero.

Proof: We have: (V,Y?) =
/ diz g'? wv, Y = / d*z g*? (Va(wY®) — Y9,w)
1% 1%
= / d*z ¢"? wn,Y® — / d*z ¢'? YeO,w,
v %

using Stokes’ Theorem. The first term is zero since w
vanishes on the boundary.

The second is negligible, because the components
of (V,Y*) have typical size Y/\, and the compo-
nents of the integral on the RHS have typical size
Yw/a-|d*z| = Y/a, since the normalisation condition on w
implies |d*x| ~ 1/w. Thus the RHS is negligible compared
with the LHS. O

This Theorem implies that we can freely integrate by
parts when taking an average; thatis (40B) ~ — ((0A)B).

With our new averaging notion, we can compute () in a
nice form. We have:

Theorem: When there is no energy-momentum ten-

sor present, we have
1 - —cd 1 _— = —c —d
ab) = —— (Oahea®ph" — =8,hOph — 20,1 040" |
(tab) = 55— (Galicalb 5 0ahOph — 200 ,0ah")

where hq, = hay — 3naph is the trace-reversed version of
the metric hqp.

Proof: We need to find the average of the formula
for t,, above. Start with the second term. Begin by noting
that

1 a 1 a
gl/2gabR53)) _ 55(91/29 bR((j))) _ §R$))5(gl/29 b).

Recall Rfl? = 0 when there is no energy-momentum
tensor. So the second term drops out.

We found much earlier on that:
R = 0,0T¢, — 00T, = V0TS, — VioT,..

The second equality is obtained by going to normal coor-
dinates. Therefore:

gabez? = Ve (970G, — 9*°dTq;) -
. . . . ¢ 1
Thus this expression is a total divergence. So (g dREj) =

. 1 .
/ A 91/2gcdR§3)w _ 55 </ Ao gl/ZgabR&))w> =0,
v v

since we're integrating a total derivative, so get zero. Set
background to 1 = g to finish.
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Now we need to deal with the first term, (R{>)). Integrating
by parts, we get:

1 1
<R1(12b)> = < — Zaahcdabhcd + §adhcb(6dhca - aCth)
1
+18dh(8ahdb + Ophga — adhab)>
Now note that ha, = hay — 3745k implies that A = —h, so

we can write hq, = hqy, — $1aph. Substituting this in and
doing some algebra we get the result. [

Note that in transverse, trace-free gauge the result
simplifies further. In this gauge, we have h = 0 and
d.h, = 0. Therefore we end up with:

Energy-momentum tensor of gravitational wave:
In transverse, trace-free gauge, where h is the trace-
reversed metric, we have

1 — —cd
<tab> - 3277'( <8ahcdabh >

The averaging procedure is not just a calculational
convenience - it is also essential if we want to get anything
physical out of our theory. Indeed, one can check that
tqp IS not gauge invariant (in the sense of changing the
metric). Fortunately, we have:

Theorem (t,;) is gauge invariant.

Proof: Recall that under a gauge transformation, we
have
hab — hab + aaeb + ab6a~

Therefore, we have

1 _
hab = hab - §7lab77aihcd = hab + 8a6b + 61)6@ - naba(:€c~

Inserting this into the big formula (t.;) (note we can’t use
the one where (t.;) ~ (OhOh), since this fixed a gauge
already!), we have that (t,,) —

1 —c . .
(tab) + 55— (0ah 4 (0y0°€ + 8,0 — 11°9930,€°)
40,70y 0,€¢ — 0,0°€ Dy hpa
— 07 (Dayea + 0aDa€y, — Mpaadec®) + (a <> b)),

Now note that by some calculation, index relabelling and
integration by parts, we can reduce this to the form:

1_— — 1 _
<tab)—|—<6aec <2Dhbc — 8d6(bh6)d + 2nb(:8d6@hde> +(a + b)>

But the big bracket just contains the linearised Einstein
equations, which must be satisfied. Thus (t.) — (tab)
as required. O

Let’s put some sources, T,, into the theory now. Recall
the equation of motion was:

1
Dhab = —167 (Tab - 277abT> .

The equation for the trace-reversed metric (recalling that is
even simpler (recalling Oh = —167T, by taking the trace of
both sides):

Ohap = —167Tp.

This can easily be solved by the standard Green’s function
to give:

4
X — x|

Fax,t) = [ % To(X, 1),

D
where ¢ = t — |x — x| and D is some domain which
the source is restricted to. We assume in all cases that
observers are distant from the source of the radiation, i.e.
x| > [x'].

We begin by examining static cases, T,,(X',t') = Tup(X').
Since we are distant from the source of the radiation we
use, as in electromagnetism, a multipole expansion.

Theorem: For |x| > |X|, we have:

1 11 1
X — X/| - + 727"/ cos(0) + 27“3(7")2(30052(0) D+,

where r = |x|, 7/ = |x/| and x - X’ = |x||X’| cos(6).

Proof: We have

1 1
X — x| (r2+ (r')2 — 211’ cos(6))1/2

1 )2 2 —1/2
:<1+(2) —Tcos(9)> .

r r

Now just use the binomial theorem. O

This gives a nice formula:

' cos(0)

r

_ 4
By = — / dr'dfdg 1'° sin(0)Toy(X') (1 +
r

2 (3cos?() — 1)

The first term is the monopole term, the second term is the
dipole term and the third term is the quadrupole term.
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In practice however, it’s usually best to write things in terms
of the x and x’’s, usually with some indices. One of the
better forms to work with is:

1 1 x-x  3(x-x)? x.x
— = 1 + 5 + _
x—x1 r| =~ r
monopole S~~~
dipole quadrupole

Example: In the static case, we assume that T, is
dominated by its rest mass energy. That is, the only
non-zero component of Ty, is Tygy. Therefore the only
non-zero component of Ay iS hgo.

Keeping only the monopole, we get:

4 AM
= / &X' p(X) = —— = —4d.
r T

— 4
hoo = - /d?’xl Too(X') =

Here, p is the mass density and ® = —M/r is the Newto-
nian gravitational potential. The form of the metric compo-
nent hqg is therefore:

hoo = hoo — *7)00 —hoo +h/+ﬁ{+ﬁ'{ *Eoo = -20.

If we use this as an actual perturbation to Minkowski
spacetime, we get something of the form:

ds® = — (14 2®) dt* + da* + dy? + d2?,
which is the metric reproducing Newtonian gravity.

Including also the dipole term in the expansion, we
have:

A4M 4 . x-x' 4AM  4x-P
hoo = T + - /dSX/p(X/) 2 = — 4+

b

r 73

where P is the dipole moment, given by

P= /d3x’ p(xX)x’

Similarly, we define the quadrupole moment to be the ma-

trix:
a3 16 'y
X' p(x 21] 2ij(x-x).

We now introduce time-dependence to the source. To deal
with time-dependence, we must remember that 7, is con-
served: 9,7 = 0. Explicitly:

00To0 — 0iTi0 = 0,
80T0j - 81'Tij =0.

Thus if there is time-dependence in Ty, we can’t neglect
To, Orin turn Tj;.

Theorem: hy(X,t) = 4E/r, where E is the total en-
ergy of the source.

Proof: Far away from the source, the radiation looks
like gravitational waves with energy-momentum tensor

(tas) ~ ((OR)?).

The energy momentum tensor has units of
momentum/(area x time). In terms of energy, this is
~ E* ~ 1/r%, since energy is the same as inverse length.
Therefore Oh ~ 1/r%. Now 9 ~ 1/r, so h ~ 1/r in the
far field. Therefore, we may restrict to only the monopole
term:

_ 4 4F
hoo = — /d3x’ Too(X',t — |x = X'|) = —,
' T

where F is the total energy of the source. In principle this
is time-varying, but we know from our earlier calculations
that changes in energy due to radiation only occur at order
O(h?), so in our linearised theory at the source, this E is
constant. O

Theorem: We have

— 4
hoi = —=P;,
r

where P, is the total momentum of the source.

Proof: This follows immediately from the definition of
momentum of a field in QFT, as the integral of 7°¢. Simply
note we had to lower a time index, and thus pick up a
minus sign.

Again, we only work to order 1/r, as in the pervious
Theorem. O

Note that since we can always boost to the radiating
matter’s rest frame, we can always set P, = hyo; = 0
without loss of generality.
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Theorem: We have

2.
hij = —1Li(t =),

-
where I;; is the second moment of the energy density,
given by:

I; (t — T) = /dSX’ Tool’;Z;

Proof: Consider the integral:
0
7/ Tol'l‘jdV:/ (akai)JdeV
8t R3 R3

:W—/ Tyi0p;dV = _/Tijdv-
2 R3

Now consider the integral:

02 7]
w ' Tooxil'jdv = a 8kT0kmixjdV
= —% (TOiJUj + Tojﬂii)dv = Q/EJdV,

where in the last step we used the previous result. This
almost gives the result. We need only recognise that

Ty (X't =[x = X'|) = Ty (X' ¢ = X'[) + O(1/7),

when we Taylor expand T;; for |x| > [x’|. So any higher
order terms don’t feature, as we already have the 1/r out
front. O

Theorem: We can rewrite h;; in terms of the quadrupole
tensor as
—  409%°Qy
Y3 a2
Proof: Quick calculation. We get the trace of @);; at some
point, but it's easy to see this is zero straight from its
definition. O

It's possible to substitute all this in to our formula for
(tap) and eventually get a formula for the power per unit
area carried away from the source.

Integrating over a sphere, we eventually get that:

Theorem: The total power from a source via gravita-
tional waves is given by the quadrupole formula

4
total power = —Q;;Q;;.

Example 1 (Emission of radiation from two orbiting
particles): Consider two bodies with equal mass m, mov-
ing in a single circular orbit. The bodies have positions:

X; = (T’ COSW}), TSiH(’l[)), O)a Xy = (77’ COSW}), -r Sin(d})a 0)7

i.e. are diametrically opposite. The angular velocity of the

particles is given by
. 2m
P(t) = -

Recall that the energy-momentum tensor for a particle with
momentum p# at position X(¢) is given by

a,b

ab _Dbp _
T°(x) = o o(x —x(t)).

For two particles, we just sum two energy-momentum
tensors of this type. Note also that in the non-relativistic
limit, which we’ll assume here, that p® = (m, mv*), where
v* is the velocity of the particle.

Thus in our case the energy density is:
T% = mdé(X — X1) + md(X — Xz).

This allows us to compute the second moment of the en-
ergy distribution:

I = /d3xT00(X)mixj = mata] + mabhal.
The quadrupole moment is then

1 o o1
Qij =I; — géijlkk = mxix] + mzhard — g&jmTQ.
Writing out the second moment of the energy distribution
in gory detail, we have:

cos? (1)) cos(1)) sin(zb))
cos (1)) sin(v)) sin®(¢)) .

We now need to take the time derivative a few times. After
a calculation, we eventually find that the total power of the
gravitational waves emitted by this system is

Iij = 2mr2 (

(@)
g
(o3
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13 Vierbein fields

Since the metric g, is symmetric, and has signature
{-1,41,+1,+1}, it can be diagonalised.

Definition: Write g., = e*,e",n.. We call the ma-
trices e*, ¥, the vierbein or frame fields.

Note that the Greek index of a vierbein is a Lorentz
index so it is raised and lowered wrt 7,,,, whilst the Latin
index is a spacetime index, so it raised and lowered wrt
gab- Therefore, we define things like

€pa = M€y, eau = gabnwe”b, etc.
A useful consequence of this is:
Theorem: ¢® ", = % and e e, = ",
Proof: Simply recall the definition of the fields:
et ety = g* e’ ey = g*ger = 0%.
For the second equation, invert the vierbein matrices in

the defining equation: e“ugabeby = 1n,,. Raising a 1 and
lowering a b, we get the result. O

The vierbein fields help us to identify the following
symmetry:

Theorem: Under a Lorentz transformation of the
vierbeins, the metric is invariant.

Proof: We have e, — é*, = A¥ e”, under a Lorentz
transformation. hence

Gab é#aéybnuu = AugeaaAVpepbnuu = €Ua€pb77<7p = Jab,
using ATnA =n. O

This is a hidden symmetry of the metric that we have
identified using the vierbeins. In fact, the Lorentz transfor-
mation can even vary from spacetime point to spacetime
point.

Slogan: We say that the Jlocal Lorentz transformation
form a hidden symmetry of the metric.

The line element in terms of the vierbein fields is
ds? = gapdz®da® = nm,e“adx“e”bdxb =N E'E",

where E# := e# dxz®. The {E*} form a basis of one-forms,
thus the vierbeins allow us to write the line element in a
Lorentzian way. This also shows the vierbeins are compo-
nents of a one-form.

Note that since ds? = n,, E*E", the {E"} form a pseudo-
orthonormal basis (to be orthonormal, we’'d need to
replace 7,,, — d,, in the line element).

Objects like e, V%, where V is a vector, are scalars
wrt their spacetime indices (since all spacetime indices
are contracted), but vectors wrt their Lorentz indices. Thus
VH .= et V*is a Lorentz vector.

Inverting, we have e’ V¥ = e et Ve = 60, Ve = VP
Hence V¢ = e V" is a spacetime vector.

We now want to define the covariant derivative with a
Lorentz index. Since 9, = e®,0., this is easy for scalars,
and we can simply write V,,¢ = 0,,¢.

For vectors, we need to be more careful...

Definition: The covariant derivative with a Lorentz
index acting on a Lorentz vector is defined by

ViV =0,V 4w, V7.

The connection w is called the spin connection. In the
usual way (i.e. construct a scalar S = V”V, and act on
it with the covariant derivative), we can extend this to one-
forms via:
VuVy =0V, —w,”, V.

Definition: In analogy with the metric connection, we im-
pose the condition V,e®, = 0 on the covariant derivative.
This condition is called the vierbein postulate.

Theorem: The vierbein postulate is equivalent to

Dae, + T, ¢, — et w P

b
@ Ml,ep—O.

Proof: Notice we’re trying to differentiate an object with
one Lorentz index and one spacetime index. Let’s work
out how to do this.

Notice that
Val(e® VY) = 0,(e®, V") + T, e V"

holds for any V¥, since we're trying to differentiate a space-
time vector. Using the Leibniz rule on the LHS, we have

V”Va(ebl,) + ebVVaV" = V”Va(ebl,) + ebue“aV“V”.

Now use the definition of the covariant derivative of a
Lorentz vector in terms of the spin connection. Rearrang-
ing everything we’ve found already, we see that:

VV'Va(e?,) = V"04(e?) + T, e VY —eb el w v VP

v® a®p p

Swapping some indices around, the result follows. [
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Theorem: Assuming the vierbein postulate, the spin con-
nection takes the explicit form:

b b b
Wiry = €%\, (Da€’, +T°,0%,) = €36, Vae’ (),

where the brackets mean miss out the Lorentz index when
taking the covariant derivative.

Proof: Rearranging the form of the vierbein postulate
we found above, we see that
b b c _ b
0a€’, + 17,065 =€ w, /e,

Now just invert the vierbein fields on the RHS by multiply-
ing through by e®, and ¢, . [J

Again mirroring our earlier work, we may also require the
Lorentzian torsion to vanish:

Definition: The covariant derivative is called torsion-
free if

Ve, = Ve =TF ", =0.
The brackets mean we do not include the spacetime
indices when taking the covariant derivative. We call 7,
the torsion tensor.

Theorem: The torsion tensor vanishes if ', =T'* ;.

Proof: First note that: Ve, =

ebuvbe(“)y = ebu (Ope®, — e”bwopyeap) = ebMF“bcecy.
Therefore the difference is
b e, (I, —T%,). O

w= €y

by the earlier work.

b Ta c b Ta c
euF b, — €7, % e

Finally, another analogy to the metric connection in
this context would be V1., = 0. What does imposing this
condition do?

Theorem: V,n,, = 0 is equivalent t0 w,,o = —Wusp, i.€.
antisymmetry of the spin connection.

Proof: We have: 0 = V,n,, =
so done. [J

o o
_wp, vlop — wy, p’r/llUv

To apply all of this to calculations, we need some extra
machinery. Recall our basis of one forms was defined by
E# = et dx®. Taking the exterior derivative, we have
1
B! = S, B NEP,

for some coefficients ¢*, .

Definition: The coefficients ¢, , are called the Ricci
rotation coefficients.

. _1
Theorem: We have w,,, = 5(—Cup — Copp + Cpur)-

Proof: Recall that dE* = Oyet, dx® A dz®, so we're
left with:

dE" = 9ye!  da® A da® = e, Ope” dz® N dE” .
Now notice that 0 = 9,(6#,) = e, 0pe®, + e*,0pet,. Using
this result, rewrite dE* as:
dE" = —et,0pe”, dz’ N dEY = e’ e, 0y’ , dE” N dEP.
Recall that
wy, = ebpe"a (Ope®, +T%,.€°,)

Notice that under exchange of v, p in the second term of
this formula, we have:

b _u 1a c b _p 1a c
e’ e o pe€, — e’ e ancep

But relabelling ¢ + b, we get the same thing as we had
originally, because I' is symmetric on its downstairs indices
(assuming a torsion free connection). Therefore:

dE" = w ", dE” N\ dEP.

It follows that ¢, = Wiy~ Writing this out explicitly,
we have:

1

) (Cuvp = Cppr) = Cuvp = Wppw — Wupp-

We get the second equality, because by definition, ¢ is anti-
symmetric on its second and third indices. Writing this out
three times with uvp — vup — puv, we have:

Cuvp = Copp t Cop = Wppr = Wupp — Woup + Wawp + Wupp — Wypw

=2 (Wpvp + Wupp + Wou) -

Finally, w, ;. + wopr = —Wypp + Wpuw = cuvp and hence we
find

Wpvp = 5(_%141 = Copp + Cpp)- O

We can extend this result to a torsionful connection.
First we define:

Definition:  The connection 1-form is defined by

wh, = wt, EP. The torsion 2-form is defined by

er = LTI E” AN EP.

Theorem (Cartan’s 1st eqn. of structure): We have:
dE" 4+ w", N E¥ = OF,

Proof: The result follows from the proof above. This time,
we don’t assume the connection is torsion-free, so we get
up to the stage:

dE" =€ et ,0pe” , dE” N dE”.
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Replacing the derivative by the spin connection and con-
nection, we have:
dEH = (wp“u — 6bpe“aFabcecy) EY NEP.

Recall from our torsion calculation that
ebpvbe(“)l, = ebPF“bCe“V
Inserting this into the above we have:

dEV = (w b - e“aebpvbe(“)y> EY NEP.

p

By antisymmetry of v, p imposed by the wedge product,
can replace the second term by:

1 1 1
5 (e“aebpvbe(“)l, — e”aebyvbe(“)p) = ie“aTg,jeaa = iTﬁy.

It's now clear how to obtain the result. O

Continuing on our tour of differential geometry, we can
define the Riemann curvature tensor with Lorentzian
indices as follows:

Definition: R, " (w)V, == (V,V, =V, V,)V,.

nvo

Definition: The curvature 2-form is defined by

1 [eg
Qr, = iR“W)O_(w)EP AE°.

Theorem (Cartan’s 2nd eqn.): We have:
Q= dw", +w", AN,

Proof: Begin by noting:

noo_ K1 d _c n
wau_ebeur ac 6Vaa€ c’

using our standard trick of considering 0 = 9y (e*,e®,). We
now compute the RHS. We have:

(dw ) ap + 20" ‘wpu‘b] =

pla

20/, (e“decyfg‘b]c - ecua‘b]e“c) +
265 (e’ = Dhacte) e, (Thy ey = e’ )
Expanding all the brackets, we get a large amount of can-
cellation (we need to use 0 = 9,(e*,e“,)), leading to

p 1
(dw",)ap + 2w ol

a

P _ no_c d d f
Wy = 2€74€5, (a[ar\b]c + F[a\wa]c)
" c d
=€ 4¢ VR cab*

We worked out the ab component, which sits next to dx® A
da® = e* e’ dEP NdE°. This gives us the answer when we

recall that a p-form A has components A = ; A, _q,dz"' A
... Adz% (this in particular gives the factor of 1/2). O

In particular, the components of the Riemann tensor com-
puted using the Christoffel symbols and spacetime indices
are the same as those computed using the curvature
tensor and the frame field indices.

To highlight the utility of this, let’s consider the following
example:

Example: Consider the metric

W (r)?

Suppose we want to construct the Riemann tensor for this
metric. We can do so using vierbein fields as follows.

ds® = —W(r)%dt* + + r2(d6* + sin®(0)d¢?).

First, we construct a basis of one-forms as follows:
E° = Wdt, E' = dr/W, E? = rdf and E® = rsin(6)d¢.
Inverting,

E° E? E3

= — p— 1 = — f—
dt =z, dr=WE' df=— do )

Therefore the metric becomes:
d82 — _(EO)Q + (El)Q + (E2)2 _|_ (E3)2.

We want to compute the curvature 2-form, Q# , so on the
way we need to compute w*, and therefore need dE*. Cal-
culating, we have

dE° = d(Wdt) = dW Adt + W Ad(dt) = W' (r)dr A dt,

dr 1 W’(r)
1 — =7 =
dE —d( ) d( ) Adr (r)2dr/\dr 0,

dE? = dr A db,
dE® = sin(0)dr A d¢ + r cos(0)df A d.
Rewriting in terms of the one-forms, we have:

dE® = -W'E° A E',

dE' =0,
dE? = KEl A E?,
T

a5t = Wt g ps 4 0 o ps
T T

Now use Cartan’s first equation of structure:
dBE" = —w", N EY.
This implies that
dE® = —w° AE' — W% A E? — W% A E3.

Recalling that dE° = —W'E° A E', we see that the RHS w
values are very restricted. In particular, w% ~ aE° + bE?,
wY ~ E% W% ~ E3, else we wouldn't get the desired dE°
value.
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Similarly,
dE' = —w'y NE° —w'y N E? — Wl A BB

Now note that w!, = w;, = —wy, = w% (since we can raise
and lower indices like an object in special relativity, and
the connection one-form has antisymmetric components
by definition). Thus w!, = w% . We also see from the form
of dE! that w';, must look like E°. Thus we deduce that

W' =W'E°.
Similarly, w% = 0, w% = 0. We can keep going with the
other values to get:

%4 t(6
w12 = —KEQ, w13 = ——E?’7 w23 = —L()ES.
T r T

The final step is to compute the curvature 2-form, which is
given by Cartan’s second equation of structure as:

O, =dw", +wh, ANWP,.
Computing each component in turn, we get:

QO1 _ —(W”W-ﬁ- (W/)Q)EO A El,
_WW’

Q% = E° N E?,
r
wWw’
Ql, = — E' AN E?,
T
/
le - _mEl /\EB,
r
1 w? .
2 2 3

Since O, = %R”VWEP A E?, this now contains all the

information about the Riemann tensor.

In particular, we can calculate Ricci tensor components
easily:

Roo = R0 = Ro10 + R0 + RPg30-
From the curvature 2-form, we see that

2WW'
R0101 = -Ww” - (W/)Qa R0303 + R0202 = r .

and so Rypg = WW" + (W')?2 + 2WW’/r. We can also
deduce:

2WW’

Ri1=-W W/—(”//)Q , s and
2WwW - w? 1
Ros = R33 = — -+
r T r

This is a lot easier than calculating all the Christoffel sym-
bols!

Definition: The Palatini action is given by
I= /nnym Q" NEP NE7),

where 7 is the alternating symbol (not tensor!), Q is the
curvature 2-form, and E* are the basis one-forms.

Theorem: Treating w*, and E* as independent vari-
ables, the Palatini action has the vacuum Einstein
equations as its equations of motion.

Proof: Let w", — w*, + dw*, and E* — EF + §EF.
Then by Cartan’s second equation of structure, we have

Nuvpe O, = N po (d(0wWH,) + dwh, Aw®, +w#, Adw®,)
= va (d((swuu) + 25(‘]”(1 A way) .

We also have:
Nuwpod(BP N E%) = 21,00 EP N GE°.

Hence calculating the variation of the action, and integrat-
ing by parts, we have: 61 =

= /n,uupa-< — 6w NA(EP N E%) + 26w”, Aw™ N EP N\ E°
+20M N EP A 6E">.

Therefore, the equations of motion are:

0 = Nuwpo (—*d(EP N E) 4+ 20" NEP NE7),
0 = N pe U A EP.

1ST EQUATION: We note that n,,,.d(E’ AN E7) =
2prpodEP NET = 20155 (W5 ANEP —©P)NE?, by Cartan’s
first equation of structure. Thus the equation becomes:

0 = Nuwpo (—277“”(wp6 ANEP —©P)NE° 4 2w N EP A E") )
Lowering the a, this is equivalent to:
0= 2Nwpo (—6”a (W5 ANEP —0°) +2w," A Ef’) AE°

Wedging both sides with FE*, were left with
0 = 2Muaps©” N E° A E“. That is, this equation just
encodes the fact the torsion vanishes.

2ND EQUATION: Writing out equation two using the
definition of the curvature 2-form we have:

1
iRabcdnﬂvmeuaeybepgdwc Adz® A dz® = 0.

Wedge with dz’, and use dz°® A dz? A dz€ A dof oc nedele,
where ¢ is the alternating tensor. Finally, use the fact that

a5 = 088 = 6oL}

from far earlier in the course. Substituting in gives the vac-
uum Einstein equations. O
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