
Part III: Numerical Solution of DEs - Revision

Lectures by Arieh Iserles, notes by James Moore

1 ODEs: General principles

1.1 Problem formulation

Problem: Solve y′ = f(y), y(0) = y0, where f is analytic
(i.e. around any point x, there is an open neighbourhood
on which f has a convergent Taylor series). Since f is
analytic and y′ = f, y is analytic.

WLOG we can take the system to be autonomous.
If y′ = f(t,y), then defining w = (t,y), we have
w′ = (1, f(w))T .

1.2 Numerical solutions and order

Notation: Let h > 0 be a time step. Denote a numerical
approximation to y(nh) by yn (this notation suggests our
numerical scheme gives y(0) exactly). Sometimes we
write tn = nh; then y(tn) ≈ yn.

Definition: A numerical method is of order p if for
all n, yn+1 − ỹ(tn+1) = O(hp+1), where ỹ is the exact
solution of y′ = f, y(nh) = yn.

Slogan: The order of a method measures the local
error committed.

Theorem: An order p method commits a global error
of order O(hp); that is, yn+1 − y(tn+1) = O(hp), where y
solves y′ = f, y(0) = y0 as usual.

Proof: Add up all local errors: n · O(hp+1) =
(tn/h) ·O(hp+1) = O(hp), since tn = nh is fixed.

1.3 Higher derivatives and Taylor methods

Notation: Often we need to use y′′, y′′′, etc. These can
be obtained from the differential equation y′ = f in terms
of f by repeated application of the chain rule.

We write fk(y) = y(k). Then:

f0(y) = y, f1(y) = f, f2(y) =
∂f
∂y

f, etc.

The natural way to approximate y((n + 1)h) is to use its
Taylor series:

y((n+ 1)h) =

∞∑
k=0

1

k!
hkfk(y(nh)).

This gives the natural numerical method (by truncating
and replacing with the numerical approximation scheme):

Method: The Taylor method is

yn+1 =

p∑
k=0

1

k!
hkfk(yn).

p = 1 is the forward Euler method : yn+1 = yn + hf(yn).

Theorem: The Taylor method is of order p.

Proof: Since ỹ(nh) = yn, we have:

yn+1−ỹ(tn+1) =

p∑
k=0

hk

k!
fk(yn)−

∞∑
k=0

hk

k!
fk(yn) = O(hp+1).

1.4 Operatorial interpretations

Definition: The differential operator is D, defined by
Dg(t) = g′(t). The shift operator (by h) is defined by
Eg(t) = g(t+ h).

Numerical methods approximate the shift operator E
and its powers.

Theorem: E = ehD.

Proof: For analytic g, we have:

Eg(t) = g(t+ h) =

∞∑
k=0

hk

k!
Dkg(t) = ehDg(t),

by Taylor’s theorem.

Thus numerical methods must approximate ehD. Let-
ting R(z) = ez +O(zp+1), we have:

Method: The ‘R’ method is yn+1 = R(hD)yn.
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Theorem: The ‘R’ method is of order p.

Proof: We have:

yn+1 − ỹ(tn+1) = R(hD)yn − ehDyn = O(hp+1),

since R(z) = ez +O(zp+1).

Taylor methods are a special case when R(z) is a
polynomial. It’s also possible to get other methods by
choosing R(z) not a polynomial (e.g. rational methods -
see below).

1.5 A-stability

Definition: The linear stability domain D of a method is
the set of all z = hλ ∈ C for which lim

n→∞
yn = 0, where yn

is the numerical solution of the one-dimensional equation
y′ = λy, y(0) = 1, with step-size h.

Definition: A method is A-stable if C− ⊆ D.

Why this definition? The equation y′ = λy has a so-
lution decaying to zero iff λ ∈ C−, which occurs iff
hλ ∈ C− for h > 0.

Theorem: The Taylor methods are not A-stable.

Proof: For the equation y′ = λy, we have y′′ = λy′ = λ2y,
y′′′ = λy′′ = λ3y, etc. Hence fk(y) = λky. Thus Taylor’s
method is:

yn+1 = yn

p∑
k=0

(hλ)k

k!
.

So we have domain of stability:

D =

{
z ∈ C :

∣∣∣∣∣
p∑
k=0

zk

k!

∣∣∣∣∣ < 1

}
.

For z very large, real and negative, the condition clearly
fails. So not A-stable.

Example: This example show why A-stability is im-
portant. Suppose we are solving the system:

y′ =

(
−1 1
0 −100

)
y, y(0) = y0.

One solution component decays as e−t (gently) and the
other decays as e−100t (very quickly). For the numerical
solution to decay in the e−100t component, we need −100h
(λ = −100) to lie in the method’s linear stability domain. If
the method is not A-stable, we require h to be very, very
small (order O(1/100)) to get a chance of decaying.

Definition: An equation for which non-A-stable methods
require depressed step length to converge to zero is called
a stiff equation.

1.6 Rational methods

We now consider choosing R(z) in the ‘R’ method as a
rational function.

Theorem: When

R(z) =

M∑
k=0

pkz
k

/ N∑
k=0

qkz
k,

the ‘R’ method reduces to the rational method :

N∑
k=0

qkh
kfk(yn+1) =

M∑
k=0

pkh
kfk(yn).

Proof: The method is:

yn+1 =

(
M∑
k=0

pkh
kDk

)(
N∑
k=0

qkh
kDk

)−1

yn,

and hence the result follows.

We want R(z) = ez + O(zp+1). When R is rational,
it is called a Padé approximation to ez.

Definition: Given a function f , analytic at the origin,
the [M/N ] Padé approximation RM/N (z) to the function f
is the quotient of an M th degree polynomial over an N th
degree polynomial:

RM/N (z) =
PM/N (z)

QM/N (z)

such that RM/N (z) = f(z) +O(zM+N+1).

Theorem: The Padé approximations to a function f
exist are unique.

Proof: Existence not proved in this course. For unique-
ness, suppose RM/N (z) = PM/N (z)/QM/N (z) =

f(z) + O(zM+N+1), R̃M/N (z) = P̃M/N (z)/Q̃M/N (z) =
f(z) +O(zM+N+1). Subtracting:

PM/N (z)

QM/N (z)
−
P̃M/N (z)

Q̃M/N (z)
= O(zM+N+1).

Cross-multiplying we have:

PM/N (z)Q̃M/N (z)− P̃M/N (z)QM/N (z) = O(zM+3N+1).

But the degree of the polynomial on the left is M + N ;
hence it must be the zero polynomial. Result follows.
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In the special case of ez, it’s possible to prove existence of
the Padé approximations (via messy induction). The form
is RM/N (z) = PM/N (z)/QM/N (z), where

PM/N (z) =

M∑
k=0

(
M

k

)
(M +N − k)!

(M +N)!
zk

QM/N (z) =

N∑
k=0

(
N

k

)
(M +N − k)!

(M +N)!
(−z)k = PN/M (−z).

Definition: The [M/N ] rational method is the rational
method for which R(z) = RM/N (z), the [M/N ] Padé
approximation to ez.

When we use the Padé approximation for our ratio-
nal method, we trivially get:

Theorem: The order of the [M/N ] rational method
is M +N .

Examples of rational methods: The most common
rational methods are:

• Backward Euler ([0/1]): yn+1 = yn + hf(yn+1);

• Trapezoidal rule ([1/1]):

yn+1 = yn +
1

2
h
(
f(yn) + f(yn+1)

)
.

Theorem: The rational method defined by the func-
tion R(z) is A-stable iff (a) all the poles of R reside in
C+ = {z ∈ C : Re(z) > 0} and (b) |R(iy)| ≤ 1 for all y ∈ R.

Proof: When solving the equation y′ = λy, we have
fk(y) = λky, as usual. Thus the rational method is
yn+1 = R(hλ)yn. Hence the method is A-stable iff
|R(hλ)| < 1 for all λ ∈ C−.

Suppose this holds. Then no poles allowed in C−,
with none on the imaginary axis (otherwise we can tend
to imaginary axis from LHP and get arbitrarily large
modulus). So (i) holds. (ii) holds by continuity of R, since
again we can tend to the imaginary axis from the LHP.

Conversely, suppose we have (i) and (ii). Then R is
analytic in the LHP, and on its boundary obeys |R(z)| ≤ 1.
By the maximum modulus principle then, |R(z)| < 1
throughout the LHP, and we’re done.

Theorem (Wanner, Hairer and Nørsett): The [M/N ]
Padé rational method is A-stable iff M ≤ N ≤M + 2.

Proof: Not in course. One inequality in one direction
is easy to see, though, since |R(z)| ∼ |z|M−N for |z| large,
so necessary that M ≤ N for A-stability.

Example: Consider the rational method:

R(z) =
1 + (1− a)z +

(
b− a+ 1

2

)
z2

1− az + bz2
.

ORDER: We know that the Padé approximation provides
the optimal order by definition, so the order of this method
can be no more than the [2/2] Padé method, i.e. 2 + 2 = 4.
We find that the order is p = 2 if a − 2b 6= 1/3, p = 3 if
a− 2b = 1/3 and a 6= 1/2, and p = 4 if a = 1/2, b = 1/12.

STABILITY: We use the maximum modulus princi-
ple technique. Check iy condition first; the condition
|R(iy)| ≤ 1 is equivalent to |R(iy)|2 ≤ 1, which in our case
is equivalent to(

1−
(
b− a+

1

2

)
y2

)2

+ (1− a)2y2 ≤ (1− by2)2 + a2y2.

Solving, we find the condition:
(
a− 1

2

) (
2b− a− 1

2

)
≤ 0.

The poles of R(z) are at: z =
a±
√
a2 − 4b

2b
. We

need these to be in C+. Considering the various cases,
we find the necessary and sufficient condition is a > 0,
b > 0.

2 ODEs: Multi-step methods

2.1 Method and order

Method: A multi-step method is a method of the form:
m∑
l=0

ρlyn+l = h

m∑
l=0

σlf(yn+l), ρm = 1.

Notation: We define the standard polynomials:

ρ(w) =

m∑
l=0

ρlw
l, σ(w) =

m∑
l=0

σlw
l.

Theorem: A multi-step method is of order p if
ρ(w) = σ(w) log(w) +O(|1− w|p+1).

Proof (intuition - actually wrong): In terms of opera-
tors, the multi-step method can be characterised as
ρ(E)yn = hσ(E)f(yn) (∗). On the exact solution ỹ of
y′ = f, y(nh) = yn, we have:

(ρ(E)− σ(E) log(E)) ỹ(nh) = O(hp+1),

since ehD = E on the exact solution. We’ve also acquired
an error from ρ(w) − log(w)σ(w) = O(|w − 1|p+1); since
E = 1 +O(h), this is the correct error.

Subtract the numerical scheme (∗). Then:

(ρ(E)− σ(E) log(E)) (ỹ(nh)− yn) = O(hp+1).

So by the inverse function theorem (take E = I + O(∆x)
and expand on LHS), the method is of order p.

3
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In practice, it is much easier to substitute w = eθ in this
condition, and examine the behaviour as θ → 0.

2.2 The Dahlquist equivalence theorem

Definition: Let {yn,h}
T/h
n=0 denote a numerical solution of

an equation on an interval [0, T ] with step size h. We say
the numerical method is convergent if for all T , and for all
t ∈ [0, T ], for any sequence nk ∈ N obeying nk · h → t as
k →∞, we have

ynk → y(t) as h→ 0.

Definition: The function ρ obeys the roots condition
if (i) all of its zeroes are in |w| ≤ 1, (ii) the zeroes on
|w| = 1 are simple.

Theorem (Dahlquist Equivalence): A multi-step method
is convergent if and only if (i) its order is p ≥ 1; (ii) it
satisfies the root condition.

Proof: We prove that convergence implies the root
condition only.

Suppose the method is convergent. Since the method is
convergent for all choices of equation and all initial values,
WLOG choose the scalar equation y′ ≡ 0 and y(0) = 1.
Then the multi-step method reduces to:

m∑
l=0

ρlyn+l = 0.

This is a linear difference equation. Let its characteristic
equation have roots ωj with multiplicities µj respectively.
Then the solution is:

yn =
∑
j

µj−1∑
i=0

niωnj ξi,j ,

for some ξi,j independent of n. If |ωi| > 1 for some i, then
yn → ∞ as n → ∞. If |ωi| = 1 and µi ≥ 2 for some i,
then yn has polynomial growth. Either way, does not tend
to true solution y(t) ≡ 1. So root condition necessary.

2.3 Order and Dahlquist’s first barrier

Idea: Dahlquist’s first barrier tells us the maximum order
of a multi-step method using polynomials of degree m.

The proof converts the root condition disk |w| ≤ 1 to
the LHP via the map w = (ζ + 1)/(ζ − 1):

Re(w)

Im(w)

1 w 7→ ζ
Re(ζ)

Im(ζ)

Theorem: Convergence of a multi-step method implies
the order must obey p ≤ 2 b(m+ 2)/2c.

Proof: Since p be the order of our method, so that

ρ(w)− log(w)σ(w) = c(w − 1)p+1 +O(|w − 1|p+2)

for c 6= 0. Motivated by the map w = (ζ + 1)/(ζ − 1), taking
the unit disk to the LHP, we define the functions:

R(ζ) =

(
ζ − 1

2

)m
ρ

(
ζ + 1

ζ − 1

)
=

m∑
l=0

rlζ
l,

S(ζ) =

(
ζ − 1

2

)m
σ

(
ζ + 1

ζ − 1

)
=

m∑
l=0

slζ
l.

We note the following few facts about R(ζ):

• Note that rm = 2−mρ(1). Convergence implies p ≥ 1,
so letting w → 1 in ρ(w)− log(w)σ(w) = O(|w−1|p+1)
gives ρ(1) = 0. Thus rm = 0 and deg(R(ζ)) ≤ m− 1.

• Note that rm−1 = 2−m(2ρ′(1) −mρ(1)) = 21−mρ′(1).
Convergence implies root condition, so 1 must be a
simple zero of ρ; hence ρ′(1) 6= 0, and thus rm−1 6= 0,
i.e. deg(R(ζ)) = m− 1.

• Since the interior of the disk is mapped to C−, and
the boundary is mapped to iR, we know (from the
root condition) that all the zeroes of R are in C− or on
iR, and the zeroes on iR must be simple.

Let ξ1, ... , ξM , ξM+1 ± iνM+1, ..., ξN ± iνN be
the zeroes of R(ζ). By the above, ξj ≤ 0. Then

R(ζ) = rm−1

M∏
j=1

(ζ − ξj)
N∏

j=M+1

(
(ζ − ξj)2 + ν2

j

)
.

Multiply everything out; since −ξj ≥ 0 and ν2
j ≥ 0, all

(non-zero) coefficients will have same sign as rm−1.

4
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We’re now ready to prove the main result. Rewrite the or-
der condition in terms of R and S, by substituting w =
(ζ + 1)/(ζ − 1). We then consider the limit ζ → ∞ (which
is equivalent to w → 1):

R(ζ)− log

(
ζ + 1

ζ − 1

)
S(ζ) = c

(
2

ζ

)p+1−m

+O

(
1

ζp+2−m

)
.

Define G(ζ) = (log((ζ + 1)/(ζ − 1)))
−1. Note that as |ζ| →

∞, we have

G(ζ) =

(
log

(
1 +

2

ζ − 1

))−1

∼
(

log

(
1 +

2

ζ

))−1

∼ ζ

2
.

Hence:

R(ζ)G(ζ)− S(ζ) = c

(
2

ζ

)p−m
+O(ζ−p+m−1).

We note we may also write G(ζ) as a Laurent series:

G(ζ) =
1

2
ζ +

∞∑
l=0

g2l+1ζ
−(2l+1).

Note there are no even terms since G(ζ) = −G(ζ). By
Cauchy’s integral formula, the coefficients are given by:

g2l+1 =
1

2πi

∮
Γε

v2lG(v) dv

=
1

2πi

1∫
−1

v2l

 1

log
(

1+v
1−v

)
+ iπ

− 1

log
(

1+v
1−v

)
− iπ

 dv

= −
1∫
−1

v2l dv

log
(

1+v
1−v

)2

+ π2

< 0,

where Γε was the clockwise contour encircling the branch
cut from −1 to 1:

Re(ζ)

Im(ζ)

Γε

−1 1

Go back to R(ζ)G(ζ)−S(ζ). Since R and S are polynomi-
als, and S has degree m, R degree m− 1, we can write:

R(ζ)G(ζ)− S(ζ) =

∞∑
l=−m

elζ
−l.

First non-zero el tells us order, as per order condition
above. All non-zero rl have same sign, and all g2l+1 are
negative, hence for m = 2s even (i.e. go up to r2s−1):

|e2| =

∣∣∣∣∣∣
s∑
j=1

r2j−1g2j+1

∣∣∣∣∣∣ ≥ |r2s−1g2s+1| > 0 ⇒ p ≤ m+ 2,

and for m = 2s+ 1 odd (i.e. go up to r2s):

|e1| =

∣∣∣∣∣∣
s∑
j=0

r2jg2j+1

∣∣∣∣∣∣ ≥ |r2sg2s+1| > 0 ⇒ p ≤ m+ 1.

The barrier simplifies (and decreases) if we are us-
ing an explicit method, i.e. σm = 0.

Theorem: The first Dahlquist barrier for an explicit
method is p ≤ m.

Proof: Not in course.

2.4 Adams methods

Question: Can we attain the barriers? Answer: Yes.

However, when m is even, m + 2 (for implicit meth-
ods) is attainable, but it turns out that all zeroes of ρ live on
|w| = 1, which is unhealthy. It’s better to choose p = m+1,
for m even or odd, regardless.

We can achieve p = m + 1 with the implicit Adams
methods:

Method: The implicit Adams methods, called the
Adams-Moulton methods choose ρ(w) = wm−1(w − 1),
and then choose σ(w) such that the highest possible order
implicit method is generated.

If we wish to work wholly with explicit methods, we
can attain the barrier p = m with explicity Adams methods:

Method: The explicit Adams methods, called the
Adams-Bashforth methods, choose ρ(w) = wm−1(w − 1),
and then choose σ(w) such that the highest possible order
explicit method is generated.

Theorem: Implicit Adams methods are of order m + 1,
and explicit Adams methods are of order m. (So implicit
Adams methods attain the Dahlquist barrier for m odd,
and explicit Adams methods always attain the Dahlquist
barrier.)

Proof: Not in course.

Example: The first two Adams-Moulton methods have
σ(w) = 1

2 (w + 1), and then σ(w) = 1
12 (5w2 + 8w − 1). The

first two Adams-Bashforth methods have σ(w) = 1, and
then σ(w) = 1

2 (3w − 1).

5



J. M. Moore, 2019

2.5 A-stability and the second barrier

Theorem: Consider the multi-step method defined by
the polynomials ρ(w), σ(w). Let T (z, w) = ρ(w) − zσ(w).
The method is A-stable iff for all λ ∈ C−, the zeroes of
T (λ,w) = 0 are in |w| < 1.

Proof: When applied to y′ = λy, y(0) = 1, the multi-
step method becomes:

m∑
l=0

(ρl − λσl) yn+l = T (λ,E)yn = 0.

This is a difference equation with characteristic polynomial
T (λ, ·). Let its zeroes be ωi(λ) of multiplicities µi(λ). Then

yn =
∑
j

µj(λ)−1∑
i=0

niωj(λ)nξi,j ,

where ξi,j are constants independent of n. We see the
stability domain is the set of λ for which all the zeroes of
T (λ,w) = 0 are in |w| < 1. The result follows.

Theorem (Dahlquist’s second barrier): A-stability
of a multi-step method implies p ≤ 2. Moreover, the
second-order method with the least error constant is the
trapezoidal rule.

Proof: Not in course.

2.6 Example application

Consider the multi-step method:

yn+3 − (1 + 2α)yn+2 + (1 + 2α)yn+1 − yn =

1

6
h
(
(5 + α)f(yn+3)− (4 + 8α)f(yn+2) + (11− 5α)f(yn+1)

)
.

Convergence: For convergence, we know from Dahlquist
equivalence that we need to check (i) the order and (ii) the
root condition.

ORDER: In the polynomials ρ(w) and σ(w), it’s best
to substitute w = eθ and consider θ → 0. We have:

ρ(eθ)− θσ(eθ) = e3θ − (1 + 2α)e2θ + (1 + 2α)eθ − 1

−1

6
θ
(
(5 + α)e3θ − (4 + 8α)e2θ + (11− 5α)eθ

)
.

Simplifying, we find:

ρ(eθ)−θσ(eθ) = − 1

12
(5+α)θ4− 1

360
(2260 + 461α) θ5+O(θ6).

Hence the order is p = 3 if α 6= −5, and p = 4 if α = −5. In
particular, p ≥ 1.

ROOT CONDITION: The relevant polynomial is

ρ(w) = w3 − (1 + 2α)w2 + (1 + 2α)w − 1.

Since order is p ≥ 1, we know that 1 is a root. To find the
other roots, we must solve:

w2 − 2αw + 1 = 0.

This has solutions w = α±
√
α2 − 1, and we need |w| ≤ 1,

w 6= 1. We identify two cases: |α| > 1 and |α| < 1 (if
α = ±1 we get double roots). Analysing the conditions
separately, it’s clear that |α| < 1 is the necessary and
sufficient condition.

Thus the method is convergent if and only if |α| < 1.

A-STABILITY: Note that the method is of order at least 3
for all values of α. So Dahlquist’s second barrier implies
this method is not A-stable.

2.7 Multi-step multiderivative methods

Multi-step methods can be extended to include higher
derivatives, like rational and Taylor methods. Their A-
stability can be constrained by:

Theorem (Wanner-Hairer-Nørsett): Consider a multi-
step N -derivative method. Then A-stability implies that
p ≤ 2N . The 2N -order A-stable method with the least
error constant is the 1-step [N/N ] Padé method.

Proof: Not in course.

Note this Theorem reduces to Dahlquist’s second
barrier immediately by setting N = 1, and recalling that
the trapezoidal rule is the [1/1] Padé method.

2.8 A-stability of 2-step methods

2-step methods have a simple stability analy-
sis because we need to analyse a quadratic
T (λ,w) = a(λ)w2 + b(λ)w + c(λ). The analysis uses
the Cohn-Schur criterion:

Theorem (Cohn-Schur): The quadratic aw2 + bw + c,
a, b, c ∈ C, a 6= 0, obeys the root condition iff (a) |a| ≥ |c|;
(b) (|a|2 − |c|2)2 ≥ |ab − bc|2; (c) if (b) is obeyed as an
equality then |b| < 2|a|.

Proof: Not required.

6
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Example: Consider quadratic methods with order p ≥ 2
such that hf(yn+2) has coefficient 3/4. It’s possible to show
these are parametrised as:

ρ(w) = w2−(1+a)w+a, σ(w) =
3

4
w2−1

2
aw+

(
1

4
− 1

2
a

)
.

Convergence requires −1 ≤ a < 1 by the root condition.
Using the Cohn-Schur criterion, it’s also possible to show
that the method is A-stable for all values of a in this range.

2.9 Other concepts of stability

Definition: A method is A(α)-stable if its linear stability
domain D contains a wedge of angle 2α in C− (so
A-stability is equivalent to A(90◦)-stability).

This is sufficient for most practical applications.

2.10 Backwards differentiation formulae

Motivation: For |λ| � 1, we have T (λ,w) ≈ −λσ(w). This
implies that the ‘best’ choice for stability chooses σ with all
its zeroes at the origin, i.e. σ(w) = σmw

m.

Method: An order m backwards differentiation for-
mula is a method with σ(w) = σmw

m, and order m.

Examples: The first three BDFs are:

• m = 1: ρ(w) = w − 1, σ(w) = w;

• m = 2: ρ(w) = w2 − 4
3w + 1

3 , σ(w) = 2
3w

2;

• m = 3: ρ(w) = w3 − 18
11w

2 + 9
11w −

2
11 , σ(w) = 6

11w
3.

The m = 1, 2 methods are A-stable, and m = 3 is A(86◦)-
stable (it can’t be A-stable by the second barrier, but it’s
pretty close!).

Since BDFs are very stable, they are standard in the
solution of stiff equations.

Theorem: BDFs are convergent iff m ≤ 6.

Proof: Not in course.

2.11 R[1] and R[2] methods

Convergence is a minimum requirement; any decent
method will also be R[1] and R[2].

Definition: A method is R[1] if the existence and
boundedness of the numerical limit ŷ = lim

n→∞
yn (for any

h > 0) implies ŷ is a fixed point of the exact ODE: f(ŷ) = 0.

Idea: R[1] methods get fixed points of an ODE right.

Definition: A method is R[2] if, for all equations y′ = f(y),
there exists no solution sequence (with any constant
step-size h > 0) such that both ŷo = lim

n→∞
y2n+1 and

ŷe = lim
n→∞

y2n exist, are bounded, and ŷo 6= ŷe (such
solution sequence is necessarily false!).

Idea: R[2] methods can’t oscillate forever.

Theorem: (i) Convergent multi-step methods are R[1];
(ii) a convergent multi-step method defined by coprime
polynomials ρ, σ, is R[2] if σ(−1) = 0.

Proof: (a) Suppose that the limit of yn as n → ∞
exists and is bounded; denote it by ŷ. Taking the limit as
n→∞ in the multi-step method, we have:(

m∑
l=0

ρl

)
ŷ = h

(
m∑
l=0

σl

)
f(ŷ). (∗)

Since the method is assumed to be convergent, we have
ρ(1) = 0. Hence the LHS of (∗) is zero. We’re left with
0 = hσ(1)f(ŷ). It remains to show that σ(1) 6= 0.

Take the derivative of the condition ρ(w) − log(w)σ(w) =
O(|w − 1|p+1). This gives us:

ρ′(w)− σ(w)

w
− log(w)σ′(w) = O(|w − 1|p).

Let w → 1, then ρ′(1) − σ(1) = 0. If 0 = σ(1), we’d need
ρ′(1) = 0. But then 1 would be a double root of ρ, violating
the root condition.

(b) Show the converse. Suppose y2n+1 → ŷo and
y2n → ŷe with ŷo 6= ŷe.

Considering odd and even terms in the method, and
taking the limit we have:

ρ0ŷe + ρ1ŷo + ...+ ρmŷe/o = h
(
σ0f(ŷe) + ...+ σmŷe/o

)
ρ0ŷo + ρ1ŷe + ...+ ρmŷo/e = h

(
σ0f(ŷo) + ...+ σmŷo/e

)
Subtracting we have:

ρ(−1)(ŷe − ŷo) = hσ(−1) (f(ŷe)− f(ŷo)) .

Suppose σ(−1) = 0. Then since ŷe 6= ŷo, we have ρ(−1) =
0. Contradiction, since σ and ρ are relatively prime. So
σ(−1) 6= 0.
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2.12 Switching methods

To end this section, let’s consider the benefit of switching
up methods.

Example: Consider y′ = f(t,y) solved by

y2n+1 = y2n + hf(t2n,y2n),

y2n+2 = y2n+1 + hf(t2n+2,y2n+2),

i.e. swapping backward and forward Euler. This is an or-
der 2 method at the points t2n even though the individual
methods are only order 1. It’s easy to see this, since on
elimination of y2n+1, we have:

y2n+2 = y2n + h
(
f(t2n,y2n) + f(t2n+2,y2n+2)

)
.

This is the trapezoidal rule, so is of order 2, and is also
A-stable.

3 Implementation of ODE methods

3.1 Solving non-linear algebraic equations

Implicit methods require solution of algebraic equations at
each step. We need to consider:

Notation: The setup costs for an iterative method
are denoted CS . The iteration costs are denoted CI .

There are two possible ways of deciding when to
stop iterations:

Definition: If we continue to iterate a method until
the error is beneath a specified tolerance, we say we
are iterating to convergence. This is written PC∞. If we
execute a small number m of fixed iterations, and abandon
the process unless the error is below tolerance, we are
using the PCm method.

Clearly if CS � CI , we should use PC∞; otherwise
use PCm.

One way of solving algebraic equations such as
y − βhf(y) = v, where v is known, is by direct itera-
tion:

y[j+1] = v + βhf(y[j]).

This is a special case of searching for a fixed point
x[j+1] = g(x[j]) for some g. We are guaranteed to find a
solution by:

Banach’s Contraction Mapping Theorem:
Suppose ||g(x) − g(y)|| ≤ L||x − y|| for some 0 < L < 1
for all x, y in a ball of radius r > 0 around the first
iterate: ||x − x[0]|| ≤ r, ||y − x[0]|| ≤ r. Then if
||g(x[0])− x[0]|| ≤ (1− L)r, we have:

(i) ||x[j] − x[0]|| ≤ r;

(ii) x∗ = lim
j→∞

x[j] exists and is a fixed point of g;

(iii) x∗ is the unique fixed pt. of g in Sr = {||x−x[0]|| ≤ r}.

Proof: We first prove ||x[j+1]−x[j]|| ≤ Lj(1−L)r by induc-
tion. Clearly true for j = 0, and then ||x[j+1] − x[j]|| =

||g(x[j])− g(x[j−1])|| ≤ L||x[j] − x[j−1]|| ≤ Lj(1− L)r,

so done. Therefore: ||x[j] − x[0]|| =∣∣∣∣∣∣∣∣ j−1∑
i=0

(x[i+1] − x[i])

∣∣∣∣∣∣∣∣ ≤ j−1∑
i=0

Li(1− L)r = (1− Lj)r ≤ r,

so all iterates lie in Sr, proving (i). Note that x[j] is Cauchy,
since for all k, we have

||x[k+j] − x[j]|| =
∣∣∣∣∣∣∣∣ k−1∑
i=0

(x[j+i+1] − x[j+i])

∣∣∣∣∣∣∣∣ ≤ Ljr → 0,

as j → ∞. Hence it converges to some limit x∗, which
clearly must be a fixed point of g, proving (ii).

Finally, suppose xo is a fixed point of g in Sr. Then

||x∗ − xo|| = ||g(x∗)− g(xo)|| ≤ L||x∗ − xo||.

Since 0 < L < 1, we need x∗ = xo, and (iii) follows.

For implicit methods, g(x) = v + βhf(x), hence

g(x)− g(y) = βhf(x)− βhf(y) ≈ βh(x− y)
∂f
∂y
.

Hence L ≈ h|β|||∂f/∂y||. So for stiff equations, getting
L < 1 may require very small step-size h. In that case, we
may instead use Newton-Raphson.

Suppose we wish to solve x = g(x), and we have a
decent guess x̃. Then

x = g(x̃) +
∂g(x̃)

∂x
(x− x̃) + · · ·

⇒
(
I − ∂g(x̃)

∂x

)
x = g(x̃)− ∂g(x̃)

∂x
x̃

On rearrangement, we obtain:

Newton-Raphson: The Newton-Raphson iteration is
defined by

x[j+1] = x[j] −
(
I − ∂g(x[j])

∂x

)−1

(x[j] − g(x[j])).

8
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In practice, this is expensive, since the inverse matrix
needs to be re-evaluated at every iteration, and we need to
solve a new linear system at every step. These problems
are cured by:

Modified Newton-Raphson: The MNR iteration is
defined by

x[j+1] = x[j] −
(
I − ∂g(xo)

∂x

)−1

(x[j] − g(x[j])),

where xo is fixed, say xo = x[0]. We now have

L =

(
I − βh∂f(xo)

∂x

)−1

,

which is small for all h, so this is a good approach for stiff
equations.

We use direct iteration for non-stiff equations, and
MNR for stiff equations. What about PC∞ versus PCm?

CS are small for direct iteration, but CI is large. The
opposite is true for MNR. Hence non-stiff equations
should use PC∞, and stiff equations should use PCm.

3.2 Methods of error control

Error control allows us to control local error and choose
step length so that the error is within a specified tolerance.

The Milne device: Let cP , and cC be the error con-
stants of a predictor (explicit) and corrector (implicit) pair
of methods of equal order p. Then:

y(P )
n+1 = y(tn+1) + cPh

p+1y(p+1)(tn) + ...,

y(C)
n+1 = y(tn+1) + cCh

p+1y(p+1)(tn) + ...,

and so subtracting:

y(P )
n+1 − y(C)

n+1 ≈ (cP − cC)hp+1y(p+1)(tn).

Eliminating y(P )
n+1 from the first and third equations, we find:

||y(C)
n+1 − y(tn+1)|| ≈

∣∣∣∣ cC
cP − cC

∣∣∣∣ ||y(P )
n+1 − y(C)

n+1||.

Hence it is possible to estimate the error in the corrector
method.

Deferred correction: By example. Consider the
trapezoidal rule:

yn+1 = yn +
1

2
h
(
f(yn) + f(yn+1)

)
.

It’s trivial to show the error is− 1
12h

3y′′′(tn)+O(h4). Define:

s(wn−1,wn,wn+1) = − 1

12
h (f(wn+1)− 2f(wn) + f(wn−1)) .

Then s(yn−1,yn,yn+1) = − 1
12h

3y′′′(tn)+O(h4); this is the
actual error, up to O(h4)! So we retain a yn−1, and wait for
the next step yn+1 (defer ) to estimate the error in yn.

The Zadunaisky device: Given a p-order numeri-
cal solution yj , choose a vector of polynomials q s.t.
deg(q) = p and interpolates y at the last p+ 1 grid points.

Define the defect d(t) = q′(t) − f(q(t)). Since
q(t) = y(t) + O(hp+1) (order of the method, and q
agrees with y at last p + 1 points), and y′ = f(y), we see
that d(t) = O(hp).

Consider the auxiliary system z′ = f(z) + d(t). Since
d(t) = O(hp), this system is within O(hp+1) of the original
ODE, and q(t) solves it exactly. Solve this system numeri-
cally, and use zn+1 − q(tn+1) to estimate yn+1 − y(tn+1),
the error.

3.3 Gear’s automatic integration

Suppose we have a family of m-step methods for
m = 1, 2, ...,m∗, each of order pm = m+K (e.g. K = 1 for
Adams-Moulton, K = 0, m∗ = 6 for BDF), and each with
error constant cm.

Gear’s method:

1. Start iteration with m = 1.

2. At the nth step, working with the m-step method, eval-
uate the error estimates:

Ej ≈ cjhj+K+1y(j+K+1)(tn),

j ∈ Im := {m− 1,m,m+ 1} ∩ {1, 2, ...,m∗}.

This could be achieved by a Zadunaisky-style
method, by interpolating numerical points with an
polynomial, and using the (j + K + 1)th derivative of
the polynomial to estimate Ej .

Note we do this for the main m-step method,
and its neighbours, m± 1.

3. Of the j ∈ Im, determine which j∗ is such that Ej∗ is
below tolerance, but h (the step-size) is largest.

4. Change to that method and step-size and calculate
the next value. Iterate.

Note that we must retain enough past values for error-
control and step-size management.

9
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4 ODEs: Runge-Kutta methods

4.1 Motivation and definition

We can convert y′(t) = f(t,y(t)) into an integral equation,
and approximate the integral using a quadrature formula:

y(t0 + h) = y0 +

∫ h

0

f(t0 + τ,y(t0 + τ))dτ

≈ y0 + h

s∑
l=1

blf(t0 + clh,y(t0 + clh)).

When we turn this into a numerical scheme, we obtain:

Method: An s-stage Runge-Kutta method is a method of
the form:

yn+1 = yn + h

s∑
l=1

blkl,

k1 = f

tn + c1h,yn + h

s∑
j=1

a1,jkj

 ,

...

ks = f

tn + csh,yn + h

s∑
j=1

as,jkj

 ,

where the cl obey the condition (which we will see is re-
quired for the method to be of order at least 1):

cl =

s∑
j=1

al,j .

The parameters can written as two vectors and a matrix:
A, b and c, where Aij = aij . The cl condition can then be
written as c = A1, where 1 is the vector of 1’s.

Notation: Runge-Kutta methods are specified by their
Butcher tableau:

c A

bT

Definition: A Runge-Kutta method is

• explicit (ERK) if A is strictly lower triangular;

• diagonally-implicit (DIRK) if A is lower triangular;

• singly-diagonally-implicit (SDIRK) if A is lower trian-
gular and all diagonal elements al,l are equal (and
non-zero);

• implicit (IRK) otherwise.

The benefit of SDIRK over DIRK is we save setup costs in
modified Newton Raphson.

4.2 Naïve order analysis

Theorem: For Runge-Kutta methods of order less than
or equal to 5, there is no loss of generality in working with
scalar, autonomous equations when finding the order.

Proof: Not in course.

Example: Consider the general 3-stage ERK, with
Butcher tableau:

0 0 0 0

c2 a21 0 0

c3 a31 a32 0

b1 b2 b3

WLOG, we can work with scalar, autonomous ODEs by the
above. Let all quantities be evaluated at (tn, yn). Then:

k1 = f, k2 = f(y + ha21, k1) = f + c2hfyf +
1

2
h2c22fyyf

2 + · · · ,

k3 = f(y + h(a31k1 + a32k2))

= f + hc3fyf + h2(c2a32f
2
y f +

1

2
c23fyyf

2) + · · ·

and so

yn+1 = y + h(b1 + b2 + b3)f + h2(b2c2 + b3c3)ffy

+h3

(
b2c

2
2 + b3c

2
3

2
fyyf

2 + b3c2a32f
2
y f

)
+O(h4).

Compare with the expansion of y(tn + h), using f ′ = fyf ,
f ′′ = fyyf

2 + f2
y f , etc, to get conditions:

b1 + b2 + b3 = 1, b2c2 + b3c3 =
1

2
,

b2c
2
2 + b3c

2
3 =

1

3
, b3c2a32 =

1

6
.

Example: Consider the general 2-stage IRK, with
Butcher tableau:

c1 a11 a12

c2 a21 a22

b1 b2

It’s possible to show that for this to be third order, we need
b1 +b2 = 1, b1c1 +b2c2 = 1

2 , bTAc = 1
6 and b1c21 +b2c

2
2 = 1

3 .

4.3 Error control of RK methods

RK methods have a specific error control device called em-
bedding. We put the RK method into a larger one, with
higher order:

Ã =

(
A 0
aT ã

)
, c̃ =

(
c
c̃

)
The first stages are identical to the smaller method, and
the additional stage can be used to control the error.

10
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4.4 A review of interpolation and quadrature

Order analysis can be made easier by converting a
Runge-Kutta method to a collocation method. These are
tied to numerical quadrature and polynomial interpolation,
so we will review these subjects first.

Polynomial interpolation

Definition: Let c1, ..., cs be a set of interpolation points.

Define ω(t) =

s∏
l=1

(t−cl) and ωk(t) = ω(t)/(t−ck). The La-

grange cardinal polynomials for this set of points are then:

Lk(t) =
ωk(t)

ωk(ck)
, k = 1, ..., s.

The Lk are each polynomials of degree s − 1 such that
Lk(ck) = 1 and Lj(ck) = 0 for j 6= k.

A degree s − 1 polynomial interpolation to the func-
tion f(t) using the points cl is then clearly:

f(t) ≈
s∑

k=1

f(ck)Lk(t).

Numerical quadrature

Definition: A quadrature formula with weight w ≥ 0 on an
interval (a, b) is an approximation of the form:∫ b

a

g(τ)w(τ)dτ ≈
s∑
l=1

blg(cl).

The quadrature formula is of order p if it is correct on all
polynomials of degree p−1 (i.e. for all functions g ∈ Pp−1).

It is possible to show that the zeroes of orthogonal
polynomials optimise quadrature:

Theorem: Let c1, ..., cs be the zeroes of the sth de-
gree orthogonal polynomial ps on interval (a, b) with
weight w ≥ 0, i.e.

b∫
a

q(τ)ps(τ)w(τ)dτ = 0, for all q ∈ Ps−1.

Then the quadrature formula with these values of cl, and
values of bl generated from the linear system:

s∑
l=1

blc
j
l =

b∫
a

τ jw(τ)dτ, (∗)

for j = 0, 1, ..., s − 1: (i) is exactly of order 2s, and (ii) any
other quadrature formula is of order ≤ 2s− 1.

Proof: (i) Let v ∈ P2s−1. Then v = psq + ṽ for some q, ṽ ∈
Ps−1 by polynomial division. The integral then beomces:

b∫
a

(ps(τ)q(τ) + ṽ(τ))w(τ) dτ =

b∫
a

ṽ(τ)w(τ) dτ.

Since cl are zeroes of ps, our quadrature formula gives:
s∑
l=0

bl (ps(cl)q(cl) + ṽ(cl)) =

s∑
l=0

blṽ(cl).

According to (∗) the bl are such that the formula is exact
for polynomials in Ps−1. So the answers must agree.

To prove the formula is exactly of order 2s, and no
more, trial g = p2

s ∈ P2s. Then our integral is:

b∫
a

(ps(τ))2w(τ) dτ > 0,

but our formula is
s∑
l=1

bl(ps(cl))
2 = 0,

(ii) Assume we have a quadrature formula of order 2s.
Then the formula is exact on v = psq ∈ P2s−1, with
q = Lm, for m ∈ {1, ..., s}. Then the quadrature formula
gives bmps(cm) = 0; this must be zero for agreement with
the integral of v.

Note bm 6= 0, else the quadrature formula omitting
the point cm gives a formula of order 2s by assumption,
which is greater than is possible (we’d get an overdeter-
mined bl system). So cm must be roots of ps for order 2s.

From the proof above, we see that:

Theorem: Quadrature is of exactly order r + s, for
r ∈ {0, 1, ..., s} iff b1, ..., bs are chosen as in the above
Theorem, i.e.

s∑
l=1

blc
j
l =

b∫
a

τ jw(τ)dτ, j = 0, 1, ..., s− 1, (∗)

but instead the cl are such that
b∫
a

τ jω(τ)w(τ) dτ = 0, j = 0, ..., r − 1,

b∫
a

τ rω(τ)w(τ)dτ 6= 0,

where ω(t) =

s∏
k=1

(t − ck). (I.e. some of the ck are roots of

an orthogonal polynomial, but the rest are random.)

11
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In particular, the highest order quadrature formula on
(0, 1), for w ≡ 1, occurs when cl are roots of the shifted
Legendre polynomial Ps (shifted from [−1, 1] to [0, 1]).

4.5 Collocation methods and order

Method: The collocation method is defined as follows. Let
c1, ..., cs ∈ [0, 1] be distinct interpolation points. Let yn be
the numerical solution at step n. Using polynomial interpo-
lation, find a vector of s-degree polynomials u obeying:

u(tn) = yn, u′(tn + clh) = f(tn + clh,u(tn + clh)).

This is possible since s-degree polynomials have s+1 free
parameters, and there are s+ 1 conditions here. Then let:

yn+1 = u(tn + h).

The collocation method can be re-formulated as a
Runge-Kutta method via:

Theorem: The collocation method is identical to the
s-stage Runge-Kutta method:

ak,l =

ck∫
0

Ll(τ)dτ, bl =

1∫
0

Ll(τ)dτ,

where the c vector in the Runge-Kutta method is just the
vector of collocation points.

Proof: The polynomial u′ coincides with its (s − 1)st
degree Lagrange interpolation polynomial. So we must
have:

u′(t) =

s∑
j=1

Lj

(
t− tn
h

)
u′(tn + cjh)

=

s∑
j=1

ω((t− tn)/h)

ωj(cj)
u′(tn + cjh)

(note we have shifted the points at which we interpolate,
but retained the Lj corresponding to cj ; this amounts to a
shift in the argument of Lj). By the definition of u, we then
have:

u′(t) =

s∑
j=1

ω((t− tn)/h)

ωj(cj)
f (tn + cjh,u(tn + cjh)) .

Integration then yields (after a change of variables):

u(t) = yn+h

s∑
j=1

∫ (t−tn)/h

0

ωj(τ)

ωj(cj)
dτ f (tn + cjh,u(tn + cjh)) .

Define kj = f (tn + cjh,u(tn + cjh)). The formula for u(t)
then gives:

u(tn + clh) = yn + h

s∑
j=1

al,jkj ,

as per the definition of al,j in the Theorem, and hence

kj = f

tn + cjh,yn + h

s∑
j=1

al,jkj

 .

This is most of Runge-Kutta; finally need

yn+1 = u(tn + h) = yn + h

s∑
l=1

blkl.

Collocation methods have an easy order analysis, so
it’s easier to find the order of some Runge-Kutta methods
by reframing them as collocation methods. The collocation
methods’ order comes straight from numerical quadrature,
in two parts:

(1) Lemma (Alekseev-Gröbner): Let u be a smooth func-
tion such that u(t0) = y(t0), where y solves y′ = f(t,y).
Then

u(t)− y(t) =

t∫
t0

Φ (t, τ,u(τ)) (f(τ,u(τ))− u′(τ)) dτ,

where Φ is a matrix obeying the ODE dΦ
dt = ∂f

∂y Φ(τ) = I.

Proof: Not in course.

(2) Theorem: The order of the collocation method
with collocation points c1, ..., cs is identical to the order
of the quadrature formula on (0, 1) with weight 1 at the
interpolation points c1, ..., cs.

Proof: We have:

yn+1 − ỹ(tn+1) = u(tn+1)− ỹ(tn+1)

=

tn+1∫
tn

Φ(tn+1, τ,u(τ)) (f(τ,u(τ))− u′(τ)) dτ,

by the Alekseev-Gröbner Lemma. Use the quadrature for-
mula with points tn+c1h, tn+c2h, ... , tn+csh, and weight
w ≡ 1. Then yn+1 − ỹ(tn+1)

=

s∑
l=1

blΦ(tn+1, tn + clh,u(tn + clh)) (d(tn + clh)) + error,

where d(t) = f(t,u(t)) − u′(t). But by definition of the
function u, we have d(tn + clh) = 0.

Thus local error of collocation method is the same
as the local error of the quadrature on [tn, tn+1] with points
tn + clh and weight w ≡ 1.

12
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We now need to relate this to orders. We are attempting to
approximate:

tn+1∫
tn

g(τ) dτ =

h∫
0

g(τ) dτ,

where we’ve just shifted limits and redefined g. Expand g
in a Taylor series about 0:

h∫
0

(
g(0) + τg′(0) + ...+

τp−1

(p− 1)!
g(p)(0)

)
dτ +O(hp+1).

Assuming the quadrature formula is of order p, it is exact
on polynomials of degree p − 1, so we see the error
committed is O(hp+1). Thus the quadrature formula’s
order is the same as the numerical method’s order.

We’ve worked with quadrature on [tn, tn+1] and with
points tn+ clh. Translating and rescaling, we get the result
on [0, 1] with points cl as required.

Corollary: The highest order s-stage Runge-Kutta
method coming from collocation takes collocation points
at shifted Legendre points. This is called the Gauss-
Legendre Runge-Kutta method, and is of order 2s.

Example: Consider the Runge-Kutta method:

0 0 0 0
1
2

5
24

1
3

−1
24

1 1
6

2
3

1
6

1
6

2
3

1
6

This has c1 = 0, c2 = 1
2 , c3 = 1, so the suggested collo-

cation polynomial ω(τ) = τ(τ − 1
2 )(τ − 1). We check this

collocation gives rise to RK form:

b1 = 2

1∫
0

(
τ − 1

2

)
(τ − 1) dτ = 1/6,

and similarly for b1, b2, a11, a21, a22, a23, a3l = bl. Using
the test with the integral

1∫
0

τ jω(τ) dτ,

we see that the method is of order 4 (since the integral is
zero for j = 1 and non-zero for j = 1).

4.6 A-stability of Runge-Kutta methods

Theorem: Define:

R(λ) = bT (I − λA)−1(I − λ(A− I))1.

An RK method is A-stable iff |R(λ)| < 1 for all λ ∈ C−.

Proof: Apply the RK method to y′ = λy, y(0) = 1
and h = 1. We see that the vector k = (k1, k2, ..., kn)
obeys:

k = λ(1 +Ak),

and so k = λ(I − λA)−11. It follows that
yn+1 = yn + bTk = R(λ)yn (using sum of bl is 1 for
order greater than 1) and then condition follows.

In particular, we note that R(z) is a rational function
in Ps/s, since we can write the inverse of a matrix as:

(I − λA)−1 =
adj(I − λA)

det(I − λA)
.

This immediately gives:

Theorem: The Gauss-Legendre RK is A-stable.

Proof: R ∈ Ps/s and approximates ez to order 2s for
Gauss-Legendre. Hence it must be the (unique) [s/s]
Padé method, which is A-stable by the Wanner-Hairer-
Nørsett Theorem.

Example 1: For an ERK, we have:

det(I − λA) = det

1 · · · 0

∗
. . . 0

∗ · · · 1

 = 1.

and hence R(λ) ∈ Ps (just a polynomial). So it can at most
approximate ez to order s: p ≤ s.

Example 2: Consider a s-stage RK method coming
from collocation polynomial:

ω(t) = αP̃s(t) + βP̃s−1(t),

where P̃s is the sth Legendre polynomial shifted to [0, 1].
Clearly this method is at least of order s+ (s− 1) = 2s− 1.

We choose α, β such that A is invertible and bTA−11 = 1.
From here, we can deduce A-stability. Write R(λ) as:

R(λ) = 1 + λbT (I − λA)−11 = 1 + bT
(

1

λ
−A

)−1

1.

Let λ → ∞. Then R(∞) = 0 by our choice of α, β. So
R(λ) must be of the form Ps−1/Ps. So we know from the
order, it is the Padé approximation, and hence we can
deduce A-stability (by Wanner-Hairer-Nørsett).
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4.7 Non-linear stability of RK methods

A-stability is a property of linear equations (we apply
the numerical method to y′ = λy) and hence is rather
restrictive. Sometimes, we want to say something about
non-linear stability.

One instance when we can say something about sta-
bility is when the solution of an equation is dissipative:

Definition: The solution of y′ = f(y) is called dissi-
pative if ||u(t) − v(t)|| is monotonically non-increasing for
any two solutions u(t) and v(t), t ≥ 0.

In practice, it is more convenient to work with a con-
dition leading to dissipative behaviour:

Theorem: Suppose the function f obeys
〈u− v, f(u)− f(v)〉 ≤ 0. Then the solution of y′ = f(y) is
dissipative.

Proof: Let φ(t) = ||u(t)− v(t)||2. Then

1

2
φ′(t) = 〈u− v,u′ − v′〉 = 〈u− v, f(u)− f(v)〉 ≤ 0.

Definition: A method is algebraically stable if it pre-
serves monotonicity of a non-linear equation; that is, if the
equation y′ = f(y) obeys

〈f(y)− f(z),y− z〉 < 0,

for any two solutions y, z, then the corresponding numeri-
cal solutions obey ||yn+1 − zn+1|| ≤ ||yn − zn||.

Butcher’s Theorem: An RK method is algebraically
stable if and only if b ≥ 0 and M is positive semi-definite,
where M is the s× s matrix with entries

Mij = biaij + bjaji − bibj .

Proof: Let k1, ...,ks be the stages for a numerical solution
un and l1, ..., ls for a numerical solution vn. Then:

||un+1 − vn+1||2 = ||un − vn||2 + 2h

〈
un − vn,

∑
j

bj(kj − lj)
〉

+h2

∣∣∣∣∣∣∣∣∑
j

bj(kj − lj)
∣∣∣∣∣∣∣∣2.

Thus for algebraic stability we require

2

h

〈
un− vn,

∑
j

bj(kj − lj)
〉

+

∣∣∣∣∣∣∣∣∑
j

bj(kj − lj)
∣∣∣∣∣∣∣∣2 ≤ 0. (∗)

For j = 1, ..., s, set dj = kj − lj ,

pj = un + h

s∑
i=1

ajiki, qj = vn + h

s∑
i=1

ajili.

Then kj = f(pj) and lj = f(qj). We now use this
notation to bound the first term in (∗). We have that:〈
un − vn,

∑
j bjdj

〉
=

=
∑
j

bj
〈
pj − h

∑
i

ajiki − qj + h
∑
i

ajili,dj
〉

=
∑
j

bj

(
〈pj − qj , f(pj)− f(qj)〉 − h

∑
i

aji 〈di,dj〉

)
≤ −h

∑
i,j

bjajidTj di,

by dissipative behaviour of f. Thus we can bound (∗) by:∑
i,j

dTj (bibj − bjaji − biaji) di = −
∑
i,j

dTi Mijdj .

Let D be the matrix with columns d1, d2, ... , ds, and let
δδδT1 , ... , δδδTd be the rows of D. Then

∑
i,j

dTi Mijdj =

∑
i,j,k

DikMijDjk =
∑
k

∑
i,j

DikMijDjk =
∑
k

δδδTkMδδδk ≥ 0.

4.8 R[1] and R[2] properties of RK methods

As we discussed earlier, it is important for a method to be
R[1] and R[2]. Here are further examples of analysis in the
case of RK methods.

Example 1: The RK method

0 0 0
1
2

1
2 0

0 1

is not R[1]. It is sufficient to demonstrate this for one
equation, say y′ = κy(1−y). Applying the method, we find
that the numerical method gives us additional fixed points,
namely y = 2/κh and y = (2 + hκ)/hκ.

Example 2: The implicit midpoint rule

yn+1 = yn + hf
(
tn +

1

2
h,

1

2
(yn + yn+1)

)
,

is actually a Runge-Kutta method, as can be seen by
setting k = f

(
tn + 1

2h,
1
2 (yn + yn+1

)
. This reduces the

method to the RK method:
1
2

1
2

1

Since the first shifted Legendre polynomial on [0, 1] is
P1(x) = 2x − 1, this is a Gauss-Legendre RK, so is A-
stable. It’s straightforward to see the method is also R[1]

and R[2].
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5 Synthesis of FDMs

5.1 Finite difference calculus

Definition: Given a sequence yn, we define the operators:

Eyn = yn+1 - shift operator;
∆+yn = yn+1 − yn - forward difference operator;
∆−yn = yn − yn−1 - backward difference operator;
∆0yn = yn+ 1

2
− yn− 1

2
- central difference operator;

µ0yn =
1

2

(
yn+ 1

2
+ yn− 1

2

)
- averaging operator.

Note that ∆0 and µ0 are not defined on a grid, but even
combinations of the two are, e.g. ∆2

0 and ∆0µ0. Given that
yn = y(nh) for y analytic in R, we define the differential
operator by Dyn = y′(nh).

Theorem: All of the above operators commute.

Proof: All operators can be expressed in terms of
one another, e.g.

E = ehD, µ0 =
1

2
(E1/2 − E−1/2),

E = 2µ2
0 − I + 2µ0

√
µ2

0 − I,

etc, so must trivially commute.

5.2 Approximation of Ds

When solving PDEs, we want to approximate Ds for some
power s.

Theorem: We can approximate Ds as:

(i) In terms of forward differences,

Ds =
1

hs
(log(I + ∆+))

s

=
1

hs

(
∆s

+ −
1

2
s∆s+1

+ +
1

24
s(3s+ 5)∆s+2

+ + · · ·
)
.

(ii) In terms of backward differences,

Ds =
(−1)s

hs
(log(I −∆−))

s

=
1

hs

(
∆s
− +

1

2
s∆s+1
− +

1

24
s(3s+ 5)∆s+2

− + · · ·
)
.

(iii) In terms of central differences,

D =
4

h

∞∑
j=0

(−1)j

2j + 1

(
2j

j

)(
1

4
∆0

)2j+1

,

then raising both sides to the sth power.

Proof: (i) and (ii) following immediately by using
D = log(E)/h = log(I + ∆+)/h = log(I − ∆−)/h
and expanding the logarithm.

(iii) is more difficult. We notice that ∆2
0yn =

yn+1 − 2yn + yn−1, and so:

D =
2

h
log

(
1

2
∆0 +

√
I +

1

4
∆2

0

)
.

Let g(z) = log(z +
√

1 + z2) so that D = 2
hg( 1

2∆0). Note:

g′(z) = (1 + z2)−1/2 =

∞∑
j=0

(−1)j
(

2j

j

)(z
2

)2j

.

Integrate and use the boundary condition g(0) = 0 to find
the result.

Using these series expansions, we can make ap-
proximations. The order of the approximation can be
determined using the fact that ∆+ = E − I = O(h),
∆− = I − E−1 = O(h) and ∆2

0 = ehD − 2I + e−hD =
O(h2)⇒ ∆0 = O(h).

For example, the truncations in (i) and (ii) both com-
mit an error of order O(h3).

(iii) can be used immediately to find Ds for s even,
since we’ll just get even powers of ∆0 in the answer. E.g.
a simple truncation for D2 is:

D2yn ≈
1

h2

(
∆2

0 −
1

12
∆4

0

)
yn.

This commits an error of order O(h4).

For odd s, we multiply our approximation to Ds by
the identity, written as:

I = µ0

(
I +

1

4
∆2

0

)− 1
2

= µ0

∞∑
j=0

(−1)j
(2j)!

(j!)2

(
∆0

4

)2j

.

Example: An order O(h4) approximation to D obtained
from central differences is:

Dyn ≈
1

h

(
1

12
yn−2 −

2

3
yn−1 +

2

3
yn+1 −

1

12
yn+2

)
.

Note that central differences typically provide much
better order because they are more symmetric about the
point we are trying to approximate.

This does NOT mean they are useful in all cases
though. Sometimes the PDE has an inherent asymmetry,
e.g. the advection equation ut = ux, u(x, 0) = φ(x) has
solution u(x, t) = φ(x + t), i.e. the solution propagates
from left to right. So it’s much better to use slanted rather
than central differences in this case.
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5.3 Computational stencil calculus

Consider solving the Poisson equation ∇2u = f . We
let uk,l ≈ u(k∆x, l∆x), i.e. we work on a square grid of
spacing ∆x. We wish to approximate ∇2 = D2

x +D2
y. The

first term in the central difference approximation to D2 is
just 1

(∆x)2 ∆2
0, so let’s just use central differences:

Definition: The five-point formula is the numerical
method:

(∆2
0,x + ∆2

0,y)uk,l = uk−1,l + uk+1,l + uk,l−1 + uk,l+1 − 4uk,l

= (∆x)2fk,l.

This is cumbersome to write, so we introduce:

Notation: We represent numerical finite difference
operators using the self-explanatory computational stencil
notation. The five-point formula in this notation is:

1

(∆x)2
1

1

−4

1

1 u = f.

The double circle denotes the central point of the approxi-
mation.

Stencils can be added and multiplied, corresponding
to addition and composition of the underlying finite differ-
ence operators. The rules are as follows:

Stencil addition: Overlay the stencils at the centre,
and add things in corresponding circles.

Stencil multiplication: Put the centre of the second
stencil on each point of the first. Perform multiplication at
each point. If we get contributions from two iterations of
this procedure, sum the contributions.

5.4 Semi & full-discretisation

Definition: Full-discretisation (FD) discretises both time
and space in unison, whereas semi-discretisation discre-
tises only space, leaving an ODE system.

Example: Consider ut = uxx. Discretising the spa-
tial derivative with a central difference gives the SD
method:

u′m =
1

(∆x)2
(um−1 − 2um + um+1).

We can then discretise the time derivative to get an FD
method. Using a forward difference gives Euler’s method,
and using the trapezoidal rule to solve the ODE system
above gives the Crank-Nicolson method.

6 Order analysis of FDMs

In previous section, concentrated on building FDMs. As-
suming we have one, how do we find its order?

6.1 Order analysis of boundary value probs

Theorem: The numerical method for the Poisson equation
given by:

(∆x)−2
∑

(i,j)∈I

ai,juk+i,l+j = fk,l,

where I is the set of stencil points, is of order p iff∑
(i,j)∈I

ai,jx
iyj − log2(x)− log2(y) = O((∆x)p+3),

where x, y = 1 +O(∆x).

Proof: Define the finite difference operator:

L∆x = L∆x(Ex, Ey), L∆x(x, y) =
∑

(i,j)∈I

ai,jx
iyj .

so that the method is (∆x)−2L∆xuk,l = fk, l.

The exact solution obeys ∇2u = (D2
x + D2

y)u = f ,
which is equivalent to (∆x)−2L(Ex, Ey)u = f , where

L(x, y) = log2(x) + log2(y).

The condition in the Theorem then says:

L∆x(Ex, Ey)− L(Ex, Ey) = O((∆x)p+3).

Let ũk,l = u(k∆x, l∆x) (i.e. sample the exact solution at
grid points). Then inserting this into the numerical method
we find:

(∆x)−2L∆xũk,l − fk,l = ∇2ũk,l − fk,l︸ ︷︷ ︸
0, since exact

+O((∆x)p+1)

= O((∆x)p+1).

Subtract the numerical solution (∆x)−2L∆xuk,l − fkl = 0:

(∆x)−2L∆x(ũ− u) = O((∆x)p+1).

In simple geometries, with nice boundary conditions, we
can invert the operator on the LHS. It is of order:

(∆x)−2L∆x = (∆x)−2L∆x(Ex, Ey)

= (∆x)−2L(Ex, Ey) +O((∆x)p+1)

= 2(∆x)−2
(
log2(1 +O(∆x))

)
+O((∆x)p+1)

= O(1).

where we’ve used Ex, Ey = 1 +O(∆x), so when we invert
we still get:

ũ− u = O((∆x)p+1).
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Example 1: Recall the 5-point formula:

1

(∆x)2
1

1

−4

1

1 u = f.

In practice, it’s convenient to write x = eiθ and y = eiψ,
so that θ, ψ = O(∆x) in the expansion. Then we need to
consider:

−4 + 2 cos(θ) + 2 cos(ψ) + θ2 + ψ2 = O(θ4, ψ4).

Note we’ve used the useful trick of turning everything into
trig functions. Hence the method is of order 1.

Example 2: Consider the 9-point formula:

1

(∆x)2

1
6

2
3

1
6

2
3

−10
3

2
3

1
6

2
3

1
6

u = f.

We need to consider:

−10

3
+

4

3
cos(θ)+

4

3
cos(ψ)+

1

3
cos(θ+ψ)+

1

3
cos(θ−ψ)+θ2+ψ2.

A short calculation shows this is O(θ4, ψ4), and again it’s
of order 1 (so the error is of order O((∆x)2)). Indeed the
error constant is given by:

L∆x(eiθ, eiψ)− L(eiθ, eiψ) =
1

12
(θ2 + ψ2)2 +O((∆x)6),

which shows that we’re actually solving(
1 +

1

12
(∆x)2∇2

)
∇2u = f,

up to error of order O((∆x)4). In particular, when f ≡ 0,
we can ‘invert’ the first operator, and instead be solving
∇2u = 0, to order O((∆x)4)!

So the nine-point formula has order 1 when solving
Poisson’s equation, but 3 when solving Laplace’s equation!

6.2 The Mehrstellenverfahren

This device extends the benefit of the 9-point formula (and
other numerical methods) to Poisson’s equation.

Method (Mehrstellenverfahren): Let M∆x be a fi-
nite difference approximation to the operator

I +
1

12
(∆x)2∇2,

with error O((∆x)4). That is, suppose that

M∆x − I −
1

12
(∆x)2∇2 = O((∆x)4).

Then if L∆x is the nine-point formula stencil, we solve nu-
merically:

L∆xuk,l = (∆x)2M∆xfk,l.

That is, we are solving the equation(
I +

1

12
(∆x)2∇2

)
∇2u =

(
I +

1

12
(∆x)2∇2

)
f,

up to error of order O((∆x)2). Now when we invert the
operator, we’re left with Poisson’s equation!

To construct M∆x, we need to use the synthesis
methods from above. We need only approximate ∇2 to
order O(1), since the O((∆x)2) terms will just fall out. We
have:

I +
1

12
(∆x)2∇2 ≈

I +
1

12
(∆x)2

(
1

(∆x)2
(∆2

0,x + ∆2
0,y)

)
+O((∆x)4).

Applying this to some fk,l (or noticing this is just 1 added
to 1/12 of the five-point formula stencil), we see that we
should use the stencil:

M∆x = 1
12

1
12

2
3

1
12

1
12 .

The results extend to d-dimensions, in which we have:

Theorem: Let L∆x(Ex1
, ..., Exd) be the finite difference

operator approximating ∇2 within error O((∆x)2):

L∆x(x) = −2

3
(2d+1)+

2

3

d∑
k=1

(
xk +

1

xk

)
+

2

3
· 1

2d

d∏
k=1

(
xk +

1

xk

)
.

If the Mehrstellenverfahren

M∆x(x) = 1− 1

6
d+

1

12

d∑
k=1

(
xk +

1

xk

)
,

is used, then the numerical scheme L∆xuk = (∆x)2M∆xfk
approximates the solution of ∇2u = f to O((∆x)4).

Proof: Let L(Ex1
, ..., Exd) = (∆x)2∇2 in d-

dimensions. Proof just consists of showing
L∆x(eiθ1 , ..., eiθd) = L + 1

12L
2 + O((∆x)6) and

M∆x(eiθ1 , ..., eiθd) = 1 + 1
12L+O((∆x)4).
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6.3 Order analysis of equations of evolution

Definition: A PDE of evolution is an equation of the form

ut =
∂Lu

∂xL
.

Numerically, we solve with a time step ∆t and a spatial
step ∆x. Define the Courant number as µ = ∆t/(∆x)L.

A general semi-discretisation of a PDE of evolution
is:

u′m −
1

(∆x)L

s∑
k=−r

αkum+k = 0.

We obtain this by approximating ∂L/∂xL. We can calcu-
late its order using:

Definition: The symbol of the method is the Laurent
polynomial:

h(z) =

s∑
k=−r

αkz
k.

Theorem: The method is of order p iff

h(z)− logL(z) = O(|z − 1|p+1),

and the Courant number is constant.

Proof: Let ũ be the exact solution, i.e. Dtũ = DL
x ũ.

Apply the numerical method to ũ:

ũ′m −
1

(∆x)L

s∑
k=−r

αkũm+k =

(
Dt −

1

(∆x)L

s∑
k=−r

αkE
k
x

)
ũm

=
1

(∆x)L

(
logL(Ex)−

s∑
k=−r

αkE
k
x

)
ũm

=
1

(∆x)L
O(|Ex − 1|p+1)ũm,

by condition in Theorem. Now Ex = 1 + O(∆x), so we
have that

ũ′m −
1

(∆x)L

s∑
k=−r

αkũm+k = O((∆x)p+1−L).

Subtract the numerical method from this to get:

e′m −
1

(∆x)L

s∑
k=−r

αkem+k = O((∆x)p+1−L),

where em = ũm − um.

Now when we solve these equations numerically, we’ll find
∂/∂t = O(1/∆t). So multiplying up and inverting, we see
em = O((∆x)p+1), and thus the method is of order p iff
µ = ∆t/(∆x)L is constant.

The method applies equally well to general full discretisa-
tions:

s∑
k=−r

γku
n+1
m+k =

s∑
k=−r

δku
n
m+k,

where γk = γk(µ), δk = δk(µ) and
s∑

k=−r

γk(0) 6= 0.

Definition: The symbol of a full-discretisation is:

H(z;µ) =

s∑
k=−r

δkz
k

/ s∑
k=−r

γkz
k.

Theorem: The full-discretisation is of order p iff

H(z;µ) = eµ logL(z) +O(|z − 1|p+1).

Proof: Proceeds just as in semi-discretisation case.

Example 1: Consider the advection equation ut = ux
(L = 1) solved by

u′m =
1

2∆x
(um+1 − um−1).

The symbol is h(z) = 1
2 (z − 1/z). Let z = eiθ and consider

θ → 0, as usual. Then

h(eiθ)− iθ = i sin(θ)− iθ = O(θ3).

So method is of order 2.

Example 2: Consider the full-discretisation of the
advection equation:

un+1
m = unm +

µ

2

(
unm+1 − unm−1

)
.

The symbol is

H(z;µ) = 1 +
µ

2

(
z − 1

z

)
.

Set z = iθ. Then:

H(eiθ;µ) = 1 + iµ sin(θ)− eµiθ = O(θ2).

So method is of order 1.

Why did the order reduce? We used central differ-
ence in the semi-discretisation, which is of order 2 in ODE
theory. But then we used forward Euler to approximate
the time derivative, which is of order 1 in ODE theory. We
need the Courant number to be constant: µ = ∆t/∆x, so
for advection we need to use methods of the same order.

This is not true for the diffusion equation, L = 2,
where µ = ∆t/(∆x)2. Here, we can afford to use a
smaller spatial order.
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7 Convergence of FDMs

7.1 Well-posedness

Consider the PDE of evolution ut = Lu, where L is linear
and has zero BCs. The solution is

u = E(t)u0,

where E is the evolution operator and u0 = u(x, 0) is the
initial condition.

Definition: The equation is well-posed if for all times
T > 0, there exists a constant CT such that ||E(t)||op ≤ CT
for all t ∈ [0, T ].

Example 1: The advection equation ux = ut with initial
data specified on the real line, u(x, 0) = u0(x), is well-
posed, since the solution is u(x, t) = u(x+t, 0) = u0(x+t),
and hence

||u(·, t)||22 =

∞∫
−∞

|u0(x+t)|2 dx =

∞∫
−∞

|u0(x)|2 = ||u0||22. (∗)

It follows ||E||op = 1. (Note if we were on an interval
[0, 1], we wouldn’t be able to use (∗). Instead, we get
||u(·, t)|| ≤ ||u0||, i.e. the equation is dissipative!)

Example 2: The diffusion equation ut = uxx with
zero BCs on [−π, π] is well-posed, since for initial condi-

tions u(x, 0) =

∞∑
m=−∞

αme
imx, we have by separation of

variables:

u(x, t) =

∞∑
m=−∞

αme
imx−m2t.

Therefore,

||u(x, t)|| =

√√√√ ∞∑
m=−∞

|αm|2e−2m2t ≤ ||u(x, 0)||,

and so ||E||op ≤ 1.

Note that if t 7→ −t, we get the reversed diffusion
equation ut = −uxx. This is not well-posed, since given
any [0, T ] and CT , we can always find an initial condition
αm = 0 for all m 6= m̃, so that

u(x, t) = eim̃+m̃2t2 .

Choosing m̃ large enough, we can make ||u|| arbitrarily
large.

7.2 Generality

We’ve consistently worked with zero BCs and homoge-
neous equations. What if we relaxed these conditions?

INHOMOGENEITY: Suppose ut = Lu + f with zero
BCs, and assume it is well-posed with ||f || ≤ c. We can
obtain the solution to this problem from the homogeneous
problem vt = Lv using Duhamel’s formula:

Theorem (Duhamel): The solution to ut = Lu + f
is given by:

u(x, t) = E(t)u0 +

t∫
0

E(t− τ)f(·, τ)dτ,

where v(t) = E(t)v(0) solves vt = Lv.

NON-ZERO BCS: We can always just subtract BCs.
Let w be an arbitrary function satisfying the BCs. Define
v = u− w; this has zero BCs. Then

vt = ut − wt = Lu+ f − wt = Lv + (Lw − wt + f).

This is an inhomogeneous problem with zero BCs, so
applying Duhamel, we reduce to the zero BCs, homoge-
neous case.

So we can always assume homogeneous and zero
BCs WLOG.

7.3 Convergence, stability and Lax-equiv.

In general, a full-discretised system for a PDE of evolution
can be written as:

un+1
∆x = A∆xun∆x + f̃

n

∆x.

Here, un+1
∆x is a vector containing our sample points, and

the information about the method is contained in the
matrix A∆x.

Important: Both the vector length and matrix dimen-
sions depend on the spatial step size, ∆x.

Definition: An FD numerical method for a PDE of
evolution is called convergent if for every compact interval
in time [0, T ], and spatial region Ω (i.e. we are working
on Ω × [0, T ]) we have that for all x ∈ Ω, t ∈ [0, T ], any
sequence (ki, li) ∈ Nd × N such that

ki∆x→ x, li∆t→ t,

with constant Courant number µ = ∆t/(∆x)m, we have
uliki → u(x, t) as i→∞, uniformly on Ω× [0, T ].
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Stability requires us to consider the norm of un+1
∆x .

We need to account for the fact its length depends on ∆x.
This is achieved by defining:

||un∆x||∆x =

√
∆x
∑
m

|un∆x,m|2.

This works because in the limit as ∆x → 0, the right hand
side tends to an integral, i.e. the L2 norm, as it should.

This allows us to make the definition of stability:

Definition: We say that an FD numerical method for
a PDE of evolution is (Lax) stable if for all [0, T ], and any
n ∈ N such that n∆t ∈ [0, T ], we have that ||An∆x||∆x
is uniformly bounded when ∆x→ 0 and µ is kept constant.

Here, the notation An∆x mean A∆x raised to the nth
power.

This is equivalent to ||un||∆x being bounded under
the progression to the same limit. Equivalently, for all T ,
and any n ∈ N such that n∆t ∈ [0, T ], there exists CT > 0
such that ||un||∆x ≤ CT ||u0||∆x as ∆x→ 0 with µ fixed.

Slogan: Stability means the numerical method is uni-
formly well-posed as ∆x→ 0.

Exactly the same definitions apply for the semi-discretised
scheme

u′∆x = P∆xu∆x + f̃∆x(t).

This has formal solution:

u∆x(t) = etP∆xu∆x(0) +

t∫
0

e(t−τ)P∆x f̃∆x(τ)dτ,

using Duhamel’s principle. So etP∆x plays the role of A∆x

here. Thus we have:

Definition: Convergence means the solution of the
ODE system tens to the solution of the PDE system when
∆x→ 0, uniformly in ∆x and t ∈ [0, T ].

Definition: Stability means that || exp(tP∆x)|| is uni-
formly bounded for all t ≥ 0, ∆x→ 0.

For both fully-discretised and semi-discretised numerical
methods, we have:

Theorem (Lax equivalence): For linear well-posed
PDEs of evolution, convergence is equivalence to stability
and order ≥ 1.

Proof: Not in course.

8 Stability analysis of FDMs

To use Lax equivalence, need to know about order (which
we’ve already studied) and stability. We need to know how
to deal with stability more easily.

8.1 Spectral properties of normal matrices

Definition: A matrix A is normal if AA† = A†A.

Theorem: A matrix is normal iff it has a complete
set of orthonormal (in L2) eigenvectors.

Proof: Elementary fact from undergraduate.

Hence, A = Q†DQ for Q unitary and D diagonal.

Definition: The spectral radius ρ(A) of a matrix A
is the maximum modulus of the eigenvalues of A:
ρ(A) = max

i
|λi|.

Theorem: For a normal matrix, we have ||A||op = ρ(A).

Proof: Let vi be an evector of A with eigenvalue λi
Note that

||A||op = max
v∈V

||Av||
||v||

≥ ||Avi||
||vi||

= |λi|.

So ||A||op is greater than the modulus of all the evalues.
Hence:

ρ(A) ≤ ||A||op = ||Q†DQ||op ≤ ||Q†||op||D||op||Q||op

= ||D||op = ρ(A),

since for unitary Q, ||Qv||2 = ||v||2, and thus ||Q||op = 1.

Theorem: For general A, we have ||A||op =
√
ρ(A†A).

Proof: We have ||A||2op =

max
||v||2=1

(Av, Av) = max
||v||2=1

(A†Av,v) ≤ max
||v||=1

√
||A†Av||2

√
||v||2,

where in the last step, we used the Cauchy-Schwarz
inequality. The result follows immediately.

8.2 Eigenvalue analysis of FD schemes

Theorem: Suppose A∆x is normal for all ∆x, and there
exists α ≥ 0 such that ρ(A∆x) ≤ eα∆t. Then the FD
method with matrix A∆x is stable.

Proof: Diagonalise A∆x = Q−1
∆xD∆xQ∆x, with Q∆x

unitary, and D∆x diagonal. Then

||An∆x|| = ||Q−1
∆xD

n
∆xQ∆x|| ≤ ||Q∆x|| · ||Q−1

∆x|| · ||D∆x||n.
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Now ||D∆x|| = ρ(D∆x) = max evalue of D∆x, since D∆x

is diagonal, so normal. But the max evalue of D∆x is the
max evalue of A∆x, so ||D∆x|| = ||A∆x|| = ρ(A∆x).

But ||A∆x|| = ρ(A∆x) ≤ eα∆t is given. So

||An∆x|| ≤ ||Q∆x|| · ||Q−1
∆x|| · e

nα∆t ≤ eαT ,

since n∆t ≤ T and ||Q∆x|| = 1 since Q∆x is normal.

The reverse of the above Theorem is also true. If
the evalues are not uniformly bounded, there exists an
eigenvector v∆x for which ||An∆xv∆x|| is not uniformly
bounded, so ||An∆x|| is not uniformly bounded. So:

Slogan: If A∆x is normal, stability is equivalent to
the evalues of A∆x being uniformly bounded.

8.3 Examples of FD eigenvalue analysis

Very often, A∆x takes a special form which makes the
application of the above Theorem easy.

Definition: A matrix is called Toeplitz if it is constant
along the diagonals.

Definition: A matrix is called TST if it is Toeplitz,
symmetric and tridiagonal. It then has the form ak,k = α,
ak,k±1 = β, with all other entries zero.

Theorem: Let A be a d × d TST matrix with entries
ak,k = α, ak,k±1 = β. Then the eigenvalues of A are

λk = α+ 2β cos

(
kπ

2d+ 2

)
,

with corresponding evectors vk,l = sin(πkl/(2d+ 2)).

Proof: Just substitute answer in to check.

Theorem: All TST matrices commute.

Proof: The evectors are independent of α, β in the
above Theorem, hence all TST matrices have a joint
eigenbasis, and thus must commute.

Example 1: Consider Euler’s method for the diffusion
equation on 0 ≤ x ≤ 1:

un+1
m = unm + µ

(
unm−1 − 2unm + unm+1

)
.

Here,

A∆x =


1− 2µ µ · · · 0

µ
. . . . . .

...
...

. . . . . . µ
0 · · · µ 1− 2µ

 ,

so A∆x is TST with evalues:

λk = 1− 4µ sin2(kπ/(2d+ 2)).

Therefore ρ(A∆x) = |1 − 4µ| ≤ eα∆t is required for some
α > 0, and as ∆x→ 0. But constant µ requires ∆t→ 0 as
∆x→ 0, so |1− 4µ| ≤ 1 is an equivalent condition.

Thus method is stable iff µ ≤ 1
2 .

Example 2: Consider Crank-Nicolson: un+1
m =

unm +
1

2
µ
(
unm−1 − 2unm + unm+1 + un+1

m−1 − 2un+1
m + un+1

m+1

)
.

Now A∆x = B−1A, where

B =


1 + µ − 1

2µ · · · 0

− 1
2µ

. . . . . .
...

...
. . . . . . − 1

2µ
0 · · · − 1

2µ 1 + µ

 ,

A =


1− µ 1

2µ · · · 0

1
2µ

. . . . . .
...

...
. . . . . . 1

2µ
0 · · · 1

2µ 1 + µ

 .

So both A and B are TST matrices. B−1 has the same
evectors as B, so is also TST. B−1A also has the same
evectors, so must be TST (and hence normal), with eval-
ues:

λk =
1− 2µ sin2(kπ/(2d+ 2))

1 + 2µ sin2(kπ/(2d+ 2))
,

and so µ > 0 is the condition for stability.

Eigenvalues analysis is wrong if A∆x is not normal.
We’ll consider an example, and use:

The Gerschgorin Theorem: Let A be a d × d ma-
trix with entries aij . The Gerschgorin disks are defined
by:

Sk =

z ∈ C : |z − ak,k| ≤
d∑
j=1
j 6=k

|ak,j |

 .

Let σ(A) be the spectrum of A. Then:

(i) σ(A) ⊂
d⋃
k=1

Sk;

(ii) When r disks form a connected region, there are r
eigenvalues in that region.
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Example: Consider the advection equation on [0, 1] solved
with Euler’s method

un+1
m = (1− µ)unm + µunm+1.

Here, A∆x is bidiagonal, so the eigenvalues are all 1 − µ.
Thus ρ(A∆x) = |1 − µ|. But since A∆x is not normal, the
condition |1−µ| ≤ 1⇒ µ ≤ 2 is only necessary for stability.

Indeed, consider a general d× d bidiagonal matrix:

Ad =


a b · · · 0

0 a
. . .

...
...

. . . . . . b
0 · · · 0 a


This gives:

ATdAd =


a2 ab · · · 0

ab a2 + b2
. . .

...
...

. . . . . . ab
0 · · · ab a2 + b2


Recall ||Ad||2 = ρ(ATdAd). Now use the Ger-
schgorin Theorem. The intersections of the Ger-
schgorin disks of ATdAd with the real line are
[a2 − ab, a2 + ab] and [(|a| − |b|)2, (|a| + |b|)2]. Hence
||Ad||2 = ρ(ATdAd) ≤ (|a|+ |b|)2 by (i).

Bounding in the other direction, note that if vd is chosen to
be vd,k = (sgn(a/b))

k−1, we have

Advd = (|a|+ |b|)2vd −


|ab|+ b2

0
...
0
|ab|

 .

Taking the norm of both sides, we see

||Advd|| ≥
∣∣∣∣(|a|+ |b|)2||vd|| − ||(|ab|+ b2, 0, · · · , 0, |ab|)T ||

∣∣∣∣.
Divide by ||vd|| =

√
d and consider the limit as d → ∞.

We then see that ||Advd||/||vd|| ≥ |a| + |b| in the limit. So
||Ad||op ≥ |a|+ |b|.

Thus ||Ad|| = |a| + |b| by the two bounds. In our ad-
vection equation case, ||A∆x|| = |1 − µ| + µ, and hence
the method is stable iff 0 < µ ≤ 1. So eigenvalue analysis
got it wrong!

8.4 Eigenvalue analysis of SD methods

Eigenvalue analysis extends simply to semi-discretised
methods.

Theorem: Let P∆x be the matrix of a semi-discrete
scheme, and suppose it is normal. If there exists β ∈ R
such that λ ≤ β for all λ ∈ σ( 1

2 (P∆x + P∗∆x)) as ∆x → 0,
then the SD method is stable.

Proof: For SD schemes, etP∆x plays the same role
as A∆x. Write P∆x = Q†∆xD∆xQ∆x for D∆x diagonal,
Q∆x unitary, so that:

etP∆x = Q†∆xe
tD∆xQ∆x.

Take the operator norm of both sides to get
||etP∆x || = ||etD∆x ||. Since |ex+iy| = |ex|, suffi-
cient to bound real part of eigenvalues, i.e. bound
λ ∈ σ

(
( 1

2 ((P∆x + P∗∆x)
)
.

8.5 Fourier analysis

Definition: The Fourier transform of {vm}m∈Z is

v̂(θ) =

∞∑
m=−∞

vme
−imθ.

Theorem: The Fourier transform is an `2 → L2 isometry,
characterised by Parseval’s identity :

( ∞∑
−∞
|vm|2

)1/2

= ||v|| = |||v̂||| =

 1

2π

π∫
−π

|v̂(θ)|2 dθ

1/2

.

Proof: Elementary fact from undergraduate.

Using Fourier theory, we can analyse schemes for
linear PDEs with constant coefficients and Cauchy initial
data, i.e. initial value given on all of R, with no BCs:

Theorem: An FD scheme is stable iff the symbol H
of the method obeys |H(eiθ;µ)| ≤ 1 for all θ.

Proof: The general FD method is:

s∑
k=−r

γku
n+1
m+k =

s∑
k=−r

δku
n
m+k.

Multiply by e−imθ and sum from m = −∞ to ∞. Break up
e−imθ = eikθe−i(m+k)θ, and then shift indices in the m sum
on the LHS, to end up with:(

s∑
k=−r

γke
ikθ

)
ûn+1 =

(
s∑

k=−r

δke
ikθ

)
ûn.
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So ûn+1(θ) = H(eiθ;µ)ûn(θ) = Hn+1(eiθ;µ)û0(θ). If |H| ≤
1, we have ||ûn||2 =

1

2π

π∫
−π

|ûn(θ)|2 dθ =
1

2π

π∫
−π

|H(eiθ;µ)|2n|u0(θ)|2 dθ ≤ ||û0||2.

Using Parseval’s identity, we have in real space
||un+1|| ≤ ||u0||. This is equivalent to stability.

Conversely, suppose that |H| > 1 for some value.
Choose α, β such that |H(eiθ;µ)| > 1 + ε for all θ ∈ (α, β),
and consider the function with Fourier transform

û(θ) =

{
1 for θ ∈ (α, β)

0 otherwise.

We see that

||ûn||2 =
1

2π

β∫
α

|H(eiθ;µ)|2n|û0(θ)|2 dθ ≥ ||û0||2(1 + ε)2n.

Let n→∞, then ||ûn||2 →∞. By Parseval’s identity, ||un||
is also unbounded.

Theorem: An SD scheme is stable iff the symbol h
of the method obeys Re(h(eiθ)) ≤ 0 for all θ.

Proof: Similar story.

Example 1: Consider the diffusion equation ut = uxx
approximated by the Crandall method :(

1

12
− 1

2
µ

)
un+1
m−1 +

(
5

6
+ µ

)
un+1
m +

(
1

12
− 1

2
µ

)
un+1
m+1

=

(
1

12
+

1

2
µ

)
unm−1 +

(
5

6
− µ

)
unm +

(
1

12
+

1

2
µ

)
unm+1.

Fourier analysis says we should consider the symbol

H(eiθ, µ) =
(1 + 6µ)e−iθ + (10− 12µ) + (1 + 6µ)eiθ

(1− 6µ)e−iθ + (10 + 12µ) + (1− 6µ)eiθ

=
(6− 2 sin2(θ/2))− 12µ sin2(θ/2)

(6− 2 sin2(θ/2)) + 12µ sin2(θ/2)
.

This is clearly ≤ 1, so stable.

Example 2: Consider the SD method

1

∆x
− 1

4
− 5

6

1

3
2

− 1
2

1
12

The symbol of the method is

h(eiθ) = −1

4
e−iθ − 5

6
+

3

2
eiθ − 1

2
e2iθ +

1

12
e3iθ.

Taking the real part, we have

Re(h(eiθ)) = −5

6
+

5

4
cos(θ)− 1

2
cos(2θ) +

1

12
cos(3θ)

≤ −5

6
+

5

4
− 1

2
+

1

12
= 0,

using the bound | cos(θ)| ≤ 1. Hence the method is stable.

8.6 Equivalence of analyses

The eigenvalue and Fourier approaches are equivalent,
as can be seen by considering Toeplitz operators.

Definition: A bi-infinite Toeplitz matrix, i.e. a matrix
with components (Tkl)k,l∈Z obeying Tkl = tk−l (constant
along diagonals) for some sequence (tn)n∈Z, is called a
Toeplitz operator.

The symbol of a Toeplitz operator is the Laurent se-
ries:

tT (z) =

∞∑
k=−∞

tkz
k.

The set of all Toeplitz operators is denoted T .

Theorem: If T, S ∈ T , the following hold:

(i) aT ∈ T for a ∈ R, and taT = atT ;

(ii) T + S ∈ T , and tT+S = tT + tS ;

(iii) TS ∈ T , and tTS = tT tS ;

(iv) If T is invertible, T−1 ∈ T and tT−1 = 1/tT .

Proof: Not in course.

Toeplitz operators are important to use as they are
the limits of Toeplitz matrices as we enter infinite di-
mensions. We know we are interested in the spectra of
Toeplitz matrices, so we are also interested in the spectra
of Toeplitz operators.

We first need to decide what we mean by an eigen-
value of a Toeplitz operator. However:

Theorem: For a finite matrix A, A − λI not invertible
is equivalent to Av = λv for some non-zero v (i.e. these
are two equivalent definitions of an eigenvalue). For an
infinite matrix A, the implication is only one way: Av = λv
for non-zero v implies A−λI not invertible, but the reverse
is not true.

Proof: Not in course.
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Definition: The spectrum σ(A) of an infinite matrix A
is the set of λ for which A − λI is not invertible. The
point spectrum σp(A) is the set of λ for which there
exists non-zero v with Av = λv. By the above Theorem,
σ(A) ⊆ σp(A).

Definition: The norm of an infinite matrix is
||A|| = max

z∈σ(A)
|z|.

Theorem: For a Toeplitz operator T , the spectrum is
given by:

σ(T ) = {tT (eiθ) : −π ≤ θ ≤ π},
where tT is the symbol of T .

Proof: Not in course.

So for an FD method Bun+1 = Cun using an infinite
number of points, with B and C Toeplitz operators, we
have un+1 = B−1Cun, and so the spectrum of the matrix
is

σ(B−1C) =
{
tB−1C(e

iθ) : −π ≤ θ ≤ π
}

=

{
tC(e

iθ)

tB(eiθ)
: −π ≤ θ ≤ π

}
,

using the properties of Toeplitz operators. Notice
tC/tB = H, the symbol of the FD method! So eigenvalue
analysis is the same as Fourier analysis for infinite matri-
ces.

Why is normalcy a condition in finite analysis then?
It is due to the Theorem:

Theorem: Let Tn be the nth principal minor of the
Toeplitz operator T . If Tn is normal for each n, then
σ(Tn)→ σ(T ) as n→∞.

Proof: Not in course.

This is the bridge between eigenvalue and Fourier
analysis. For non-normal operators, σ(Tn) 6→ σ(T ) in
general, e.g.:

Example: Consider the advection equation scheme
un+1
m = (1 − µ)unm + µunm+1. From Fourier analy-

sis, the spectrum of the bi-infinite Toeplitz matrix is
σ(T ) = {1−µ+µeiθ : −π ≤ θ ≤ π}. From evalue analysis,
we’ve seen that any principal n× n minor is

Tn =


1− µ µ · · · 0

0 1− µ
. . .

...
...

. . . . . . µ
0 · · · 0 1− µ


But σ(Tn) = {1− µ} does not tend to σ(T ) as n→∞.

8.7 Fourier analysis of multi-step methods

Fourier immediately extends to multi-step methods:

Example: Consider the leapfrog method :

un+1
m = un−1

m + µ(unm+1 − unm−1).

Taking the Fourier transform, we get

ûn+1 = ûn−1 + µ(eiθ − e−iθ)ûn ⇒
ûn+1 − 2iµ sin(θ)ûn − ûn−1 = 0.

This has characteristic equation z2 − 2iµ sin(θ)z − 1 = 0.
It’s possible to use Cohn-Schur to bound the roots now, but
in this case we can do it directly:

z = iµ sin(θ)±
√

1− µ2 sin2(θ),

so stable for −1 ≤ µ ≤ 1 (|z|2 ≡ 1), unstable for µ > 1,
since θ = π/2 gives z = iµ± i

√
µ2 − 1⇒ |z| > 1.

Note we don’t exclude negative µ. Why?

For systems of PDEs, we get e.g. ut = Aux, A a
matrix. Solving with, say, leapfrog, we get

un+1
m = un−1

m + µA(unm+1 − unm−1).

If A = V DV −1 for D = diag{d1, ..., dM} diagonal, then the
equations decouple to scalar equations in some basis:

un+1
m = un−1

m + µdl(u
n
m+1 − unm−1).

We end up with an ‘effective’ Courant number µdl, which
could be negative if dl < 0.

9 Influence of boundary conditions

9.1 The Strang condition

Theorem: Stability in the presence of zero BCs is equiva-
lent to:

(i) Fourier stability, i.e. |H| ≤ 1 or Re(h) ≤ 1.

(ii) The Strang condition:
s∑

k=−r

γkz
k has r zeroes within

|z| < 1 and s zeroes outside this region, and no zeroes
are on |z| = 1. (Note that we allow SD methods with a
LHS generalised to include a sum.)

Proof: Not in course.

This is a surprising condition, since r and s are not
uniquely defined. We can always multiply the symbol’s
numerator and denominator by powers of z to change r
and s. However, r+ s is defined uniquely which allows this
Theorem to work.
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9.2 Trefethen’s theory

Suppose we are solving ut = ux by a conservative
scheme, i.e. |H(eiθ;µ)| ≡ 1. We consider a wavelike solu-
tion to the numerical scheme:

unm = ei(ξm∆x+ω(ξ)n∆t).

Definition: ξ is the wavenumber, ω(ξ) is the phase
velocity and c(ξ) = ω′(ξ) is the group velocity.

Both are defined only when |ξ| ≤ π/∆x, since our
discrete sampling can’t tell larger wavenumbers apart.

Group velocity c(ξ) has an interpretation in physical
systems: it is the rate at which energy associated with
wavenumber ξ propagates in the system.

Example: Recall that ut = ux has solution
u(x, t) = u0(x + t), i.e. the solution propagates from
right to left at constant speed 1 (and hence so must
energy). Assume we solve ut = ux with Crank-Nicolson.
We find:

c(ξ) =
cos(ξ∆x)

1 + 1
4µ

2 sin2(ξ∆x)
.

For small ξ, everything is flowing in the right direction. But
c(ξ) changes sign in |ξ| ≤ π/∆x - so some wavenumbers
are transported in the wrong direction by the numerical
flow!

The idea of Trefethen’s theory is to use a boundary
scheme as well as an internal scheme to solve the equa-
tion. Everything is fine as long as the boundary scheme
and internal scheme do not send a wave rightward at
the same time; then, we have an unbounded increase in
energy in the internal system.

That is, we require that there is no solution which has
non-negative group velocity at the boundary and internally.

Example: If we use the boundary scheme
un+1

0 = un−1
2 + (µ − 1)(un2 − un0 ) with Crank-Nicolson, we

can find the solution unm = (−1)m = eiπm. This has group
velocity 0, hence unstable for all values.

Alternatively, the boundary scheme un+1
0 = un1 has

wavelike solution eiω(n+1)∆t = ei(ξ∆x+ωn∆t) ⇒ ω =
ξ/µ ⇒ c = 1/µ, at the boundary. But 1/µ > 1 for
µ < 1, whereas c(ξ) ∈ [−1, 1] in above. So no possibility of
rightward propagating wave, hence stable when 0 < µ < 1.

9.3 Periodic boundary conditions

Definition: A PDE in u has periodic BCs on [0, 1] if all
derivatives of u must match at 0 and 1, i.e. u(0, t) = u(1, t),
ux(0, t) = ux(1, t), etc.

Periodic boundary conditions product circulant matri-
ces when we use numerical methods. These are Toeplitz
matrices of the form:

f0 f1 · · · fM−1

fM−1 f0 · · · fM−2

...
. . . . . .

...
f1 · · · fM−1 f0


Theorem: The evalues and evectors of a circulant are

λl =

M−1∑
k=0

fke
2πikl/M , {vl,k = e2πikl/M},

respectively.

Proof: Just substitute in and check.

Since the evectors are orthonormal, circulants are
normal, so normal eigenvalue analysis applies.

Example: Consider ut = ux solved by the SD method:

u′m =
1

∆x

(
−3

2
um + 2um+1 −

1

2
um+2

)
, m = 1, ...,M − 2,

u′M−1 =
1

∆x

(
−3

2
uM−1 + 2uM −

1

2
u1

)
,

u′M =
1

∆x

(
−3

2
uM + 2u1 −

1

2
u2

)
,

with initial conditions u(x, 0) = ψ(x), 0 ≤ x ≤ 1 and BCs
u(0, t) = u(1, t), t ≥ 0. The method can be written as
u′ = Au, where

A =



− 3
2 2 − 1

2 0 · · · 0 0
0 − 3

2 2 − 1
2 · · · 0 0

0 0 − 3
2 2 · · · 0 0

...
...

...
...

. . .
...

...
− 1

2 0 0 0 · · · −3
2 2

2 − 1
2 0 0 · · · 0 − 3

2


.

This is a circulant and hence the evalues are

λk = −3

2
+ 2e2πik/M − 1

2
e4πik/M ,

from which we see Re(λk) ≤ 0 immediately (using
| cos(θ)| ≤ 1). Hence stable.
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9.4 The energy method

If all else fails, we can use the energy method. The
principle is to make a direct estimate of ||u||∆x.

Consider ut = a(x)ux as an example with zero BCs,
solved by

u′m =
am

2∆x
(um+1 − um−1).

Suppose a(x) is Lipschitz, i.e. there exists α such that
|a(x)− a(y)| ≤ α|x− y| for all x, y. We have, as usual,

||u||∆x =

(
(∆x)

M−1∑
m=1

u2
m

)1/2

.

Note u0 = uM = 0 since we have zero BCs. Then:

d

dt
||u||2∆x = 2(∆x)

M−1∑
m=1

umu
′
m =

M−1∑
m=1

amum(um+1 − um−1)

=

M−1∑
m=1

(am − am+1)umum+1 (shift m 7→ m+ 1 in 2nd term)

≤ α(∆x)

M−1∑
m=1

|umum+1| (Lipschitz property)

≤ α||u||2∆x (Cauchy-Schwarz inequality).

Hence ||u(t)||2∆x ≤ eαt||u(0)||2∆x, and so we have uniform
boundedness, and hence stability.

9.5 Some examples

Example 1: Consider the equation

∂u

∂t
=

∂

∂x

(
a(x)

∂u

∂x

)
,

for x ∈ [0, 1] and zero BCs, where a(x) ≥ 0.

A scheme we might use to approximate the equation
is of the form u′ = DADu, where the matrices are
N × N , D is skew-symmetric and A is diagonal, given by
Am,m = a(m/(N + 1)).

STABILITY: To prove stability, note

(DAD)† = (DAD)T = DTATDT = (−D)A(−D) = DAD.

Therefore, DAD is Hermitian, and is thus a normal matrix,
so just need to check evalues are non-positive.

Let x be any vector. Then:

xTDADx = −(Dx)TA(Dx) = −yTAy ≥ 0,

where we’ve set y = Dx, and the inequality follows since
A is positive definite. So the eigenvalues of DAD are all
non-positive.

An example of such a method would be to take D to be
central differences approximating ∂/∂x. We then have:

D =
1

2∆x


0 1 0 · · · 0
−1 0 1 · · · 0
0 −1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 .

Since central differences commit a second order error for
ODEs, we get a second order method overall.

NON-ZERO BCS: Recall non-zero BCs are the same
as inclusion of an inhomogeneous term f , by Duhamel’s
principle. The solution of the equation is then:

u(x, t) = etLu(x, 0) +

t∫
0

e(t−τ)Lf(x, τ) dτ,

where L = ∂x(a(x)∂x·). Computing the integral using
trapezoidal rule for quadrature suggests the numerical
scheme:

un+1 = e(∆t)DADun +
∆t

2

(
e(∆t)DADfn + fn+1

)
.

Use of the trapezoidal rule suggests this commits an error
O((∆t)2).

Example 2: Consider the parabolic equation

∂u

∂t
=
∂2u

∂x2
+ κu,

on [0, 1] with zero BCs and an initial condition at t = 0.

The exact solution of this equation can be obtained
by separation of variables; we find:

u(x, t) =

∞∑
n=1

Cne
(κ−n2π2)t sin(nπx).

where the Cn depend on the initial condition. We see that
u→ 0 as t→∞ for every initial condition iff κ < π2.

Solving numerically, we might use the SD scheme

u′m =
1

(∆x)2
(um−1 − 2um + um+1) + κum, m = 1, ...,M.

In terms of a matrix, this method can be written as u′ =
1

(∆x)2


−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0
...

...
...

. . .
...

0 0 0 · · · −2

+ κ


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


u
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=


κ− 2

(∆x)2
1

(∆x2) 0 · · · 0
1

(∆x)2 κ− 2
(∆x)2

1
(∆x)2 · · · 0

0 1
(∆x)2 κ− 2

(∆x)2 · · · 0
...

...
...

. . .
...

0 0 0 · · · κ− 2
(∆x)2

u.

This is TST, so we know its eigenvalues are

κ− 2

(∆x)2
+

2

(∆x)2
cos

(
πk

M + 1

)
, k = 1, ...,M.

To reproduce the behaviour that u→ 0 as t→∞, we want
all evalues to be negative. So we need

κ <
4

(∆x)2
sin2

(
πk

2(M + 1)

)
, for k = 1, 2, ...,M

⇒ κ <
4

(∆x)2
sin2

(
π

2(M + 1)

)
.

Writing M + 1 = 1/∆x, we find that:

κ <
4

(∆x)2
sin2

(
π∆x

2

)
= π2 − π2(∆x)2

6
+ · · · .

So we need κ to be just less than π2 in the numerical
scheme.

10 Analysis of non-linear PDEs

10.1 Typical example

We focus on the hyperbolic conservation law :

∂u

∂t
+

∂

∂x
(f(u)) = 0. (†)

This has three important features:

1. CHARACTERISTICS: The solution is constant along
characteristics. That is, if u(x0, 0) = u0, say, then
along the ling x = x0 + f ′(u0)t the solution retains
its value, i.e. u(x0 + f ′(u0)t, t) = u0.

2. SHOCKS: Since the slopes of characteristics can vary,
they may clash; this is called a shock. There is clearly
a discontinuity in the solution at shocks. The flow is
completely into the shock and no information leaves it.

It is possible to show that if Γ(t) is a parametric
representation of a shock, then the Rankine-Hugeniot
equation is obeyed:

dΓ(t)

dt
=

[f(u)]

[u]
,

where [w] denotes the jump across the shock, i.e.

[u] = lim
RH

(u(t))− lim
LH

(u(t)).

3. RAREFACTIONS: The characteristics could depart too
quickly away from one another, leaving a void called
a rarefaction fan. There are multiple ways of patching
the solution here (the solution is not unique), but only
one has an important physical significance:

Definition: The entropy condition is

1

2

∂

∂t
u2 +

∂

∂x
F (u) ≤ 0, F (u) :=

u∫
0

yf ′(y) dy.

Theorem: Provided the entropy condition is obeyed, and
RH is used to resolve shocks, the solution of (†) exists,
is unique and is bounded by the initial data; that is, there
exists c such that

||u|| ≤ c||u(x, 0)||.

Example: Burgers’ equation takes f(u) = 1
2u

2, i.e.
ut + uux = 0. Consider initial data u(x, 0) = 1 for x ≥ 0
and u(x, 0) = 0 for x < 0. We see the characteristics leave
a rarefaction fan:

x

t

One way of filling the void is to use

u(x, t) =


1 0 ≤ t ≤ x
x/t 0 ≤ x ≤ t,
0 x < 0, t ≥ 0.

The entropy condition, since F (u) = 1
3u

3, and so the en-
tropy condition is

uut + u2ux ≤ 0.

It’s trivial to check that our choice of u satisfies this, and
hence this is the unique solution obeying the entropy con-
dition inside the rarefaction fan.
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10.2 Godunov’s method & improvements

Method: Godunov’s method approximates the initial
condition u0(x) by a step function. We replace the initial
condition by u(x, 0) = ũ0(x), where ũ0(x) = u0((m+ 1

2 )∆x)
for m∆x ≤ x < (m + 1)∆x (i.e. replace function by its
midpoint value on each interval).

We now have a Riemann problem, which we can
solve explicitly. If u(x, 0) = a for all a ∈ [x0, x1), then the
characteristic flow gives u(x, t) = ũ0(x − f ′(a)t) = a for
x0 ≤ x− f ′(a)t < x1.

We continue to advance t until more than two char-
acteristics clash (we can resolve a single shock using
the RH equation), and also so as not to open up rar-
efaction fans too much. We then just resample (provided
∆t < ∆xmax |f ′(ũ0)|, we have enough data), and iterate.
It’s possible to show this gives a first order method.

Method: Van Leer’s method improves this by ap-
proximating by a piecewise linear function instead of a
step function. This gives a second order method.

Method: Glimm’s method improves this by instead
of sampling ũ0 at midpoints, choosing randomly on each
interval. This has limited practical use, but allows us
to prove the earlier Theorem about the uniqueness and
existence of the solution of (†).

10.3 The Enquist-Osher method

Assume f is strictly convex, and we are solving the
Cauchy problem. Since f is strictly convex, there exists
a unique minimum u ∈ R such that f ′(u) = 0. This u is
called the sonic point or stagnation point of f(u).

Definition: The Enquist-Osher switches are

f−(y) = f(min{y, u}), f+(y) = f(max{y, u}).

If y < u, f−(y) = f(y) and f+(y) = f(u) = constant, and if
y > u, f+(y) = f(y) and f−(y) = f(u) = constant. So one
switch is always f , and one is always constant.

Because of discontinuity of shocks, we want a method that
does not take points from both sides of the shock. This
can be achieved by using the switches:

Method: The Engquist-Osher method is defined by:

u′m = − 1

∆x
(∆+f−(um) + ∆−f+(um)).

If um−1, um, um+1 > u, then ∆+f− = 0, so we just get
backward difference. If um−1, um, um+1 < u, we just get
forward difference. So the Engquist-Osher method indeed

allows for discontinuity at shocks.

Theorem: The Engquist-Osher method is stable.

Proof: Since the equation is non-linear, we basically
have to use the energy method. We have:

1

2

d

dt
||u||2 = −

∞∑
m=−∞

um∆+f−(um)︸ ︷︷ ︸
=:B1

−
∞∑

m=−∞
um∆−f+(um)︸ ︷︷ ︸

=:B2

.

We show B1 < 0, B2 < 0 separately.

We’ll use the fact

∞∑
m=−∞

um+1∫
um

yf ′−(y) dy = 0.

To prove this, integrate by parts, and then recognise we
have a telescoping sum:

∞∑
m=−∞

(um+1f−(um+1)− umf−(um))−
um+1∫
um

f−(y) dy.

We get zero since um → 0 as m → ±∞ (in particular, the
integral in the sum vanishes.

Now go back to B1:

B1 = −
∞∑

m=−∞
um(f−(um+1)− f−(um))

= −
∞∑

m=−∞
um

um+1∫
um

f ′−(y) dy.

Add on zero using our special integral

B1 =

∞∑
m=−∞

um+1∫
um

(y − um)f ′−(y) dy.

We claim that each term in the sum is non-positive. There
are two cases:

(i) um+1 ≥ um. Then y − um ≥ 0, and f ′−(y) ≤ 0, since
f−(y) is always decreasing. So negative.

(ii) um+1 ≤ um. Then y − um ≤ 0, and f ′−(y) ≤ 0. So
negative again (get extra minus from limits flipping).

Similarly B2 < 0.
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