
Part III: Quantum Computation - Revision

Lectures by Richard Jozsa, notes by James Moore

1 Review of Shor’s algorithm

1.1 Setting up Shor’s algorithm

Definition: The time complexity of a quantum algorithm
operating on n bits is the number of unitary gates used in
the circuit. An algorithm has polynomial time complexity if
the time complexity is polynomial in n.

Definition: Let N be an integer (with n = O(log(N))
digits). The factoring problem is to determine a factor of
N , not equal 1 or N , in polynomial time.

It was shown in the Part II course that the factoring
problem is equivalent to the periodicity-finding problem via
the Theorem:

Theorem: Choose a such that 1 < a < N with
gcd(a,N) = 1 (note we can check this in polynomial time).
Then we can find a factor of N with probability strictly
greater than 1

2 by determining the period r of the function
f : Z→ ZN , given by f(x) = ax (mod r).

We thus switch to solving the periodicity-finding problem.
Since we’re working on a computer, we must work on a fi-
nite register ZM , so restrict the function f to f : ZM → ZN
for M large.

ASIDE: Recall from Part II this creates technical is-
sues from the fact that f is now no longer fully periodic. It
was shown there that these issues are negligible provided
M = O(N2), and thus in this course, we’ll ignore those
issues and assume f is fully periodic.

To implement f on a quantum computer, need to switch
to using Hilbert spaces for output and input registers. Use
HM = span{|i〉 : i ∈ ZM} and HN = span{|k〉 : k ∈ ZN},
where |i〉 and |k〉 are orthonormal bases. Now use result:

Theorem: Any function f : ZM → ZN can be simu-
lated by the operation Uf : HM ⊗HN → HM ⊗HN defined
on a basis via

Uf |i〉 |k〉 = |i〉 |k + f(i)〉 ,

and extended to all of HM ⊗HN by linearity. Furthermore,
Uf is unitary, and if f can be computed in polynomial time,
then so can Uf .

Proof: Obviously simulates f , since passing |x〉 |0〉 to it
gives |x〉 |f(x)〉 back. Uf is unitary since it is a permutation
of the basis vectors.

Finally, if f can be computed in polynomial time, just
boost classical Boolean gates to quantum gates giving a
polynomial complexity circuit for Uf .

Usually we suppose that we are given f in its quan-
tum form Uf , with Uf ’s inner workings unknown to us.

Definition: If Uf ’s internal operation considered un-
known, it is called a blackbox or oracle. The number
of times we call Uf in an algorithm is called the query
complexity of the algorithm.

We can now state the quantum form of the periodicity-
finding problem:

Definition: Let Uf be a quantum oracle for the func-
tion f : ZM → ZN , where f is efficiently computable (i.e.
in polynomial time). Let m = O(log(M)) be the number of
digits of M . Suppose that:

• f is periodic, with unknown period r ∈ ZN . That is,
f(x+ r) = f(x) for all x ∈ ZM , and r is the least such
positive integer for which this occurs.

• f is one-to-one in each period (note this is guaranteed
in the case of f(x) = ax from above, which we will use
in Shor’s algorithm). That is, for all 0 ≤ x1, x2 < r, we
have f(x1) 6= f(x2).

The quantum period-finding problem is to determine r
in order O(poly(m)) time, with any prescribed success
probability 1− ε, for ε > 0.

1.2 Shor’s algorithm

Shor’s Algorithm:

1. Make the state
1√
M

M−1∑
i=0

|i〉 |0〉 . Query the oracle Uf

with this state to get

1√
M

M−1∑
i=0

|i〉 |f(i)〉 .

2. Measure the second register to see w = f(x0), with
0 ≤ x0 < r. Since f is periodic, it takes r distinct

J. M. Moore, 2019

values all with equal likelihood, so w is uniformly ran-
dom, and hence x0 is uniformly random on 0 ≤ x0 < r.

By the Born rule, the first register collapses to

|per〉 =
1√
A

A−1∑
j=0

|x0 + jr〉 ,

where A = M/r is the number of periods. Discard the
second register.

3. Apply the QFT to |per〉 (note this takes O(m2) time,
where m = O(log(M))): QFT |per〉 =

1√
AM

M−1∑
y=0

exp

(
2πix0y

M

)
A−1∑
j=0

exp

(
2πijry

M

) |y〉 .
Since r/M = 1/A, the sum in the curly brackets is

A−1∑
j=0

ωjy,

where ω is an Ath root of unity. Elementary algebra
tells us this is non-zero, and equal to A, iff y is a multi-
ple of A, say y = kA. Thus the transformed state can
be written QFT |per〉 =

1√
r

r−1∑
k=0

e2πix0kA |kA〉 =
1√
r

r−1∑
k=0

exp

(
2πix0kM

r

)
|kM
r
〉 .

4. Measure QFT |per〉 to see some c = k0M/r, where
k0 is uniformly random in 0 ≤ k0 ≤ r− 1. Rearranging
we find:

c

M
=
k0
r
.

Both k0 and r are unknown integers. If they were co-
prime, could cancel down c/M and read off the de-
nominator to give r. If not, perform this procedure
anyway and check: just compute f(0) and f(b) (where
b is our proposed r) and compare.

5. If our proposed r is wrong, run the whole algorithm
again repeatedly until we find the right r.

This algorithm works because of:

Theorem: The number of integers less than r and
coprime to r grows as O(r/ log(log(r))). So in the above,
Prob(k0 coprime to r) = O(1/ log(log(r))).

Proof: Not required.

Theorem: If a single trial of an experiment has suc-
cess probability p, the probability of success in at least
one of K trials is greater than 1− ε, for any 0 < 1− ε < 1,
if K ≥ − log(ε)/p = O(1/p).

Proof: Elementary probability theory.

Therefore, Shor’s algorithm requires K = O(log(log(r))) ≤
O(log(log(M))) = O(log(m)) repeats to find r with any
desired success probability. Hence it runs in polynomial
time (as each step was polynomial - in particular, the
Fourier transform needs O(m2) time).

1.3 A first look at shift-invariant states

The key to why Shor’s algorithm works - and how it
generalises - is shift-invariant states.

Definition: The map k 7→ k + x0 is called a shift by
x0. The corresponding quantum operation U(x0) is
defined on a basis by U(x0) |k〉 = |k + x0〉 and extended
by linearity.

Theorem: The shift operators U(x0) obey (i) U(x0)
is unitary for all x0; (ii) U(x + y) = U(x)U(y) for all x, y;
(iii) {U(x)}x∈ZM

are simultaneously diagonalisable.

Proof: (i) Clear since permutation. (ii) Clear from
definition. (iii) All U(x)’s commute by (ii).

Definition: An element of the simultaneous, orthonor-
mal basis of common eigenvectors of {U(x)}, written
{|χk〉}k∈ZM

, is called a shift invariant state. We write
U(x0) = ω(x0, k) |χk〉 where ω(x0, k) is some eigenvalue.
Since U is unitary, |ω(x0, k)| = 1.

Shift-invariant states inspire the above algorithm as
follows. Define

|S〉 =
1√
|S|

∑
s∈S
|s〉 ,

for any set S. If R = {0, r, 2r, ..., (A − 1)r},
then we have can write our periodic state as
|per〉 = |x0 +R〉 = U(x0) |R〉 in terms of the shift
operator.

Write |R〉 in the shift-invariant basis: |R〉 =

M−1∑
k=0

ak |χr〉 .

Therefore:

|per〉 =

M−1∑
k=0

akω(x0, k) |χk〉 .

Note that the ak ’s depend on r, but x0 and k (which is a
dummy variable) do not. So measuring |per〉 with respect
to the shift-invariant basis must give information about r!

The probability of getting χk is |akω(x0, k)|2 = |ak|2,
which is purely dependent on r and not x0. This is the
secret of Shor’s algorithm!

2

J. M. Moore, 2019

How do we measure in such a basis |χk〉 then? Well,
we rotate |χk〉 back to the standard basis first, and then
perform the measurement. This will be our generalised
definition of the quantum Fourier transform:

Definition: The quantum Fourier transform is the
map defined by QFT |χk〉 = |k〉, and extended by linearity.

This is unitary because it maps an orthonormal ba-
sis to an orthonormal basis.

Thus applying the QFT as defined here, and then
performing a standard basis measurement, implements
the |χk〉 basis measurement.

It’s all very well defining an operation like this, but
can we actually do it? We need an explicit formula for it,
one that agrees with our original QFT definition hopefully!

Theorem: An explicit formula for |χk〉 is:

|χk〉 =
1√
M

M−1∑
l=0

e−2πikl/M |l〉 .

Proof: Just need to verify this. We have U(x0) |χk〉 =

1√
m

M−1∑
l=0

e−2πikl/M |l + x0〉 =
1√
M

M−1∑
l̃=0

e2πik(l̃−x0)/M |l̃〉 ,

on substituting l̃ = l + x0. Factoring out a phase, we have
U(x0) |χk〉 = e2πikx0/M |χk〉.

Theorem: The QFT , as defined in terms of the shift
invariant states, has matrix elements:

[QFT]kl =
1√
M
e2πilk/M ,

as expected.

Proof: We have QFT |χk〉 = |k〉 ⇒ |χk〉 = QFT−1 |k〉.
Therefore we can read off from above:

[QFT−1]lk =
1√
M
e−2πilk/M .

Now take conjugate transpose, since QFT is unitary.

2 The hidden subgroup problem

2.1 The hidden subgroup problem

Definition: LetG be a group and letK ≤ G be a subgroup.
Let f : G → X is a function implemented by the quantum
oracle Uf . Suppose we are promised that f is constant
on the left cosets of K in G, and f is distinct on distinct
cosets. The hidden subgroup problem is to ‘determine’ the
subgroup K in time O(poly(log(|G|))), with any constant
probability 1− ε < 1.

The word ‘determine’ is a little fuzzy here, as there are
many ways to present a subgroup. Examples of solutions
might include outputting a set of generators of K, or giving
a uniform sample of elements from K.

Note the time complexity we want to complete the
problem in is exponentially faster than just checking all
group elements.

Example 1: The period-finding problem is a hidden
subgroup problem. The group is G = ZM , the func-
tion is f : ZM → X, and the hidden subgroup is
K = {0, r, 2r, ..., (A − 1)r} ≤ G. Clearly f is constant on
cosets.

To present K, we determine its generator, r.

Example 2: Let p ∈ Z be prime and let Z∗p = {1, 2, .., p−1}
be the multiplicative group modulo p. An element g ∈ Zp is
a primitive root if powers of g generate Z∗p. It’s a fact from
number theory that primitive roots always exist for prime p.

Let g be a primitive root. Then x ∈ Z∗p may be writ-
ten x = gy, where y ∈ {0, ..., p − 2} ∈ Zp−1. The power
y = logg(x) is called the discrete logarithm of x to the
base g. The discrete logarithm problem is to determine
logg(x) given g and x.

The discrete logarithm problem is a HSP. Consider
f : Zp−1 × Zp−1 → Z∗p given by f(a, b) = gax−b(mod p).
This is the same as f(a, b) = ga−yb where y is the discrete
logarithm.

Notice that f(a, b) = c, where c = gk is some fixed value,
implies ga−yb = gk, and so a − yb − k ≡ 0 (mod p − 1).
Parametrise the solution as b = λ, a = bλ + k for
some λ ∈ Zp−1. Then f(a, b) = c if and only if
(a, b) = λ(y, 1) + (k, 0).

Thus the hidden subgroup is the group generated by
(y, 1), and the above result proves that f is constant and
distinct on the cosets of 〈(y, 1)〉. Finding the subgroup is
equivalent to solving the discrete logarithm problem.

2.2 Shift-invariant states for Abelian G

To solve the Abelian HSP, we use the shift-invariant states
technique as in Shor’s algorithm. We restrict to Abelian
groups G now, and will discuss non-Abelian groups later.
To construct the states, we use the following approach.

Definition: An irreducible representation of the group G
on C∗ = (C\{0},×) is a mapping χ : G → C∗ satisfying
χ(g1 + g2) = χ(g1)χ(g2), i.e. it is a group homomorphism.

3

J. M. Moore, 2019

Theorem: We have the following properties:

(i) χ(g) is a |G|th root of unity; hence χ : G → S1, the
unit circle.

(ii) SCHUR’S LEMMA: If χi and χj are both irreps, then∑
g∈G

χi(g)χj(g) = δij |G|.

(iii) There are exactly |G| different irreps and no more.

Proof: (i) Since G is finite, there exists r (the order
of g) such that g + g + ... + g (r times) = 0. Hence
1 = χ(0) = χ(g + ... + g) = χ(g)r. Recall r divides |G| by
Lagrange’s Theorem, and so χ(g)r = 1⇒ χ(g)|G| = 1.

(ii) Define S =
∑
g∈G

χi(g)χj(g). Note that

χi(h)S =
∑
g∈G

χi(g + h)χj(g) =
∑
g̃∈G

χi(g̃)χj(g̃ − h),

where g̃ = h+ g. Now using the homomorphism property,
and χj(−h) = χj(h) (since inverses preserved by homo-
morphism, and χj(h) is unit modulus), we have

χi(h)S = χj(h)S ⇒ (χi(h)− χj(h))S = 0.

If χi 6= χj , there exists h where they disagree. Hence
S = 0 if i 6= j. If i = j, then from (i) the sum is trivially |G|.

(iii) Not required in this course.

By (iii) we can label the irreps as χg for g ∈ G.

Example: χ(g) = 1 for all g is an irrep, trivially. This
is called the trivial representation and we label it as χ0.

Theorem: For any χ 6= χ0, we have
∑
g∈G

χ(g) = 0.

Proof: Use Schur’s Lemma with χj = χ0 and χi 6= χ0.

Define the state space H|G| to be the span of the or-
thonormal basis {|g〉}g∈G. Then, as in Shor’s algorithm,
we define:

Definition: The shift operators U(k) are defined by
U(k) |g〉 = |g + k〉, and extended by linearity (note + is the
group operation here).

Theorem: We have: (i) U(k) is unitary; (ii)
U(h)U(k) = U(k)U(h); (iii) {U(h)}h∈G are simulta-
neously diagonalisable.

Proof: (i) Just a permutation. (ii) Since group Abelian. (iii)
Immediate from (ii).

Definition: The common orthonormal eigenbasis of
{U(k)}k∈G is called the shift-invariant basis, written
{|χk〉}k∈G, and its elements are shift-invariant states.

Definition: The quantum Fourier transform on the group
G is the unitary operation QFT satisfying QFT |χk〉 = |k〉,
and extended by linearity.

As before, we can explicitly construct the shift-invariant
states and the QFT.

Theorem: The shift-invariant states are given by

|χk〉 =
1√
|G|

∑
g∈G

χk(g) |g〉 .

The states are indeed orthonormal, as claimed.

Proof: We have U(g) |χk〉 =

1√
|G|

∑
h∈G

χk(h) |h+ g〉 =
1√
|G|

∑
h′∈G

χk(h′ − g) |h′〉 ,

where we’ve let h′ = h + g. Using the proper-
ties of the irreps, we can factor out χk(g) leaving
U(g) |χk〉 = χg(g) |χk〉. So indeed these are shift-invariant
states.

To prove orthonormality, use Schur’s Lemma.

Theorem: The QFT has explicit matrix representation

[QFT]kg =
1√
|G|

χk(g),

so that QFT |g〉 =
1√
|G|

∑
k∈G

χk(g) |k〉.

Proof: By definition, |χk〉 = QFT−1 |k〉. So reading
off the matrix elements, we see

[QFT−1]gk =
1√
|G|

χk(g).

Since QFT is unitary, take conjugate transpose.

Example 1: For G = (ZM ,+) we can check that
χa(b) = e2πiab/M are indeed irreps for each a.

Example 2: For G = ZM1
× ... × ZMr

, if g1 = (a1, ..., ar)
and g2 = (b1, ..., br), then

χg1(g2) = exp

(
2πi

(
a1b1
M1

+ ...+
arbr
Mr

))
are irreps for each g1. In particular, because the exponen-
tial factors, we have that QFTG = QFTM1 ⊗ ...⊗QFTMr .

4

J. M. Moore, 2019

In fact, Example 2 exhausts all possible Abelian groups
because:

Theorem: Any finite Abelian group is isomorphic to
a direct product of the form ZM1 × ...×ZMr , where the Mi

are prime powers, ps11 , ... , psrr .

Proof: Not required.

2.3 The Abelian HSP algorithm

The algorithm for the Abelian HSP is the same as
Shor’s algorithm, but instead using the Fourier transform
on the group G as defined in terms of shift-invariant states.

HSP Algorithm: Consider f : G → X with hidden
subgroup K ≤ G, and f constant and distinct on cosets
of K. Let |G|/|K| = m. Consider states with basis
{|g〉 , |x〉}g∈G,x∈X .

1. Make the states
1√
|G|

∑
g∈G
|g〉 |0〉, and query the oracle

Uf with it to get

1√
|G|

∑
g∈G
|g〉 |f(g)〉 .

2. Measure the second register to see some f(g0) for
g0 ∈ G a uniformly random representative of one of
the cosets of K. Then the remaining first register
gives the coset state:

|g0 +K〉 =
1√
|K|

∑
k∈K

|g0 + k〉 = U(g0) |K〉 .

Discard the second register.

3. Apply the group quantum Fourier transform to get:

QFT |g0 +K〉 =
1√
|G|

1√
|K|

∑
l∈G

χl(g0)

{∑
k∈K

χl(k)

}
|l〉 .

Recall the term in braces is zero if χl 6= χ0, the trivial
rep. BUT these irreps are summing only over K here,
so it’s sufficient that χl restricts to χ0 on K for it to be
non-zero. If χl restricts to χ0 on K, then the sum is
equal to |K| trivially. Thus we have

QFT |g0 +K〉 =

√
|K|
|G|

∑
l∈G

χl=χ0 on K

χl(g0) |l〉 .

4. Measure. Since |χl(g0)|2 = 1, the measurement is
independent of g0. We see a uniformly random l such
that χl(k) = 1 for all k ∈ K.

How do we now extract information about K? We have
the following:

Theorem: For any subgroup K ≤ G (even for G
non-Abelian), K has a set generators k1, k2, ... ,km, where
m = O(log(|K|)) = O(log(|G|)).

Proof: Not required.

Theorem: Suppose we repeat the algorithm N times,
so that we have equations χl1(k) = 1, χl2(k) = 1, ... ,
χlN (k) = 1. Then providedN = O(log(|G|)), the equations
suffice to determine a generating set of K with any good
probability.

Proof: Not required.

This result shows that the algorithm indeed gives us
a solution to the Abelian HSP.

Example: Let G = ZM1
× ZM2

× ... × ZMq
. Recall

for l = (l1, ..., lq) and g = (b1, ..., bq) we have

χl(g) = exp

(
2πi

(
l1b1
M1

+ ...+
lqbq
Mq

))
.

Hence writing k = (k1, ..., kq) the equation χl(k) = 1 is

l1b1
M1

+ ...+
lqbq
Mq

= 0 (mod 1).

(Modulo 1 in this context means the LHS is an integer.)
This is a homogeneous linear equation in k, and we want
the kernel. Provided we have O(log(|K|)) such equa-
tions, we can determine the null spaceK as the null space.

2.4 Example: generalised Simon’s problem

Definition: The generalised Simon’s problem is defined
as follows. Let Uf be an oracle for f : Zn2 → Zn2 which is
2k to 1, with k linearly independent n-bit strings a1, a2, ...
, ak ∈ Zn2 that obey f(x) = f(x ⊕ ai) for all x ∈ Zn2 (here,
⊕ is bitwise addition). The problem is to output any b ∈ Z2

n

having f(x) = f(x⊕ b) for all x ∈ Zn2 in polynomial time.

Theorem: Simon’s problem is an Abelian HSP.

Proof: We claim K = 〈a1, ..., ak〉, the subgroup gen-
erated by the ai is the hidden subgroup. It’s a subgroup by
definition. The problem is Abelian since Zn2 is Abelian.

The cosets of K are x ⊕ 〈a1, a2, ..., ak〉 so a general
element is x⊕ ar11 ⊕ ...⊕ a

rk
k , ri = 0, 1. Note that

f(x⊕ ar11 ⊕ ...⊕ a
rk
k) = f(x),

so indeed constant on cosets.

5

J. M. Moore, 2019

Finally, need f distinct on cosets. Each coset is of
size 2k since the ai are linearly independent. f is given as
2k to 1, and hence f must be distinct on each coset.

Theorem: The irreps for this group are χx(y) = (−1)x·y,
where · is the bitwise inner product, and the shift invariant
states are:

|χx〉 =
1√
2n

∑
y∈Zn

2

(−1)x·y |y〉 .

The Fourier transform on the group is given by:

QFT = H ⊗H ⊗ ...⊗H︸ ︷︷ ︸
n times

= Hn,

where H is the Hadamard gate.

Proof: From the general theory, the irrep χx(y) is
given by:

χx(y) = exp
(

2πi
(x1y1

2
+
x2y2

2
+ ...+

xnyn
2

))
= (−1)x·y.

The shift-invariant states then come from the general the-
ory. The Fourier transform is, from the general formula,

QFT |x〉 =
1√
2n

∑
y∈Zn

2

(−1)x·y |y〉 .

Notice that Hn |x〉 is the uniform superposition, except we
pick up a minus sign whenever there’s a one in x; this can
be accounted for by including a factor of (−1)x·y next to
|y〉 in the expansion.

Example: Let’s see how the HSP algorithm works in
this case.

1. Make the state
1√
2n

∑
x∈Zn

2

|y〉 |0〉 , and apply Uf to get

1√
2n

∑
x∈Zn

2

|x〉 |f(x)〉 .

2. Measure the second register and then discard it. We
see some f(x0) and the state collapses to the coset
state

1√
2k

∑
x∈K
|x0 + x〉 ,

where 2k = |K| (recall from above).

3. Now apply the group’s QFT as derived above. We get
the state:

|ψ〉 =
1√
2n

1√
2k

∑
y∈Zn

2

(−1)x0·y

{∑
x∈K

(−1)x·y

}
|y〉 .

As usual, we now consider the sum in curly braces. We
could use the general theory here, and require the rep to
restrict the trivial rep on K; this is the condition that the
sum is zero unless (−1)x·y = 1 for all x ∈ K, i.e. x · y ≡
0 (mod 2) for all x ∈ K.

However, it’s also possible to show this by elementary
means:

Theorem: Either x · y ≡ 0 (mod 2) for all x ∈ K, or
x · y ≡ 0 (mod 2) for exactly half of x ∈ K.

Proof: If x · y ≡ 0 for all x ∈ K, we’re done. So
suppose x1 · y ≡ 1 and for all x′ 6∈ span{x1}, we have
x′ · y ≡ 0. Then for any x2 6∈ span{x1}, we have
0 ≡ (x1 +x2) ·y ≡ x1 ·y+x2 ·y ≡ 1. This is a contradiction.
Therefore, there exists x2 6∈ span{x1} such that x1 · y ≡ 1.

Now suppose for all x′ 6∈ span{x1, x2}, we have
x′ · y ≡ 0. Then for any x3 6

∫
span{x1, x2}, we have

0 ≡ (x1 +x3) ·y ≡ x1 ·y+x3 ·y ≡ 1. Again, a contradiction.

Iterate until we have built up span{x1, x2, ..., xk} where
xi · y ≡ 1 for all xi. Then this spans all of K since it has
size 2k. Thus for any x ∈ K, we have x = xr11 ⊕ ... ⊕ x

rk
k ,

where ri = 0, 1. Thus:

x · y ≡

{
0 even number of ri equal to 1

1 odd number of ri equal to 1.

So half/half split in K as expected.

Using this fact, we have

∑
x∈K

(−1)x·y =

{
0 if y is not orthogonal to K
|K| if y is orthogonal to K.

Hence |ψ〉 =

√
2k

2n

∑
y∈Zn

2
y⊥K

(−1)x0·y |y〉 . Back to algorithm...

4. Now measure. We see some y orthogonal to K, uni-
formly random in the orthogonal complement of K.

5. Run the procedure n− k times to see y1, ... , yn−k, all
orthogonal to K. We now need to examine how likely
it is for these strings to span the orthogonal comple-
ment of K (for then we just pick any b not in the span
of the yi to solve Simon’s problem).

To examine the likelihood that these strings span, we use:

Theorem: If we pick m m-bit strings, y1, ... , ym
uniformly at random from Zn2 , then they will be linearly
independent, and not include the all-zero string, with
probability at least 1/4.

Proof: Pick the strings one by one. Only restriction
on y1 is that it is not zero. So chance of good y1 is
1− 1/2m.

y2 can’t be in the subspace spanned by y1, which
has 2 elements. Thus chance of good y2 is 1− 1/2m.

6

J. M. Moore, 2019

Continuing in this fashion, we see the probability of select-
ing m good strings is:

m∏
j=1

(
1− 2j−1

2m

)
.

Then using the inequality (1 − a)(1 − b) ≥ 1 − (a + b) for
a, b ∈ [0, 1] repeatedly, we find:

m∏
j=1

(
1− 2j−1

2m

)
=

1

2

m−1∑
j=1

(
1− 2j−1

2m

)
≥ 1

2

1−
m−1∑
j=1

2j−1

2m

=

1

2

(
1−

(
2m−1 − 1

2m

))
=

1

4
+

1

2m+1
≥ 1

4
.

Now go back to our observed strings y1, y2, ... , yn−k.
Each has n bits, but consider only the first n − k in each
case. The chance that the first n − k bits of all the strings
are all linearly independent is thus ≥ 1/4 by the above.

So span{y1, ..., yn−k} is indeed the orthogonal com-
plement of K with likelihood ≥ 1/4, and so we solve
Simon’s problem with probability ≥ 1/4.

By the Probability Lemma, this is sufficient to run the
algorithm in polynomial time if we want to solve it with any
high probability. To spell it out, if we fail to get a solution
of Simon’s problem, just repeat the whole algorithm. The
probability of success on the Cth trial is(

3

4

)C−1
· 1

4
.

So for this to be > 1 − ε for any ε, we just need
C > 1 + log(4(1 − ε))/ log(3/4). So we only need a
constant number of repeats, with n − k queries to oracle
at each repeat. Thus algorithm is of order O(n).

2.5 Non-Abelian HSP

Write G multiplicatively now and no longer assume G is
Abelian. The first few steps of the algorithm can be run as
before:

1. Make
1√
|G|

∑
g∈G
|g〉 |0〉, and apply Uf to get:

1√
|G|

∑
g∈G
|g〉 |f(g)〉 .

2. Measure the second register to see some f(g0). Dis-
card it to leave the coset state

|g0K〉 =
1√
|K|

∑
k∈K

|g0k〉 .

Normally, the algorithm tells us to apply the QFT here. But
problems arise, as it turns out there is no shift-invariant
basis (the U ’s don’t commute, so don’t have a common
eigenbasis)! However, we still can construct the QFT...

THE NON-ABELIAN QUANTUM FOURIER TRANSFORM:
Begin by generalising the notion of an irrep (c.f. Symme-
tries, Fields and Particles):

Definition: A d-dimensional representation of a group G
is a group homomorphism χ : G → U(d) where U(d) is
the group of d× d unitary matrices.

A representation is called irreducible if no subspace
of Cd is left invariant by all the matrices in the representa-
tion, χ(g), g ∈ G.

That is, a representation is irreducible if you can’t
block diagonalise all the matrices in the representation on
some block simultaneously by some basis change.

A complete set of irreps is a set χ1, χ2, ... , χm of
irreps such that any irrep is unitarily equivalent to one of
the χi (here, equivalent means ‘the same up to a change
of basis’, χ′ = V χV −1, V ∈ U(d)).

Theorem: Let χ1, χ2, ... , χm be a complete set of
irreps of a group G with dimensions d1, d2, ... , dm. Then:

1. d21 + d22 + ...+ d2m = |G|;

2. SCHUR’S LEMMA: Let χi,jk(g) be the (j, k)th entry of
the matrix χi(g), for j, k = 1, ..., di. Then∑

g∈G
χi,jk(g)χi′,j′k′(g) = |G|δii′δjj′δkk′ .

Proof: Not required.

It follows from the above that

|χi,jk〉 =
1√
|G|

∑
g∈G

χi,jk(g) |g〉

are an orthonormal basis. So there exists a unitary
operation transforming {|χi,jk〉} into {|g〉}.

Definition: The quantum Fourier transform is the
unitary operation defined by QFT |χi,jk〉 = |g〉, and
extended by linearity.

However this does not provide us with the algorithm
we want. The |χi,jk〉 are not shift-invariant states. In
particular, a measurement of the coset state |g0K〉 in the
above basis does not give an output distribution that is
independent of g0.

On the other hand, a ‘partial’ shift invariant survives.
Consider the incomplete measurement Mrep on |g0K〉
that distinguishes only the irreps (i.e. the i values) and
not all i, j, k’s. That is, the measurement has outcome
i associated to the d2i -dimensional orthogonal subspace
spanned by {|χi,jk〉 : j, k ∈ 1...di}.

7

J. M. Moore, 2019

Then since χi(g1g2) = χi(g1)χi(g2), we can disentangle
χi(g0) on measurement, giving us an outcome distribution
which is independent of g0.

This gives direct, but incomplete, information about
K. For example, it’s possible to show that conjugate
subgroups such as K and L = g′Kg′

−1, give the same
output distribution.

We also need (for an efficient HSP algorithm) the
QFT to run in O(poly(log(|G|))) time. This is true for
any Abelian G, and some non-Abelian groups, but not
all. Even for the ones non-Abelian ones where we do
know how to implement the QFT efficiently, there’s still no
efficient HSP algorithm!

Int the Abelian case, QFT implementation is achieved
using the fast Fourier transform. This technique is also
applicable to non-Abelian permutation groups.

KNOWN RESULTS:
Some partial results on the non-Abelian HSP are:

Theorem (Hallgren and Russell): If G has an effi-
cient QFT, and K is given to be a normal subgroup of G,
then there is an efficient HSP quantum algorithm.

Theorem (Ettinger, Høyer and Knill): For a general
non-Abelian HSP, M = O(poly(log(|G|))) random coset
states {|g1K〉 , ..., |gMK〉} suffice to determine K.

The problem with the Ettinger, Høyer and Knill Theo-
rem is that it is not known how to efficiently determine K
from those cosets!

2.6 Non-Abelian example: graph problems

Definition: A graph is a set of edges and vertices,
A = {vertices V,edges E}. We assume our graphs are
undirected and there is at most one edge between any
two vertices. Label the vertices by [n] = {1, 2, ..., n}.

Notation: The permutation group on the vertices is
written Pn.

Definition: The automorphism group of a graph A,
denoted Aut(A) is a subgroup of Pn containing the permu-
tation π ∈ Pn such that i− j is an edge in A iff π(i)− π(j)
is an edge in A.

That is, if the labelled graph π(A) (i.e. replace label
i in A by π(i)) is the same as the labelled graph A.

Definition: The graph automorphism HSP is defined as
follows. Let G = Pn and let X be the set of all labelled
graphs on n vertices. Define

fA(π) = π(A).

The problem is to determine the hidden subgroup
K = Aut(A).

Indeed, this is a HSP, since K is obviously a sub-
group of Pn, and a general coset element is of the form
ρπ ∈ ρAut(A) so that

fA(ρπ) = ρπ(A) = ρ(A).

So constant on cosets.

This (non-Abelian) HSP has applications to the graph
isomorphism problem.

Definition: Two labelled graphs A and B (with n
vertices) are isomorphic if there exists π ∈ Pn such that
π(A) = B. That is, i − j is an edge in A iff π(i) − π(j) is
an edge in B.

Definition: The graph isomorphism problem is to
determine whether two graphs A and B are isomorphic.

Theorem: We can reduce the graph isomorphism
problem to the graph automorphism HSP.

Proof: Let C be the graph on 2n vertices which is
the disjoint union of A and B. Label the vertices using
[2n] = {1, ..., 2n}, where LA = {1, 2, ..., n} label A and
LB = {n+ 1, ..., 2n} label B.

Consider Aut(C) ≤ P2n. We have π ∈ Aut(C) if i − j is
an edge in C iff π(i) − π(j) is an edge in C. By induction,
this is the same as the condition: i − k1 − ... − kl − j
is a path in C iff π(i)−π(k1)−...−π(kl)−π(j) is a path in C.

Recall C is disjoint. So if i, j ∈ LA and π(i) ∈ LA,
π(j) ∈ LB , then there is a path from i to j in C, but no path
from π(i) to π(j) in C. So π 6∈ Aut(C). Thus if π ∈ Aut(C),
it must either swap LA and LB fully, or permute LA and
LB separately into themselves.

Let H = {π ∈ Aut(C) : π permutes LA, LB separately}.
Then if A and B are not isomorphic, Aut(C) = H, clearly.
If A and B are isomorphic, there exists µ such that µ
swaps LA and LB fully. We claim Aut(C) = H ∪ µH.

To prove this simply note that if π ∈ Aut(C), it is ei-
ther in H, or swaps LA and LB fully. In the latter case,
µ−1π ∈ H, since µ−1 swaps everything back again!
Therefore, π ∈ µH. Thus Aut(C) = H ∪ µH, as required.

8

J. M. Moore, 2019

So if the graphs are isomorphic, |H| = |µH| = 1
2 |Aut(C)|,

and if not, |H| = |Aut(C)|. Supposing we have a HSP
algorithm for the graph automorphism problem, we can
apply this to Aut(C) to determine a, say, random sample
from it. Trialling elements from the random sample we
can determine which regime we are in, solving graph
isomorphism.

We now present a couple of ideas for graph isomor-
phism/automorphism algorithms that don’t work (but are
hopefully give insight as to why).

Example (The swap test): The swap test is defined
as follows. Given states |α〉 , |β〉 ∈ Hd, adjoint an extra
qubit to start with |0〉 |α〉 |β〉 ∈ H2 ⊗Hd ⊗Hd.

Now apply the followings actions: (i) apply H to the
qubit; (ii) apply the controlled SWAP gate, controlled
by the qubit (note SWAP |0〉 |α〉 |β〉 = |0〉 |α〉 |β〉 and
SWAP |1〉 |α〉 |β〉 = |1〉 |β〉 |α〉); (iii) apply H to the qubit
again; (iv) measure the qubit. If we see 0 output ‘near’ and
if we see 1, output ‘far’.

What’s the point of this test? It’s easy to show that
the probability of 0 is

1 + | 〈α|β〉 |2

2
,

so the result depends on the angle between |α〉 and |β〉. If
there are the same, we’re guaranteed to get 0 (i.e. ‘near’),
and if they are orthogonal, we get 1 with probability 1/2
(likely to say ‘far apart’).

This has applications to the graph isomorphism problem
as follows. Letting fA(π) = π(A), we can, as usual, build
the state

|ξA〉 =
∑
π∈Pn

|π〉 |π(A)〉 .

Suppose we can ‘forget’ the contents of the first register
(this is impossible in practice, due to the superposition).
Then we’d be left with:

|ηA〉 =
∑
π∈Pn

|π(A)〉 .

Build the same state |ηB〉 for another graph B which we
want to compare to A for isomorphism.

If A is isomorphic to B, then it’s clear that |ηA〉 = |ηB〉. If
A is not isomorphic to B, we’d have

〈ηB |ηA〉 =
∑
π∈Pn
σ∈Pn

〈π(B)|σ(A)〉 = 0,

since π(B) 6= σ(A) for any π, σ, else A and B would be
isomorphic via π−1σ(A) = B.

Thus we can apply the swap test to |ηB〉 and |ηA〉 to tell if
the graphs are isomorphic or non-isomorphic. Repeat a
constant number of times to reach any level of accuracy.

Example (Partial balanced vs constant): Let Bn
be the set of all n-bit strings and let S ⊆ Bn with |S|
even. Suppose we have an oracle f : Bn → B1 such
that f restricted to S is either balanced (half values 0, half
1) or constant (all 0 or all 1). We are given the uniform
superposition state on S:

|α〉 =
1√
|S|

∑
x∈S
|x〉 ,

and a quantum oracle Uf for f . The partial balanced vs
constant problem is to determine whether f restricted to S
is balanced or constant.

In the case S = Bn, this is solved by the Deutsch-
Jozsa algorithm. We add the ancilla |1〉 to |α〉 to get
|1〉 |α〉. We apply the Hadamard gate H to |1〉 and pass
the result to Uf . We observed the answer is of the form
|ξ〉 |−〉, and discard the second register at this point. We
notice that the possible |ξ〉 for constant or balanced are
orthogonal, so rotating back to the standard basis using
Hn, they remain orthogonal. We measure: if we see
000...0, the function was constant, and if we see anything
else it was balanced.

The case when S ⊂ Bn can help us solve graph
isomorphism. Define σ ∈ P2n to be the permutation
swapping LA and LB in their listed order, and consider the
group G = Pn × Pn ∪ σ(Pn × Pn). Note that for the graph
C = A ∪B above, we have Aut(C) ≤ G.

Suppose we are given the function fC(π) = π(C),
as usual, and a quantum oracle for fC . Begin by making

1√
|P2n|

∑
π∈G
|π〉 |0〉 .

Applying UfC , measuring, and discarding the second reg-
ister, we’re left with a random coset state:

|ρAut(C)〉 =
1√

|Aut(C)|

∑
π∈Aut(C)

|ρπ〉 .

We can write out ρπ in terms of bit strings to get a partial
balanced versus constant problem setup. Then an algo-
rithm for solving partial balanced versus constant would
solve graph isomorphism, since we’d be able to use the
function f : G → B1, defined by f(π) = 0 if π ∈ Pn × Pn
and f(π) = 1 if π ∈ σ(Pn × Pn).

From our above work, we know that Aut(C) is 50/50
in Pn×Pn and σ(Pn×Pn) when A is isomorphic to B (i.e.
f is balanced), and Aut(C) is entirely in Pn × Pn when A
is no isomorphic to B (i.e. f is constant).

9

J. M. Moore, 2019

3 Phase estimation

3.1 Problem statement and setup

Definition: Suppose we are given a unitary operator U
and an eigenstate |vφ〉 with U |vφ〉 = e2πiφ |vφ〉. WLOG we
may assume 0 ≤ φ < 1. The phase estimation problem is
to determine the first n (for any n) binary digits of φ:

φ ≈ 0.i1i2...in =
i1
2

+
i2
4

+ ...+
in
2n
.

To setup, we first need controlled Uk gates:

Definition: The controlled Uk gate is the unitary gate de-
fined by c-Uk |0〉 |ξ〉 = |0〉 |ξ〉 and c-Uk |1〉 |ξ〉 = |1〉Uk |ξ〉.
Note that c-(Uk) (the controlled Uk gate) is the same as
(c-U)k (controlled U , but k times).

There are immediately questions about implementa-
tion of such gates. If U is given as a formula or circuit
description, it’s easy to get c− U since we can just control
each gate in the circuit separately.

If U is given as a blackbox, we need more informa-
tion. It suffices to have an eigenstate |α〉 of U with known
eigenvalue eiα: U |α〉 = eiα |α〉. Then the circuit:

|a〉 • • X • X

|ξ〉 × × e−iα

|α〉 × U ×

effects |a〉 |ξ〉 |α〉 → (c-U) |a〉 |ξ〉 . This is easy to check by
eye, just running through |a〉 = |0〉 , |1〉 separately. The
e−iα box just multiplies the whole state by e−iα. The two
crosses are controlled SWAPs between the lower qubits.

For our purposes, we’ll want a ‘generalised controlled
U ’, with (c-Ux) |x〉 |ξ〉 = |x〉Ux |ξ〉 for x ∈ Z2n . Note this
generalised controlled U is actually different because it
doesn’t just act on a single qubit, but on n qubits. This can
be implemented using the single-qubit controlled U gates
via the circuit:

|xn−1〉 . . . •
|xn−2〉 . . .

...
|x1〉 • . . .

|x0〉 •

|ξ〉 U20 U21 . . . U2n−1

Here, we have written |x〉 = |xn−1〉 |xn−2〉 ... |x0〉 in its full
binary expansion, where

x = 2n−1xn−1 + 2n−2xn−2 + ...+ 2x1 + x0.

Again, it’s easy to just check that this circuit does what it’s
supposed to. Note in particular that if |ξ〉 = |vφ〉, then the
output is e2πiφx |x〉 |vφ〉.

3.2 The phase estimation algorithm

Algorithm (Phase estimation): We are given |vφ〉 and the
relevant controlled U gates.

1. Start with |00...0〉 |vφ〉. Make the uniform superposition

from the first n qubits:
1√
2n

∑
x∈Bn

|x〉 |vφ〉 .

2. Apply Ux to get
1√
2n

∑
x∈Bn

e2πiφx |x〉 |vφ〉 .

3. Apply the inverse quantum Fourier transform to the
first n qubits. Measure the first n qubits to see some
y0y1...yn−1. Then output the answer:

0.y1y2...yn−1 =
y0
2

+
y1
4

+ ...+
yn−1
2n−1

.

As a circuit diagram, the procedure is:

|0〉 H

Ux
QFT−1

|0〉 H

...
|0〉 H

|0〉 H

|vφ〉

followed by a measurement of the first n qubits. The top n
qubits are often referred to as lines in phase estimation.

Our immediate question should be: does it work? This
is hard to answer when φ isn’t exact to n binary places.
However, in the case that φ = 0.z0z1...zn−1 = z/2n, where
z = z0z1...zn−1, before we take the Fourier transform, we
have the state in the first n registers:

1√
2n

∑
x

e2πixz/2
n

|x〉 = QFT |z〉 .

Hence applying the inverse QFT gives |z〉, and hence mea-
surement gives z exactly! So it works in the exact case.

10

J. M. Moore, 2019

In other cases, the answer 0.y0y1...yn−1 is just an approxi-
mation; we’ll have to decide how good it is.

REMARK: In many algorithms, it is useful to use ev-
erything in the phase estimation algorithm except for
the final measurement. This gives a unitary operation
|000...0〉 |vφ〉 7→ |z0〉 ... |zn−1〉 |vφ〉 in the exact case, where
the first n registers contain the information about the
eigenvalue. This operation is sometimes written UPE.

3.3 Can we even do this?

Quantum gates are defined up to a phase, thus it seems
like it’s impossible to determine φ. We can just redefine
the gate U with Ũ = eiαU , and we wouldn’t be able to
notice anything different physically. So phase estimation
seems fruitless.

However, phase estimation doesn’t actually use the
gates U and Ũ , but their controlled analogues. The gate
eiαc-U has a gap in the output phase between U being on
and off, given by e2πiφ. Hence we can detect this phase
difference.

3.4 The phase estimation theorem

It’s now time to analyse how good approximate phase
estimation is. This is enshrined in the Theorem:

Theorem (Phase estimation): If the measurements
in the phase estimation algorithm give an answer
θ = 0.y0y1...yn−1, then

(i) Prob(θ is the closest n-binary digit approximation to φ)

≥ 4

π2
;

This is the probability that all of our n lines are ‘good’,
i.e. they are all significant.

(ii) Prob(|θ−φ| ≥ ε) ≤ 1

2n+1ε
. This means that if we want

φ accurate to m digits (i.e. ε = 1/2m) with probability
1− η < 1, then:

Prob
(
|θ − φ| ≥ 1

2m

)
≥ 2m

2n+1
,

so it’s sufficient to ask 2m/2n+1 < η, i.e.

n > m+ log

(
1

η

)
+ 1 = O(m).

So to get exponentially higher accuracy (i.e. more dig-
its), need only polynomially more lines! That is, each
line added to the algorithm makes it more likely to be
accurate to another digit.

Proof: Final state in the algorithm before measurement is

1

2n

∑
y∈Bn

(∑
x∈Bn

e2πi(φ−y/2
n)x

)
|y〉 .

Write δ(y) = φ − y/2n (the amount we differ from the true
answer with our guess). Then the probability of seeing
y = y0y1...yn−1 on measurement is

Prob(y = y0y1...yn−1) =
1

22n

∣∣∣∣∣
2n−1∑
x=0

e2πiδ(y)x

∣∣∣∣∣
2

.

Summing the geometric progression inside the modulus,
we have

Prob(y = y0y1...yn−1) =
1

22n

∣∣∣∣1− e2n·2πiδ(y)1− e2πiδ(y)

∣∣∣∣2 .
(i) Let y = a = a0a1...an−1 be the closest n-bit approxima-
tion to 2nφ. Then |φ − a/2n| ≤ 1/2n+1 (easiest to see by
drawing a diagram comparing a/2n and (a− 1)/2n relative
to φ). Hence |δ(a)| ≤ 1/2n+1.

We bound the probability using the following:

(a) |1 − eiα| = |2i sin(α2)| ≥ 2
π |α| if |α| ≤ π. The proof of

this bound is to look at the picture:

α

y

π−π

where the dashed line is y = α/π and the blue line is
y = sin(α/2).

(b) |1− e2πiβ | ≤ 2πβ. The proof of this bound is to look at
the picture:

Re(z)

Im(z)

β

e2πiβ

1

The length of the arc is 2πβ. The length of the chord
is |e2πiβ − 1|, and the inequality follows.

11

J. M. Moore, 2019

Applying these inequalities to lower bound our probability,
using (a) on the numerator and (b) on the denominator, we
see that

Prob(y = y0y1...yn−1) ≥ 4

π2
,

as required.

(ii) Now try to upper bound our probability. Use |1−eiα| ≤ 2
on the denominator, and use (a) again on the numerator
to deduce

Prob(y = y0y1...yn−1) ≤ 1

2n+2δ(y)2
.

To get the inequality in (ii), we must sum this for all
|δ(y)| > ε. We know that the δ(y) values are spaced by
1/2n; let δ+ be the first δ(y) with δ(y) ≥ ε, and let δ− be
the first δ(y) with δ(y) ≤ −ε.

Certainly |δ+|, |δ−| ≥ ε. If |δ(y)| ≥ ε, we can then
write

δ(y) = δ+ +
k

2n
, or δ(y) = δ− −

k

2n
.

Hence: |δ(y)| ≥ ε+
k

2n
in both cases. Hence:

Prob(|δ(y)| > ε) ≤ 2

∞∑
k=0

1

22n+2

(
1

ε+ 1
2n

)2

≤ 1

2

∞∫
0

dk

(2nε+ k)2
=

∞∫
2nε

dk

k2
=

1

2n+1ε
.

Note by going to∞, we weakened the bound, but made it
easier to calculate!

3.5 Time complexity of phase estimation

If c-U2k is implemented as (c-U)2
k

, then the phase estima-
tion algorithm needs exponential time, since its uses

1 + 2 + ...+ 2n−1 = 2n − 1

c-U gates. However, for some special U ’s, c-U2k can be
implemented in polynomial time, O(poly(k)). This mirrors
the calculation of x2

n

via repeated squaring, rather than
x · x · ... · x, but only works for some unitary U .

3.6 Applications of phase estimation

Example 1 (Implementing M th roots): Let U1/M be the
principal M th root of the unitary gate U , defined to have
the same eigenstates as U and corresponding eigenvalues
e2πiφ/M , where U has eigenvalues e2πiφ. Suppose φ =
y/2n for some 0 ≤ y ≤ 2n, y ∈ Z.

Suppose also that we can implement the phase gate
P (α) = diag{(1, eiα} for any α, and any controlled c-U
gate we wish, and its inverse c-U−1. Then it’s possible to
implement U1/M |ξ〉.

To do so, let
|ξ〉 =

∑
φ

βφ |vφ〉 ,

where |vφ〉 are the eigenvectors of U , with U |vφ〉 =
e2πiφ |vφ〉. Adjoint |00...0〉 to the state, and apply the unitary
phase estimation operation to this state to get:

UPE |ξ〉 =
∑
φ

βφ |2nφ〉 |vφ〉 .

Apply the sequence of phase gates now. Apply P (2π/2M)
to the first qubit, P (2π/4M) to the second, ... , P (2π/2nM)
to the last. If 2nφ = i1...in in binary, we have

2πφ

M
= i1

2π

2M
+ i2

2π

4M
+ · · ·+ in

2π

2nM
.

Hence the overall phase created is e2πiφ/M , next to |2nφ〉.
Thus we’re left with the state∑

φ

βφe
2πiφ/M |2nφ〉 |vφ〉 .

Apply U−1PE to get rid of the |2nφ〉 state, and turn it into a
|00...0〉. It’s then safe to discard it, and we’re left with∑

φ

βφe
2πiφ/M |vφ〉 ,

which is the desired outcome.

Example 2 (Implementing non-unitary gates): Let
A be an n-qubit Hermitian operator with distinct eigenval-
ues λi = ci/2

n, for ci an integer in 0 ≤ ci < 2n. Suppose
that for the unitary operations U± = e±2πiA we can
implement c-U±. Let |b〉 be given to us (but unknown) and
suppose we want the normalised state A |b〉 with some
non-zero probability.

Suppose also that we can perform controlled rotations of
the form

|c〉 |0〉 → |c〉 (cos(θc) |0〉+ sin(θc) |1〉),

where sin(θc) = c/2n and 0 ≤ c < 2n is an integer. Then
we can achieve our goal as follows.

Write |b〉 =
∑
j

βj |uj〉, where |uj〉 are the eigenvec-

tors of A with eigenvalues λi. Then applying UPE to
|00...0〉 |b〉, we obtain the state:∑

j

βj |cj〉 |uj〉 .

Squeeze an ancilla qubit |0〉 into the middle of these, and
apply the controlled rotation to the first two registers to get:

12

J. M. Moore, 2019

∑
j

βj |cj〉 |0〉 |uj〉 →∑
j

βj cos(θcj) |cj〉 |0〉 |uj〉+ βj sin(θcj) |cj〉 |1〉 |uj〉

=
∑
j

βj

√
1− λ2j |cj〉 |0〉 |uj〉+ βjλj |cj〉 |1〉 |uj〉

Now measure the middle register. This is called post-
selection and we’ll see examples of it later in the course.
If we see 1, everything’s fine, just apply U−1PE and we’re
done. If we see a 0, just start all over again.

Let λ1 be the eigenvalue with the smallest square.
The probability we’ll see a 1 is then∣∣∣∣∑

j

βjλj |cj〉 |uj〉
∣∣∣∣2 =

∑
j

|βj |2|λj |2 ≥ |λ1|2
∑
j

|βj |2 = λ21.

So we’ll succeed with a probability exceeding that of the
square of the smallest eigenvalue.

Example 3 (Implementing the QFT): Suppose we
want to implement QFTQ for 2m−1 < Q < 2m. We use the
following method, called Kitaev’s method. Let

|a〉 = QFTQ |a〉 =
1√
Q

Q−1∑
b=0

ωab |b〉 ,

where ω = e2πi/Q. Then it suffices to implement
|a〉 → |ηa〉, and we’re done by linearity.

We’ll achieved this in two chunks, by considering a
mapping on HQ ⊗HQ:

|a〉 |0〉 →︸︷︷︸
Step 1

|a〉 |ηa〉 →︸︷︷︸
Step 2

|0〉 |ηa〉 .

STEP 1: Start with |00...0〉, and make the uniform super-
position

|ψ0〉 =
1√
M

2m−1∑
x=0

|x〉 .

Consider the classically-computable function

f(x) =

{
0 x < Q

1 x ≥ Q.

Since it is classically efficient to compute this, we can effi-
ciently implement Uf . Pass |ψ0〉 |0〉 to Uf to get

1√
M

2n−1∑
x=0

|x〉 |f(x)〉 .

Measure the second register. The chance of seeing 0
is greater than 1/2, since Q is more than halfway along
2m−1 < Q < 2m. If we fail, just try again. We get K fails

with exponentially small probability 1/2K .

When we get 0, the state reduces to

|ξ〉 =
1√
Q

Q−1∑
b=0

|b〉 .

We now add |a〉 in to get |a〉 |ξ〉. To get to |a〉 |ηa〉
from here, we want a unitary operation V that effects
V |a〉 |b〉 = ωab |a〉 |b〉, which gives V |a〉 |ξ〉 = |a〉 |ηa〉.

To implement V , we again do things in chunks.
Consider the operation U |b〉 = ωb |b〉. Noticing that
ωb = ωbm−12

m−1

...ωb02
0

, when b is written in binary, we see
that

U = P (ω2m+1

)⊗ ...⊗ P (ω20),

where P (α) are the phase gates from before. So U is ef-
ficiently implementable. We can obtain c-U because we
have an explicit circuit for U , and as in phase estimation,
we can build c-Ua, a generalised controlled U gate. This
effects:

c-Ua(|a〉 |b〉) = |a〉Ua |b〉 = ωab |a〉 |b〉 .

So V is implementable, and we’re done. We can do Step 1.

STEP 2: Let U be some unitary operation with eigenvalues
ωa = e2πia/Q and eigenstates |ηa〉. Then phase estimation
of U with UPE gives

UPE |0〉 |ηa〉 = |a〉 |ηa〉 .

(We’re playing fast and loose here, and assuming phase
estimation is exact. The non-exactness can be accounted
for in practice.) Then U−1PE would achieve Step 2!

We just need U . Use U defined by U |x〉 =
|x− 1 (mod Q)〉; we can check that U |ηa〉 = ωa |ηa〉
because these are really shift invariant states. Note also
U is clearly implementably in polynomial time.

The non-exactness in phase estimation above actu-
ally results in an operation:

UPE |0〉 |ηa〉 =
(√

1− ε |a〉+
√
ε |a⊥〉

)
|ηa〉 ,

where we are using O(log(1/ε)) lines in phase estimation,
for any small ε. Then the difference between the actual
state and the non-exact one is:

||U−1PE |a〉 |ηa〉 − |0〉 |ηa〉 || = O(
√
ε).

Thus we can still approximate QFTQ to any desired preci-
sion.

13

J. M. Moore, 2019

4 Amplitude amplification

4.1 Reflection operators

Notation: Write Lα = span{|α〉}, and L⊥α for the orthogo-
nal complement of span{|α〉}.

Definition: The reflection operator in L⊥α is defined
by I|α〉 = I − 2 |α〉 〈α|.

Theorem: We have

(i) I|α〉 |α〉 = − |α〉 and I|α〉 |β〉 = |β〉 for |β〉 ∈ L⊥α ;

(ii) for unitary U , UI|α〉U† = IU |α〉.

Proof: (i) Obvious from 〈α|β〉 = 0. (ii) Trivial.

Definition: Let A be spanned by the orthonormal
basis {|a1〉 , ..., |ak〉}. Define the projection operator onto
A by

PA =

k∑
i=1

|ai〉 〈ai| .

Definition: Define the reflection operator in A⊥ (the
orthogonal complement of A) to be IA = I − 2PA.

Theorem: If |a〉 ∈ A, then IA |a〉 = − |a〉. If |b〉 ∈ A⊥, then
IA |b〉 = |b〉.

Proof: Obvious from 〈a|b〉 = 0.

4.2 Review of Grover’s algorithm

Definition: Let Bn be the set of n-bit strings. We are
given a function f : Bn → B1 such that f(x0) = 1 for a
unique ‘good’ x0 ∈ Bn, and f(x) = 0 otherwise. We are
also given the quantum implementation of f , Uf . Grover’s
problem is to determine x0 with high probability.

The solution of Grover’s problem is given by Grover’s
algorithm. The setup is as follows.

STEP 1: First, we need to implement I|x0〉. We can
get I|x0〉 |x〉 for any basis state |x〉 by querying the oracle
once with |x〉 |−〉. This gives:

Uf |x〉 |−〉 = |x〉
(
|f(x)〉 − |1⊕ f(x)〉√

2

)
.

So if |x〉 = |x0〉, we have f(x) = 1, and the RHS is
− |x〉 |−〉. Discard the second qubit. If |x〉 6= |x0〉, we
have f(x) = 0, and the RHS is |x〉 |−〉. Again, discard the
second qubit.

This can be extended to all states by linearity.

STEP 2: We must define the Grover iteration operator and
determine how it acts.

Definition: The Grover iteration operator is defined
by

Q = −HnI|0〉H
nI|x0〉 = −I|ψ0〉I|x0〉,

where Hn = H ⊗ ... ⊗H and |ψ0〉 = Hn |0〉 is the uniform
superposition.

Each step of the Grover iteration operator is imple-
mentable (indeed, I|0〉 can be implemented using the
classically efficient function f : Bn → B1 given by f(0) = 1
and f(x) = 0 otherwise).

Notice also that each application of Q uses one query to
Uf . So we need to count the number of times we used Q
at the end of any algorithm.

Grover’s Theorem: In the 2-dimensional span of
|ψ0〉 and |x0〉, the action of Q is a rotation by angle 2α,
where

sin(α) =
1√
N
.

Proof: Easiest to act on an orthonormal basis in this span
and determine the matrix of the operator. It will be of
rotation form.

Grover’s Algorithm: To find x0 given Uf :

1. Make |ψ0〉, the uniform superposition.

2. Apply Q m time to |ψ0〉, where

m =
arccos(1/

√
N)

2 arcsin(1/
√
N)

.

3. Measure to see x0 with high probability.

The proof this works is by picture:

|x0〉

β
|ψ0〉

Notice that the angle in the figure obeys cos(β) =
〈x0|ψ0〉 = 1/

√
N (in particular, both |x0〉 and |ψ0〉 are nor-

malised). Since we start at |ψ0〉, and Q acts as an anti-
clockwise rotation by 2α, we need

m =
β

2α
=

arccos(1/
√
N)

2 arcsin(1/
√
N)

iterations of Q to get as close to |x0〉 as possible. The
measurement gives x0 with high probability, since if we are
at state |ψ〉, within ±α of |x0〉, the amplitude for seeing x0
is 〈ψ|x0〉 ≈ cos(α). So probability is cos2(α) = 1−sin2(α) =
1− 1

N , which is nearly 1 for large N .

14

J. M. Moore, 2019

We can also work out the time complexity of the algorithm
by considering the large N limit.

Theorem: Grover’s algorithm has complexity O(
√
N).

Proof: For large N , arccos(1/
√
N) ≈ π/2 (using cos(θ) ≈ 1

for small θ), and arcsin(1/
√
N) ≈ 1/

√
N (using sin(θ) ≈ θ

for small θ). Therefore in the large N limit,

m =
π
√
N

4
.

So we use Uf O(
√
N) times.

In particular, the naïve classical approach of check-
ing everything takes O(N) time, so we get a square-root
speed-up quantumly. In fact, it’s possible to show:

Theorem: Grover’s algorithm is optimal for unique
element search.

Proof: Not required.

4.3 Amplitude amplification

Notation: Let G be a ‘good’ subspace of a state space H
and let G⊥ be its orthogonal complement, which we call
the ‘bad’ subspace, so that H = G⊕G⊥.

Theorem: For any state |ψ〉 ∈ H, we can write
|ψ〉 = sin(θ) |g〉+ cos(θ) |b〉, where |g〉 ∈ G, |b〉 ∈ G⊥.

Proof: We must be able to write |ψ〉 = c |g〉 + d |b〉
for complex c and d satisfying |c|2 + |d|2 = 1.
Let c = eiθc′ and b = eiφb′ for c′, b′ ∈ G. Then
|ψ〉 = eiθc′ |g〉+ eiφb′ |b〉 = eiθ(c′ |g〉+ eiφ−iθb′ |b〉).

Note that the overall phase can be removed giving
the same quantum state. Note that eiφ−iθ |b〉 ∈ G⊥, so
can just redefine |b〉 to get real coefficients, giving result.

In our algorithm, we’ll use the reflection opera-
tor I|ψ〉 = I − 2 |ψ〉 〈ψ| and the projection operator
IG = I − 2PG, as defined above. In particular, notice that

sin(θ) = ||PG |ψ〉 ||.

Definition: Define the generalised Grover operator by
Q = −I|ψ〉IG.

Amplitude Amplification Theorem: In the 2-dimensional
subspace spanned by |g〉 and |ψ〉 (or equivalently by the or-
thonormal vectors |g〉 and |b〉), Q is a rotation by 2θ, where
sin(θ) = ||PG |ψ〉 || = length of good projection of |ψ〉.

Proof: Note that IG |g〉 = − |g〉 and IG |b〉 = − |b〉.
Therefore

Q |g〉 = I|ψ〉 |g〉 , Q |b〉 = −I|ψ〉 |b〉 .

Now compute action of I|ψ〉 = I − 2 |ψ〉 〈ψ|. Writing its
definition out in full, we have

I|ψ〉 = I − 2 sin2(θ) |g〉 〈g| − 2 sin(θ) cos(θ) |g〉 〈b|
−2 sin(θ) cos(θ) |b〉 〈g| − 2 cos2(θ) |b〉 〈b| .

Therefore Q |g〉 = (1 − 2 sin2(θ)) |g〉 − 2 sin(θ) cos(θ) |b〉 =
cos(2θ) |g〉 − sin(2θ) |b〉 and Q |b〉 = 2 sin(θ) cos(θ) |g〉 −
2(1− 2 cos2(θ)) |b〉 = sin(2θ) |g〉+ cos(2θ) |b〉.

Hence Q has matrix
(

cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
in the ba-

sis {|g〉 , |b〉}.

From the above Theorem, it follows immediately that
n applications of Q to |ψ〉 give:

Qn |ψ〉 = sin((2n+ 1)θ) |g〉+ cos((2n+ 1)θ) |b〉 .

If we measure Qn |ψ〉 for good versus bad, then the proba-
bility we see a good value is Prob(see good) = sin2((2n+
1)θ). This is maximised when (2n+ 1)θ = π/2, i.e.

n =
π

4θ
− 1

2
=

(π/2− θ)
2θ

.

This result is also clear from the diagram:

|ψ〉

θ
|b〉

|g〉

Example: If θ = π/6 to start with, then n = 1, ex-
actly and the probability is 1. So one iteration of Q is
sufficient to guarantee seeing a good value with certainty
on measurement.

In general, n is not an integer, so we must use the
nearest integer. For θ small, this is: n =[
π

2θ
− 1

2

]
≈
[π

4θ

]
= O

(
1

θ

)
= O

(
1

||good projection of |ψ〉||

)
.

Furthermore, Qn |ψ〉 will be within angle ±θ of |g〉, so it
follows that Prob(see good) ≥ cos2(θ) ≈ 1 − O(θ2), as for
Grover’s algorithm. So if θ is small, seeing good has a
very high chance.

REMARKS: 1. Note the relative amplitudes of good
labels in |g〉 stay the same as they were in |ψ〉 throughout.

2. The measurement is generally probabilistic, but if
sin(θ) is known, then it can be made exact. See later.

15

J. M. Moore, 2019

4.4 Implementation of ampl. ampl.

To implement ampl. ampl., we need to be able to imple-
ment −Q = I|ψ〉IG.

Theorem: IG can be implemented in poly(n) time.

Proof: The classical indicator function

f(x) =

{
x is good,
x is bad,

Is clearly implementable in polynomial time. Therefore the
associated quantum gate, Uf , can be implemented in poly-
nomial time. To implement IG on |x〉, adjoint an ancilla |−〉
and note that

Uf |x〉 |−〉 =
|x〉 |0⊕ f(x)〉 − |x〉 |1⊕ f(x)〉√

2
= (−1)f(x) |x〉 |−〉 .

Discard the |−〉, and we’ve implemented IG.

In most quantum algorithms, we start with |ψ〉 = |ψ0〉,
the uniform superposition, e.g. as in Grover’s algorithm.
So we’ll just show that I|ψ〉) can be implemented efficiently.

Theorem: I|ψ0〉, where |ψ0〉 is the uniform superpo-
sition, can be implemented in O(n) time.

Proof: Define the 3-qubit Toffoli gate by

T123 |a〉1 |b〉2 |c〉3 =

{
|a〉1 |b〉2X |c〉3 if a = b = 1,
|a〉1 |b〉2 |c〉3 otherwise.

It’s easy to see that T123 is the quantum oracle Ug for the
function g(a, b) = ab (just observe they agree on a basis).

We now observe that 2n − 2 Toffoli gates and one
CX gate can be used to implement the transformation

|c1〉1 ... |cn〉n |0〉w1
.... |0〉wn−1︸ ︷︷ ︸

‘work space’

|y〉t →

|c1〉1 ... |cn〉n |0〉w1
... |0〉wn−1

|y ⊕ c1c2...cn〉t .

The procedure we use is as follows:

1. Apply T12w1
to get

|c1〉1 |c2〉2 ... |cn〉n |c1c2〉w1
|0〉w2

... |0〉wn−1
|y〉t .

2. Next apply T3w1w2
to get

|c1〉1 ... |cn〉n |c1c2〉w1
|c1c2c3〉w2

|0〉w3
... |0〉wn−1

|y〉t .

3. Continue in this fashion, applying T4w2w3
, then T5w3w4

up to Tnwn−2wn−1
. Then the final state is:

|c1〉1 ... |cn〉n |c1c2〉w1
... |c1c2...cn〉wn−1

|y〉t .

4. Apply CX to the final two qubits to get |y ⊕ c1...cn〉t as
the target qubit. We can then erase the work space by
applying Tnwn−2wn−1 again, down to T12w1 , i.e. apply
all the Toffoli gates in reverse order.

Indeed, this procedure takes 2n − 2 Toffolis and one CX.
We now build a circuit for I|ψ0〉. First, note that

I|ψ0〉 = IH|ψ0〉 = HnI|ψ0〉H
n,

so it’s sufficient to implement I|ψ0〉. We claim that the fol-
lowing circuit works:

|x〉 Xn

T

Xn

|0〉

|−〉

where T is the Toffoli gate construction implementing
|c〉 |0〉w |y〉t → |c〉 |0〉w |y ⊕ c1...cn〉t, as above. To see that
this works, note that for any |x〉 6= |00..0〉, Xn |x〉 contains
at least one zero qubit, so T does nothing to |−〉 on the
final line. Hence we just get back |x〉.

For |x〉 = |00...0〉, Xn |x〉 entirely comprises |1〉
qubits, so |−〉 → − |−〉 under the transformation.
Thus |00...0〉 → − |00...0〉 and we’re done.

The number of gates used in 2n+ 2n+ 2n− 2 + 1 = O(n)
(2n Hadamards, 2n NOTs, 2n− 2 Toffolis and 1 CX).

4.5 Applications of ampl. ampl.

Example 1 (Grover with more than one good item):
Suppose there are k good items in our Grover search.
Then:

|ψ0〉 =
1√
N

∑
x∈Bn

|x〉

=

√
k

N︸ ︷︷ ︸
sin(θ)

 1√
k

∑
good x’s

|x〉

︸ ︷︷ ︸

|g〉

+

√
N − k
N︸ ︷︷ ︸

cos(θ)

(
1√

N − k

∑
bad x’s

|x〉

)
︸ ︷︷ ︸

|b〉

.

In the context of ampl. ampl. then, we have

sin(θ) =

√
k

N
,

and that Q is a rotation through 2θ, where
sin(θ) =

√
k/N ⇒ θ ≈

√
k/N for k � N .

So just apply the iteration operator Q, but this time
do it

n ≈ π

4θ
=
π

4

√
N

k

times. Hence query complexity is O(
√
N/k). Note this

example reduces to Grover’s algorithm when k = 1.

16

J. M. Moore, 2019

Example 2 (Grover with unknown numbers): Consider
Grover search with function f : Bn → B1, with k good
x’s, but k unknown. We then cannot apply standard
Grover since the number of nudges needed (calculated in
Example 1) depends on k. However, it’s still possible to
find a good x with good probability, as follows.

First, we prove the following geometric claim:

Lemma: Let the unit circle be populated with equally
spaced points at angle γ apart from each other. Let l be
any line through the centre. Then a fraction of at least

1

2
− 2γ

π

of the points are within 45◦ of l.

Proof: Best to draw a diagram. Within 45◦ of the
line there are two sectors, each of angle π/2. There’s a
possibility these don’t align with the γ angles, so the two γ
regions at the sides of each sector might have their points
missed out. Thus the number of points included in these
regions is at least:

2 ·
(
π

2γ
− 2

)
.

There are a total of 2π/γ points in the circle, so there’s at
least a fraction of

γ

π

(
π

2γ
− 2

)
=

1

2
− 2γ

π

of the points covered, as required.

Now start with the uniform superposition |ψ0〉 =
sin(θ) |g〉+ cos(θ) |b〉, where

sin(θ) =

√
k

N
, unknown.

The Grover operator nudges things round by an angle 2θ =
2
√
k/N at a time. In light of the Lemma, consider this to

be our γ = 2
√
k/N . Then there are a total of

2π

γ
=

2π

2
√
k/N

=
π
√
N√
k

< π
√
N

points at which our nudged state stops at round the circle.
Choose to apply Q a total of K times then, with 0 < K <
π
√
N chosen uniformly randomly. The chance we are in

45◦ of the good subspace is, by the Lemma,

1

2
− 2γ

π
=

1

2
− 4

π

√
k

N
≈ 1

2
,

for N � k. Clearly, if we are within 45◦ of the good sub-
space, then our probability of seeing a good element is at
least 1/2. Thus

Prob (see good element) ≥ 1

2
× 1

2
=

1

4
.

Repeating a constant number of times thus gives success
with any desired probability by the standard Probability
Lemma. So the total number of queries to f is a constant
times O(

√
N), which is just O(

√
N).

γ
γ

|ψ0〉

|g〉

Example 3 (Square root speed-ups): Let A be a
quantum algorithm (i.e. a sequence of unitary gates) with
input state |00...0〉. The final state is A |00...0〉.

Consider the ‘good states’ the be the desired com-
putational outcomes, and write A |00...0〉 = α |a〉 + β |b〉,
where α = sin(θ), and |a〉 is the normalised ‘good’ part of
the outcome (in general this is an unequal superposition
of good x). The probability of success of the algorithm is
then |α|2, so we must repeat it O(1/|α|2) times to see a
good thing with any constant level of probability.

Instead, use ampl. ampl. Assuming we can check
whether the answer is good or bad, we can implement

IG |x〉 =

{
− |x〉 x is good,
|x〉 x is bad.

Starting with state |ψ〉 = A |00...0〉, the Grover operator
is Q = −IA|00...0〉IG = −(AI|00...0〉A

†)IG. Notice all parts
are implementable: A is just the algorithm, I|00...0〉 is
implementable from above, and A† is just the algorithm in
reverse.

By the ampl. ampl. Theorem, Q is a rotation through 2θ
such that sin(θ) = |α|. Thus after

n ≈ π

4θ
= O

(
1

θ

)
= O

(
1

sin(θ)

)
= O

(
1

|α|

)
repetitions, A |00...0〉 will be rotated very near |g〉, and the
final measurement will succeed with high probability.

Each application of Q needs one A and one A†, and
notice that A and A† clearly have the same time complex-
ity. Thus O(1/|α|) repetitions of Q gives a square root
speed-up over the direct method, which needs O(1/|α|2)
repeats.

Later, we’ll see how ampl. ampl. can be made ex-
act. Then the above has made a probabilistic algorithm
into a deterministic one (a derandomisation process)!

17

J. M. Moore, 2019

Example 4 (Quantum counting): Suppose we have a
function f : Bn → B1 with k ‘good’ x’s. Let k be unknown.
Then the task of quantum counting is to determine k,
rather than to find some good x as we have previously
done.

Recall that the matrix of Q is the {|b〉 , |g〉} basis is(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
.

Its evectors are |e±〉 = 1√
2
(|b〉 ± i |g〉) with corresponding

evalues λ± = e±2iθ. By a short calculation, the uniform
superposition can be written in terms of these evectors as:

|ψ0〉 =
1√
2

(
eiθ |e+〉+ e−iθ |e−〉

)
.

Write e±2iθ = e2πiφ± , where 0 < φ± < 1. Thinking about it,
we must have

φ+ =
2θ

2π
=
θ

π
=

1

π

√
k

N
,

φ− =
−2θ + 2π

2π
= 1− θ

π
= 1− 1

π

√
k

N
.

Now run phase estimation on U = Q with the eigenstate
register set to |ψ0〉. This will output an approximation to
φ+ or φ− with equal probability 1/2. For small θ, it’s easy
to tell which is which, as it will either be closed to 0 or 1.

Thus phase estimation gives, for m qubit lines, an m
bit approximation to

√
k/N . Phase estimation uses 2m

controlled Q gates, so needs 2m queries. Thus by the
Phase Estimation Theorem we learn

√
k/N to within an

additive error O(1/2m, with constant probability greater
than 4/π2 using O(2m) queries to Uf .

Write 1/2m = δ/
√
N so that δ is the additive error in√

k. Then the error in k is O(δ
√
k) (from ∆(x2) = 2x∆x)

using O(
√
N/δ) queries. It can be shown that this is the

square of the number of operations needed to achieve the
same error in the classical regime.

Example 5 (The unique collision problem): Let
f : Bn → Bn be a one-to-one function on all inputs, except
for a single pair x1, x2 with f(x1) = f(x2). That is f
has a unique collision. The unique collision problem is to
determine both x1 and x2. Let Q be the query complex-
ity of the optimal algorithm for the unique collision problem.

It’s easy to see that O(N) > Q, since we can just
check all values to find a collision.

We can get a lower bound as follows. Suppose that
g : Bn → B1 is the function for a unique item Grover
search problem. Then f : Bn → Bn defined by
f(x) = g(x) + x (mod 2n) has a unique collision at the

‘good’ x, say x0, since f(x0) = g(x0) + x0 = x0 + 1, whilst
f(x) = x for all bad x. Thus f(x0) = f(x0 + 1).

It follows that if we can solve the unique collision problem
with time complexity Q, we can solve unique element
search with time complexity Q. But Grover’s algorithm is
optimal for unique element search, so O(

√
N) < Q.

We now develop an algorithm that uses O(N3/4) queries.
Begin by partitioning Bn into random subsets Ak, each
of size

√
N . Let k be ‘good’ if Ak contains both x1

and x2; assume for now that such an Ak exists (there
can be at most one). Now define an indicator function
g : {Ak} → {0, 1} by

g(Ak) =

{
0 if k is bad,
1 if k is good.

One evaluation of g(Ak) can be achieved by just check-
ing all the elements in Ak, which has f query complex-
ity O(

√
N). If we perform a Grover search with g as our

search function, we find a good Ak with g query complex-
ity O(

√√
N) = O(N1/4), since the number of Ak ’s is

√
N .

Thus the total f query complexity is:

O(
√
N)︸ ︷︷ ︸

each use of g

· O(N1/4)︸ ︷︷ ︸
number of uses of g

= O(N3/4).

Alas, it is unlikely that a good Ak will even exist, so our
Grover search will probably fail.

If it does fail (it’s easy to check - just compute g(Ak)
for the proposed ‘good’ Ak, taking only O(

√
N) time), we

do the following. Now define Ak to be ‘good’ if it contains
exactly one of x1 and x2 (so the other is in Bn\Ak). Define
a new indicator function:

h(Ak) =

{
0 if Ak is bad,
1 if Ak is good.

Can we implement h(k) efficiently? Yes! To find h(Ak), first
evaluate f(x) for all x ∈ Ak and store the values. Denote
this set of values by f(Ak). Now perform a Grover search
over the N −

√
N values in Bn\Ak, where an x is ‘good’

if it is on the list f(Ak) (there can be only one such x!).
The f query complexity of this is, by the general theory of
Grover’s algorithm,

O

(√
N −

√
N

)
= O(

√
N).

Note that evaluating h(Ak) causes us to actually find x1
and x2. Now perform Grover search with indicator function
h. There are two good items in size

√
N search space, so

we need O(N1/4) queries to h to find a single good Ak.
This has f query complexity O(N1/4) ·O(

√
N) = O(N3/4).

Now simply evaluate h(Ak) using O(
√
N) queries to

find x1, x2. The total query complexity is O(N3/4).

18

J. M. Moore, 2019

The complete algorithm is therefore this: (1) perform the
naïve method assuming only one good Ak; (2) if that
fails, assume two good Ak and apply the more complex
method; (3) if both fail, it’s down to probability, and since
we succeed with a constant probability, we can just repeat
as many times as needed.

4.6 Making ampl. ampl. exact

Theorem: Amplitude amplification can be made exact
with at most one extra query to the indicator function.

Proof: Let |ψ〉 = α |g〉 + β |b〉 be the starting state for
ampl. ampl., where sin(θ) = α. We know the algorithm is
exact if

n =
π

4θ
− 1

2

is an integer. Generally, though, n is not integral. To fix
this, choose θ′ < θ such that

dne =
π

4θ′
− 1

2
.

Then if we started with the state |ψ′〉 = α′ |g〉 + β′ |b′〉,
with α′ = sin(θ′) (potentially redefining the bad subspace),
we’d have an exact algorithm, applying Q dne times.

To achieve this, add a qubit to the system to make:

|φ〉 = α |g〉 |0〉+ β |b〉 |0〉 .

Apply the following rotation to the qubit:

U =

 α′/α −
√

1− α′2/α2√
1− α′2/α2 α′/α

 .

we can make this because α′ < α and we know α, α′.
Therefore: I ⊗ U |φ〉 =

α′ |g〉 |0〉+α

√
1− α′2

α2
|g〉 |1〉+ β

α′
α |b〉 |0〉+β

√
1− α′2

α2
|b〉 |1〉 .

Redefine the good subspace to mean strings with ‘good’
first n bits, then a zero at the end. Then for our new state,
α′ = sin(θ′), so ampl. ampl. will be exact. The number of
rotations is dne which is at most one more than using the
initial amplitude α.

5 Hamiltonian simulation

5.1 Quantum dynamics

In a physical system with state vectors, there exists a self-
adjoint operator H called the Hamiltonian. It represents
energy. Recall that time-evolution of a quantum system is
given by Schrödinger’s equation

i
d |ψ〉
dt

= H |ψ〉 .

We will consider only time-independent Hamiltonians, i.e.
H does not depend on t. Then the formal solution of the
Schrödinger equation is

|ψ(t)〉 = e−iHt |ψ(0)〉 .

The matrix exponential is, as usual, defined by its power
series and converges for all matrices. Thus to approximate
quantum dynamics, we must approximate e−iHt.

5.2 Operator norms

Approximation (closeness) of operators is given by the
operator/spectral norm:

Definition: The operator norm of A is defined by

||A|| = max
|||ψ〉||=1

||A |ψ〉 ||.

Theorem: We have

1. ||A|| = modulus of largest eigenvalue of A;

2. ||A+B|| ≤ ||A||+ ||B||;

3. ||AB|| ≤ ||A|| · ||B||;

4. ||AU || = ||UA|| = ||A|| for unitary U .

Proof: Trivial.

5.3 k-local Hamiltonians

Definition: Let H be a Hamiltonian acting on n qubits, i.e.
a 2n × 2n matrix. H is called k-local if it can be written as

H =

m∑
j=1

Hj ,

where each Hj is a Hermitian matrix acting on at most k
qubits (not necessarily next door to one another).

Theorem: In the above, m = O(nk).

Proof: We clearly have m ≤
(
n
k

)
. By Stirling’s for-

mula,
(
n
k

)
= O(nk) and the result follows.

In particular, this means there are O(nk) · O(2k) = O(nk)
non-zero terms in the matrix H. This means we can
actually read the data in it in polynomial time! (If it were
2n × 2n, this wouldn’t be possible!)

19

J. M. Moore, 2019

Example 1: H = X⊗I⊗I−5Z⊗I⊗Y is 2-local on 3 qubits.

Example 2: Let M(i,j) denote the operator M acting
on the ith and jth qubit and I on all the others. The Ising
model then has Hamiltonian

H = J

n−1∑
i,j=1

Z(i,j)Z(i,j+1) + Z(i,j)Z(i+1,j).

This is 3-local on n qubits.

This generalise to the Heisenberg model :

H =

n−1∑
i=1

JXX(i)X(i+1) + JyY (i)Y(i+1) + JZZ(i)Z(i+1).

Example 3: Basically all of chemistry can be framed in
terms of k-local Hamiltonians.

5.4 Commuting k-local Hamiltonians

We now try to simulate k-local Hamiltonians. This is in
general hard because

exp

−i∑
j

Hjt

 6= ∏
j

exp (−iHjt)

if the Hj are non-commuting. We’ll therefore begin by
assuming that the Hj ’s are commuting, and we’ll come
back to the non-commuting case later.

In the case where the Hj ’s are commuting, we need
only approximate

exp (−iHjt)

separately. We often want to do this in terms of a standard
universal gate set; we can then use the Solovay-Kitaev
Theorem:

Solovay-Kitaev Theorem: Let U be a unitary opera-
tor on k qubits and let S be a universal gate set. Then U
can be approximated to within ε using O(logc(1/ε)) gates
from S with c < 4.

Proof: Not required.

Theorem: Let {Ui} and {Vi} be sets of unitary oper-
ators with ||Ui − Vi|| ≤ ε for all i = 1, 2...,m. Then
||U1...Um − V1...Vm|| ≤ mε.

Proof: In the n = 2 case, we have

||U2U1 − V2V1|| = ||(U2 − V2)U1 + V2(U1 − V1)||
≤ ||U2 − V2||+ ||U1 − V1|| = 2ε.

Then carry on by induction.

Using these results, it’s clear what to do:

Theorem: For Hj commuting, we can approximate
e−iHt to within ε by a circuit of size O(nkpoly(log(nk/ε))),
with gates chosen from any universal gate set.

Note that since m = O(nk), this circuit size is poly-
nomial in both n and log(1/ε). Note also that log(1/ε) is
the number of digits of precision in the approximation.

Proof: Since the Hj ’s commute, we have

e−iHt =

m∏
j=1

e−iHjt.

By the Solovay-Kitaev Theorem, each e−iHjt can be ap-
proximated to within ε/m with O(poly(log(m/ε))) gates
from any universal gate set. Then from the second The-
orem on error accumulation, we have that the full product
can be approximated to within m(ε/m) = ε using

O(mpoly(log(m/ε))) = O(nkpoly(log(nk/ε))) gates.

5.5 Non-commuting case

Definition: For any matrix X, write X + O(ε) for X + E
where E is a matrix with norm ||E|| = O(ε).

Theorem (Lie-Trotter Product Formula): Let A and
B be matrices with ||A|| ≤ κ and ||B|| ≤ κ, for κ � 1.
Then

e−iAe−iB = e−i(A+B) +O(κ2).

Proof: We have

e−iA = I − iA+ (iA)2
∞∑
k=0

(−iA)k

(k + 2)!
.

The norm of the sum can be bounded by:∣∣∣∣∣∣∣∣ ∞∑
k=0

(−iA)k

(k + 2)!

∣∣∣∣∣∣∣∣ ≤ ∞∑
k=0

||A||k

k!
≤ e−κ < 1,

in particular using (k + 2)! > k!. Therefore, noting that
||(−iA)2|| ≤ κ2, we have

e−iA = I − iA+O(κ2).

Therefore, we have

e−iAe−iB = (I−iA+O(κ2))(I−iB+O(κ2)) = I−i(A+B)+O(κ2).

Now since ||A + B|| ≤ ||A|| + ||B|| = 2κ = O(κ), we have
e−i(A+B) = I − i(A+B) +O(κ2). The formula follows.

The Lie-Trotter product formula lets us get around
the non-commuting problem by essentially ignoring it.

20

J. M. Moore, 2019

Theorem: In the non-commuting case, e−iHt can be ap-
proximated to within ε by a circuit of size

O

(
n4kt2

ε
poly

(
log

(
n4kt2

ε2

)))
,

with gates chosen from any universal gate set.

Proof: In general, ||Hj || can be large, which is prob-
lematic when we want to use Lie-Trotter. To remedy this,
choose κ such that ||Hj || < κ for all j (this may be large)
and introduce N large so that∣∣∣∣Hj

t

N

∣∣∣∣ < κt

N
.

Therefore Hjt/N have small norms (essentially, we have
split up the time evolution into small t/N sized steps). Now
consider:

U = e−i(H1+...+Hm)t =

(
exp

(
−i
(
H1t

N
+ ...+

Hmt

N

)))N
We note this is just the operator exp

(
−i
(
H1t
N + ...+ Hmt

N

))
applied N times. We want the final error in U to be less
than ε, hence we want the error in

exp

(
−i
(
H1t

N
+ ...+

Hmt

N

))
to be less than ε/N , by the error propagation Theorem.

Let’s now work out our approximation for this opera-
tor. Since Hjt/N has small norm, we can use Lie-Trotter:

e−iH1t/Ne−iH2t/N ...e−iHmt/N

=

(
e−i(H1+H2)t/N +O

(
κ2t2

N2

))
e−iH3t/N ...e−iHmt/N ,

by Lie-Trotter. Notice that ||(H1 + H2)t/N || ≤ 2κt/N . So
we can reapply Lie-Trotter to include the next term, and the
next, and the next, etc. until we get

e−iH1t/N ...e−iHmt/N = e−i(H1+...+Hm)t/N

+O

(
κ2t2

N2

)
+O

(
(2κ)2t2

N2

)
+ ...+O

(
((m− 1)κ)2t2

N2

)
.

Recalling that the sum of squares is a cubic, we have:

e−iH1t/N ...e−iHmt/N = e−i(H1+...+Hm)t/N +O

(
m3κ2t2

N2

)
.

Thus the requirement on ε/N is, for some constant C:

C
m3κ2t2

N2
<

ε

N
⇒ N >

Cm3κ2t2

ε
.

Thus we need N = O(m3κ2t2/ε) to achieve error ε.

Naïvely, we assume that e−iHjt/N can all be imple-
mented exactly. Then the circuit size is

O(Nm) = O

(
m4κ2t2

ε

)
= O

(
n4kt2

ε

)
,

since κ is constant.

The circuit we’ve made consists only of e−iHjt/N op-
erations. To incorporate an approximation to e−iHjt/N ,
we recall that the Solovay-Kitaev Theorem says we
can approximate e−iHjt/N to within order O(ε/C) by a
circuit of sizeO(poly(log(C/ε))) for whatever C we choose.

By the error propagation Theorem, we must choose

C = O

(
n4kt2

ε

)
,

the size of our naïve circuit for the overall error to remain
ε. Therefore the number of gates we need to use is:

O

(
n4kt2

ε

)
·O
(

poly
(

log

(
n4kt2

ε2

)))
= O

(
n4kt2

ε
poly

(
log

(
n4kt2

ε2

)))
.

REMARK: For fixed n, ε, our algorithm takes time
O(t2) to complete. In real life, the quantum system runs
for time t. This occurs because of our use of the Lie-Trotter
product formula.

In fact, better ‘splitting formula’ exist to approximate
eA+B (we’ll see Strang splitting, for example, below). In
general it’s possible to show that the time for our quantum
algorithm can be improved to O(tδ+1) for any δ > 0.

5.6 Strang splitting

Theorem: For ||A|| ≤ κ and ||B|| ≤ κ, with κ � 1, we
have the Strang splitting:

e−iA/2e−iBe−iA/2 = e−i(A+B) +O(κ3).

Proof: Just as for Lie-Trotter, we have e−iA/2e−iBe−iA/2 =(
I − iA

2
− A2

8
+O(κ3)

)(
I − iB − B2

2
+O(κ3)

)
·
(
I − iA

2
− A2

8
+O(κ3)

)
.

Multiplying everything out, we find the result.

Theorem: In the non-commuting case, e−iHt can be
approximated to within ε by a circuit of size

O

(
n3kt3/2

ε1/2
poly

(
log

(
n3kt3/2

ε3/2

)))
,

with gates chosen from any universal gate set.

21

J. M. Moore, 2019

Proof: Everything’s the same up until when we work out
the approximation to e−iH1t/N ...e−iHmt/N . At this point,
instead of using Lie-Trotter, we use Strang splitting. We
have:

e−i(H1+H2)t/N = e−iH2t/2Ne−iH1t/Ne−iH2t/2N+O

(
κ3t3

N3

)
.

Since ||(H1 + H2)t/N || ≤ 2κt/N , we can iterate just as in
the Lie-Trotter case to find: e−i(H1+...+Hm)t/N =

e−iHmt/2N ...e−iH2t/2Ne−iH1t/Ne−iH1t/2N ...e−iHmt/2N

+O

(
κ3t3

N3

)
+O

(
(2κ)3t3

N3

)
+ ...+O

(
((m− 1)3κ3t3

N3

)
.

Recall that the sum of cubes is a fourth power, so the error
in the Strang splitting is

O

(
m4κ3t3

N3

)
= O

(
m4t3

N3

)
.

For this to be less than ε/N , we need

N = O

(
m2t3/2

ε1/2

)
.

Then, in the naïve circuit, we need (from the Strang split-
ting)N(2m+1) = O(mN) operators. Thus the naïve circuit
size is

O

(
m3t3/2

ε1/2

)
= O

(
n3kt3/2

ε1/2

)
.

Now use Solovay-Kitaev argument to get result.

5.7 Diagonalisable Hamiltonians

When Hamiltonians are diagonalisable by unitary matrices
that can be implemented efficiently, Hamiltonian simula-
tion becomes much easier:

Theorem: Let H be a Hamiltonian that can be diag-
onalised as H = UDU†, for U unitary, and implementable
by an O(poly(n)) size circuit. D is a diagonal matrix:

D =
∑
x

|x〉 〈x| .

Suppose that |x〉 7→ e−id(x)t |x〉 can be implemented in
O(poly(n)) time. Then e−iHt can be implemented in
O(poly(n)) time.

Proof: Simply note that Hk = (UDU†)† = UDkU†,
so

e−iHt = Ue−iDtU†.

Now e−iDt |x〉 = e−id(x)t |x〉 is efficiently implementable, by
assumption, and so are U , U†. So we’re done.

6 Harrow-Hassidim-Lloyd algorithm

6.1 Problem setup

We want to solve the linear system Ax = b, where
k,x ∈ CN and N is so large that Gaussian elimination
is inefficient. Assume N = 2n (we can always add zero
equations to get to a power of 2).

The best known classical algorithms take O(poly(N))
time, but we’ll develop an algorithm that runs in
O(poly(log(N))) = O(poly(n)) time.

REMARKS: (1) Writing the answer down takes O(N)
time! So we’ll want to compute properties of the solution,
rather than the solution itself, e.g. quadratic expressions
like xTMx (if M were diagonal with some 1’s and 0’s, we
could compute any particular xi we desired).

(2) It takes O(N2) time just to read A, and O(N)
time to read b! So we’ll have to assume a special form of
A, b in order to make an improvement.

We will need the following important parameters:

• The system size N .

• The desired approximation tolerance, ε.

• The condition number of the matrix A. This is the ratio
of the modulus of the largest to the modulus of the
smallest eigenvalue:

κ =
|λmax|
|λmin|

.

In classical numerical analysis, having κ close to ∞
means the approximation will be bad. This is because
κ provides a measure of how close A is to being non-
invertible; this can be seen by renormalising A so that
|λmax| = 1, for then

|λmin| =
1

κ
.

Then as κ→∞, |λmin| → 0, implying A becomes non-
invertible at κ =∞.

• A property of the solution we would like to calculate,
given as a quadratic form µ = xTMx.

6.2 Assumptions on A, b and µ

As stated above, we can’t even read A in poly(n) time.
Therefore, we make the following restrictions on A:

1. A is Hermitian. This does not constitute a loss of gen-
erality, since if it is not, we can redefine the system
as: (

0 A†

A 0

)(
x
0

)
=

(
0
b

)
,

merely doubling its enormous size.

22

J. M. Moore, 2019

2. We require the condition number κ to be suit-
ably small; in particular, we’ll assume κ is bounded
by poly(n). Such matrices are called well-conditioned.

We will also assume that A has been scaled
so that λmax = 1 (note evalues are real, since
Hermitian). Then all of A’s eigenvalues are in
[1/κ, 1] = [1/poly(n), 1], i.e. they’re all close to 1.

3. The algorithm uses Hamiltonian simulation. So we
need eiAt0 to be implementable in O(poly(n, t0)) time.

Any class of matrices that satisfies this condition
will work in the HHL algorithm. We’ve already seen
that k-local A would do. However, these are not
the most general form; we’ll expand our scope by
considering matrices that are row-sparse and row-
computable. These are the properties we’ll assume
of A.

Definition: A matrix A is row-sparse if each row contains
at most poly(n) non-zero entries. More generally, a
matrix is s-sparse if each row contains at most s non-zero
entries. Note an row-sparse matrix is an s-sparse matrix
with s = O(poly(N)).

Definition: An s-sparse matrix A is row-computable
if the entries of A can be computed in the following sense:
there is a classical O(s)-time algorithm C which, given
any row index 1 ≤ i ≤ N and integer k, output the kth
non-zero entry Aij or row i and its column location j. That
is, C(i, k) = (j, Aij).

Theorem: Let A an s-sparse and row-computable.
The operator eiAt0 can be implemented up to error ε, by a
quantum circuit of size O(log(N)s2t0).

Proof: Not required.

For b, we assume the following:

4. b has unit length. This does not constitute a loss of
generality, since if we work with the normalised b̂ in-
stead, we can just rescale the answer by |b| at the
end:

A
x
|b|

= b̂.

5. The log(N)-qubit state

2n−1∑
i=0

bi |i〉

can be efficiently produced on a quantum computer in
time O(poly(n)). We’ll discuss this in more detail later.

Finally, for µ we assume:

6. µ = xTMx has M Hermitian. This does not constitute
a loss of generality, since if M is not Hermitian, we
can write M = K + iL, where

K =
1

2
(M +M†), L =

1

2i
(M −M†),

so that K and L are both Hermitian. We can then do
the algorithm for K and L separately to obtain xTLX,
xTKx, and then combine at the end.

7. Notice µ is the expectation value of the observable
M (assuming it is Hermitian). Thus we assume the
measurement corresponding to M can be done in
poly(log(N)) time.

With all these assumptions in place, the best known clas-
sical algorithm runs in O(Ns

√
κ log(1/ε)) time. The HHL

algorithm runs in

O(log(N)s2κ2/ε)

time, giving the solution to within ε.

In the regime where ε = 1/poly(log(N)), and A is
well-conditioned (κ = O(poly(log(N)))) and row-sparse
(s = O(poly(log(N)))), then the classical complex-
ity is O(poly(N)), whilst the quantum complexity is
O(poly(log(N))). Thus HHL constitutes an exponential
speed up.

6.3 The algorithm

For clarity of exposition, we’ll assume that phase esti-
mation and Hamiltonian simulation work perfectly. The
error analysis of HHL turns out to be very ugly and is
non-examinable. The algorithm is as follows:

The HHL algorithm: Work in an N -dimensional space
with basis {|i〉 : i = 0, 1..., N − 1}, i.e. log(N) qubits.
Let the eigenvectors of A be |uj〉 with corresponding
eigenvalues λj , for j = 0, 1, ..., N − 1.

1. Begin the algorithm by implementing the RHS as a
quantum state |b〉, given by

|b〉 =

N−1∑
i=0

bi |i〉 =

N1∑
j=0

βj |uj〉 .

We assume this is possible here, but will prove that
we can do it later in the course.

Then our desired state is

|x〉 = A−1 |b〉 =

N−1∑
j=0

βj
λj
|uj〉 .

It will be the object of the rest of the algorithm to com-
pute this. Note this is well-defined since by assump-
tion the evalues are bounded well away from zero.

23

J. M. Moore, 2019

Clearly the operation ofA−1 on |b〉 is linear, but it is not
unitary. Therefore we need to use phase estimation,
which can implement a non-unitary operator.

2. Apply the unitary phase estimation operator UPE for
the unitary operator e2πiA. The exponential here, and
its controlled powers, are implemented by Hamilto-
nian simulation.

The operator e2πiA has eigenvalues e2πiλj . Therefore
phase estimation gives:

UPE |b〉 |0〉
N−1∑
j=0

βj |uj〉 |λj〉 .

3. Adjoin an ancilla qubit in state |0〉. Consider the con-
trolled rotation C-ROT :

C-ROT |x〉 |0〉 =

√
1− c2

x2
|x〉 |0〉+

c

x
|x〉 |1〉 .

Notice that C- is just some fixed operation on n + 1
qubits. It does not depend on the system Ax = b at
all. We’ll discuss how to implement such a rotation
later in the course.

Apply C-ROT to the state from above, controlled on
the |λj〉 states. Then we get:

N−1∑
j=0

βj

√
1− c2

λ2j
|uj〉 |λj〉 |0〉+

βjc

λj
|uj〉 |λj〉 |1〉 .

We want the part associated to |1〉.

Note here that c must be chosen in C-ROT such that
c ≤ |λmin|. This is to ensure |c/λj | < 1, so that the
amplitudes here don’t exceed 1. For definiteness, one
might take c = 1/κ for example.

4. We use post-selection. Measure the ancilla qubit,
hoping to get result 1. We see 1 with probability:

P =

∣∣∣∣∣∣∣∣N−1∑
j=0

βjc

λj
|uj〉 |λj〉

∣∣∣∣∣∣∣∣2 =

N−1∑
j=0

|βj |2|c|2

|λj |2

=
1

κ2

N−1∑
j=0

|βj |2

|λj |2
≥ 1

κ2
.

This follows because
N−1∑
j=0

|βj |2 = 1,
1

|λj |2
≥ 1.

So we get 1 with constant probability, and therefore
can afford to keep repeating the algorithm O(κ2)
times until we get 1.

As an alternative, one might use amplitude am-
plification. The O(κ2) repetitions can be reduced to
O(κ) repetitions. Here, the ‘good subspace’ consists
of anything with a |1〉 in the final register.

5. We are left with the state

|ŷ〉 =
c√
P

N−1∑
j=0

βj
λj
|uj〉 |λj〉 .

We need to erase the λj ’s. As usual, run phase esti-
mation in reverse:

U−1PE |ŷ〉 =
c√
P

N−1∑
j=0

βj
λj
|uj〉 |0〉 =

c√
P
|x〉 |0〉 .

Discard the |0〉. The answer we obtain is

|x̂〉 =
c√
P
|x〉 ,

which is the normalised version of the solution.

6. To obtain the property µ, we perform measurements
of the observableM on |x̂〉 to estimate its mean value:

µ̂ =
c2

P
〈x|M |x〉 =

c2µ

P
.

Here, µ̂ is the normalised form of µ.

According to the Chernoff-Hoeffding bound,

O

(
log(1/η)

ξ2

)
suffice to estimate the mean µ̂ = 〈x̂|M |x̂〉 with any
desired probability of success 1 − η, to any desired
accuracy ξ.

7. We know what c = 1/κ is, as we chose it when apply-
ing C-ROT . Similarly, we can estimate P in the post-
selection step by applying the Chernoff-Hoeffding
bound to the ancilla measurement outcome, whose
mean is

0 · p0 + 1 · p1 = P,

where p0 is the probability of 0, p1 = P is the proba-
bility of 1. Using these pieces of information, we can
find µ = 〈x|M |x〉, the un-normalised form of µ.

6.4 Production of the state |b〉
In the HHL algorithm discussion above, we assumed we
could make the state |b〉 efficiently. We will now show how,
via an iterative procedure.

Theorem: Assuming that

g(k1, k2) =

k2∑
i=k1

b2i

can be made classically in O(poly(n)) time for any 0 ≤
k1 ≤ k2 ≤ N − 1, we can make |b〉 in O(poly(n)) time.

24

J. M. Moore, 2019

Proof: Intuition: Let a, b ≥ 0 be real with a2 +b2 = 1. Notice
that (

a −b
b a

)
is unitary and maps |0〉 to |ξ〉 = a |0〉+ b |1〉.

Now suppose s, t, u, v ≥ 0 and s2 + t2 = a2, u2 + v2 = b2.
We now want to make the state

|η〉 = s |00〉+ t |01〉+ u |10〉+ v |11〉 .

Begin by making |ξ〉 |0〉 = a |0〉 |0〉+ b |1〉 |0〉. Now apply the
controlled rotation

C-ROT |x〉 |0〉 = cos(θx) |x〉 |0〉+ sin(θx) |x〉 |1〉 .

This gives

|η〉 = a cos(θ0) |00〉+a sin(θ0) |01〉+b cos(θ1) |10〉+b sin(θ1) |11〉 .

This suggests we should pick cos(θ0) = s/a (if a = 0, the
whole construction is easy, and we don’t need controlled
rotations). Then sin(θ0) =

√
1− s2/a2 = t/a. We should

also pick cos(θ1) = u/b, so that sin(θ1) =
√

1− u2/b2 =
v/b. Thus we’re left with:

|η〉 = s |00〉+ t |01〉+ u |10〉+ v |11〉 .

Induction setup: We now iterate this process, by adjoining
a |0〉 each time and applying a controlled rotation, now
controlled by all previously existing qubits.

Let Bi1...ik denote the set of bit strings in Bn con-
structed as follows. If i1 = 0, delete the second half of Bn,
and if i1 = 1, delete the first half of Bn.

Now consider the remaining strings, if i2 = 0, delete
the second half of the remaining strings, and if i1 = 1,
delete the first half of the remaining strings. Iterate to get
Bi1...ik .

Define Ti1...ik =

√ ∑
x∈Bi1...ik

b2x, and T∅ = 1 (where ∅ is the

empty set). In particular, it’s clear that Ti1...in = bi1...in ,
and for any fixed k, we have∑

i1,i2...ik

T 2
i1...ik

=
∑
x

b2x = 1.

Notice also that by assumption, we can make any of the
Ti1...ik in O(poly(n)) time.

For each Bi1...ik introduce an associated angle θi1...ik
defined by

cos(θi1...ik) =
Ti1...ik0
Ti1...ik

, sin(θi1...ik) =
Ti1...ik1
Ti1...ik

.

Then the rotation ROT (θi1...ik) maps |0〉 to

ROT (θi1...ik) |0〉 =
1

Ti1...ik
(Ti1...ik0 |0〉+ Ti1...ik1 |1〉)

Induction proof: Now begin the main proof. The base case
begins with

1 =
∑
x∈B

b2x = T 2
∅ .

Compute T0, and hence compute cos(θ∅) = T0/1 = T0.
Apply ROT (θ∅) to |0〉 to get T0 |0〉+ T1 |1〉.

We now outline the induction step. Suppose we have
made

|ψk〉 =
∑
i1...ik

Ti1...ik |i1...ik〉 .

Adjoint a |0〉 qubit, and then apply the controlled rotation
C-ROT , controlled on the |i1...ik〉 register. By the definition
of the angle θi1...ik , this gives

|ψk+1〉 =
∑

i1...ik+1

Ti1...ik+1
|i1...ik+1〉 .

After n steps, we get the desired state |b〉, as
Ti1...in = bi1...in . This is all O(poly(n)) since the
controlled rotations can be implemented in O(poly(n))
time (see below).

6.5 Controlled rotations

Theorem: Let m = poly(log(N)) = poly(n). Provided that
the angle θx ∈ [0, π/2) can be computed from x in O(m) =
O(poly(n)) time, the controlled rotation

C-ROT |x〉 |0〉 → |x〉 (cos(θx) |0〉+ sin(θx) |1〉),

where |x〉 is an m + 1 qubit register, can be implemented
as an O(m) = O(poly(n)) size circuit using only 1 and 2
qubit gates.

Proof: Adjoin m + 1 ancilla qubits in state |0〉 in the
middle first, and put θx in them (using the O(poly(n)) time
calculation of θx):

|x〉 |0〉0 ... |0〉m |0〉 → |x〉 |θx〉 |0〉 .

Write θx = i0.i1...im in binary (assuming θx ∈ [0, π/2)).
Then we have:

R(θx) = R(i0)R

(
i1
2

)
...R

(
im
2m

)
.

Labelling the final qubit as t for target, we implement
C-ROT via the two qubit gates:

C-ROT (i0)0tC-ROT

(
i1
2

)
1t

...C-ROT

(
im
2m

)
mt

.

Finally, just erase the |θx〉 register by running the compu-
tation of θx backwards. Discard these qubits, and we’re
done.

(In practice, θx will not be exact to m + 1 bits, how-
ever this can be accounted for.)

25

J. M. Moore, 2019

6.6 Applications of HHL

Example (Dynamical systems): Let xt ∈ RN be the state
vector of a discrete linear dynamical system with evolution
rule:

xt+1 = Lxt = Axt + b,

where A is an N × N matrix which is row-sparse and
row computable and b is constant. Suppose that A is
Hermitian and ||A|| ≤ 1/2, and that the system has been
scaled to have ||b|| = 1. A stable state is a state s ∈ RN
for which Ls = s.

Suppose we are given two such systems, (A, b) and
(A′, b′), whose stable states s and s′ are either (i) within
π/6 of each other; (ii) further than π/3 from one another.
We can use HHL to decide which is which.

Note that the stable states of the system obey the
linear system (I − A)s = b. Since ||A|| ≤ 1/2, the
eigenvalues of I − a lie in [12 ,

3
2], and so are bounded away

from zero. Thus I − A is well-conditioned. Since A is
row-sparse and row-computable it’s clear that I −A is too.
We assume |b〉 can be implemented in poly(log(N)) time.

Therefore, HHL applied to (I −A)s = b and (I −A′)s′ = b′

gives the states |s〉 and |s′〉, within tolerance ε of the real
solution, in time O(poly(log(N))/ε) (we haven’t seen this
explicitly, but it was stated before the outline of the HHL
algorithm).

The given conditions mean we have either:

| 〈s|s′〉 |2 ≥ cos2
(π

6

)
=

3

4
, or | 〈s|s′〉 |2 ≤ cos2

(π
3

)
≤ 1

4
.

Consider applying the swap test to |s〉 and |s′〉; then we
have

Prob(0) =
1 + | 〈s|s′〉 |2

2
,

as before. In the ideal case, when |s〉 and |s′〉 are exact,
we have

Prob(0) ≥ 7

8
, or Prob(0) ≤ 5

8
.

So we can distinguish the states by computing these prob-
abilities (which will involve use of the Chernoff-Hoeffding
bound).

However, the states are not exact. If |s̃〉 and |s̃′〉 are
the true solutions, we have

|| |s̃〉 − |s〉 || < ε, || |s̃′〉 − |s′〉 || < ε.

This implies that (we’ll assume this here):∣∣∣∣| 〈s̃|s̃′〉 | − | 〈s|s′〉 |∣∣∣∣ < f(ε),

for some f(ε) which obeys f(ε)→ 0 as ε→ 0.

Therefore for any small η > 0, we can, with suitable corre-
sponding small ε, have

Prob(0) ≥ 7

8
− η, or Prob(0) ≤ 5

8
+ η.

The probabilities are separated by 1
4 + 2η. Therefore a

good estimate of the probabilities will let us decide which
case is which.

For this, we use the Chernoff-Hoeffding bound : if we
estimate Prob(0) as frequency f of 0 seen in k samplings
of a 0/1 distribution, then

|f − Prob(0)| < ξ with probability ≥ 1− ε,

if k ≥ log(1/ε)/2ξ2.

Thus we need only sample the swap test O(log(1/ε))
times for any η. So the whole process runs in time:

O

(
poly(log(N)) · 1

ε
log

(
1

ε

))
= O (poly(log(N))) ,

for fixed tolerance ε.

26

