
Part III: Quantum Field Theory - Revision

Lectures by Ben Allanach, notes by James Moore

1 Classical field theory

1.1 Lagrangian dynamics of fields

Definition: The Lagrangian of a system of fields φa(x),
x ∈ R4, is a function L ≡ L(φa, ∂µφa). A Lagrangian den-
sity for L is a function L obeying:

L =

∫
d3x L(φa, ∂µφa).

Note the Lagrangian density is not unique; we can add on
any three-divergence ∇ · A and get the same Lagrangian.

Definition: The action of a system of fields is

S =

∫
d4x L(φa, ∂µφa),

i.e. it is the time integral of the Lagrangian.

Least Action Principle: Fields evolve such that S is
stationary with respect to field variations which have fixed
initial and final values.

Theorem: The dynamics of fields are given by the
Euler-Lagrange equations:

∂L
∂φa

− ∂µ
(

∂L
∂(∂µφa)

)
= 0.

Proof: Let φa 7→ φa + δφa. Then S transforms to:

S 7→ S +
∑
a

∫
d4x

(
∂L
∂φa

− ∂µ
(

∂L
∂(∂µφa)

))
δφa,

using integration by parts (and recalling fields vanish at
spatial infinity, and have fixed initial and final values so
that δφ(tinit,x) = δφ(tfin,x) = 0). The result follows.

Example: The Klein-Gordon Lagrangian is

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2.

The equation of motion is ∂µ∂
µφ + m2φ = 0, called the

Klein-Gordon equation.

Trialling a wavelike solution φ(x) = e−ip·x, with x = (t,x),
p = (E,p), the equation implies E2 = |p|2 + m2, i.e. the
relativistic energy equation for a particle of mass m.

Example: Consider the Lagrangian density

L = −1

2
(∂µAν)(∂µAν) +

1

2
(∂µA

µ)2.

The minus sign is necessary to ensure the ki-
netic terms are positive. The equation of motion is
∂µ(∂µAν − ∂νAµ) = 0, which if we define the field-strength
tensor Fµν = ∂µAν − ∂νAµ can be written compactly as
∂µF

µν = 0.

Definition: A local Lagrangian has no terms cou-
pling φ(t,x) and φ(t,y) for x 6= y.

In this course we only use local Lagrangians.

1.2 Lorentz invariance

Definition: A Lorentz transformation is a matrix Λ satisfy-
ing ΛT ηΛ = η (where η is the Minkowski metric). In index
notation, this is ΛσµηστΛτν = ηµν , or (taking the inverse):

Λµση
στΛντ = ηµν .

Definition: Under a passive Lorentz transformation,
a scalar field φ(x) transforms as φ(x) 7→ φ′(x) = φ(Λx)
(i.e. just a relabelling of coordinates). Under an ac-
tive Lorentz transformation, the field transforms as
φ(x) 7→ φ′(x) = φ(Λ−1x) (i.e. field itself moves position).

In this course, we use only active transformations
(but passive transformations are completely equivalent
since the inverse of a Lorentz transformation is a Lorentz
transformation).

Definition: If the action S of a theory is invariant
under Lorentz transformations, we say the theory is
Lorentz invariant.

Theorem: Any theory with Lagrangian density
L = 1

2∂µφ∂
µφ− U(φ) is Lorentz invariant.

Proof: Let x′ = Λ−1x. The potential density U(φ)
transforms as:

U(x) ≡ U(φ(x)) 7→ U(φ′(x)) = U(φ(x′)) ≡ U(x′),

so U transforms as a scalar field.
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The derivative ∂µφ(x) transforms as:

∂µφ(x) 7→ ∂µφ(x′) =
∂x′ν

∂xµ
∂φ(x′)

∂x′ν
= (Λ−1)νµ∂

′
νφ(x′).

Using this we see derivative term transforms as:

∂µφ(x)∂µφ(x) 7→ ∂′νφ(x′)∂′νφ(x′),

using ΛT ηΛ = η. Hence

L(φ(x), ∂µφ(x)) ≡ L(x) 7→ L(x′),

under a Lorentz transformation, and hence L is a Lorentz
scalar. So the action transforms as:

S 7→ S′ =

∫
d4x L(x′) =

∫
d4x L(Λ−1x).

Now change variables as y = Λ−1x. The Jacobian is
det(Λ−1) = 1 for Λ in the special Lorentz group, and so
the action is invariant.

The above Theorem also shows that vector fields
transform as Aµ(x) 7→ A′µ(x) = (Λ−1)νµAν(Λ−1x).

1.3 Noether’s theorem

Noether’s Theorem: Every continuous symmetry of a
field theory gives rise to a conserved current jµ obeying
∂µj

µ = 0.

Proof: Let φ 7→ φ + δφ be a symmetry. Then the
Lagrangian must be invariant up to a four-divergence
(so that the action is invariant): L 7→ L + ∂µX

µ. Taylor
expanding the transformed L, we also have:

L(φ+ δφ, ∂µφ+ ∂µδφ) = L+ δφ
∂L
∂φ

+ (∂µδφ)
∂L

∂(∂µφ)

= L+ ∂µ

(
∂L

∂(∂µφ)
δφ

)
,

using the Euler-Lagrange equations. Comparing both ex-
pressions, we must have:

∂µ

(
∂L

∂(∂µφ)
δφ−Xµ

)
︸ ︷︷ ︸

jµ

= 0.

Theorem: A conserved current jµ satisfying ji → 0
as |x| → ∞ gives rise to a conserved charge

Q =

∫
R3

d3x j0.

Proof: We have:
dQ

dt
=

∫
d3x ∂0j0 = −

∫
d3x ∇ · j = 0,

by ∂µjµ = 0 and the divergence theorem.

Example: Suppose L does not depend on x explicitly.
Consider an infinitesimal translation xν 7→ xν − εν . The
fields transform as:

φ(x) 7→ φ(xν + εν) = φ(x) + εν∂νφ(x).

Also since the Lagrangian is a scalar,

L(x) 7→ L(xν+εν) = L(x)+εν∂νL(x) = L(x)+εν∂µ(δµνL(x)).

Following Noether’s Theorem, we see we get one con-
served quantity for each component of εν :

(jµ)ν =
∂L

∂(∂µφ)
∂νφ− δµνL.

Definition: We call Tµν = (jµ)ν (in the above) the
energy-momentum tensor. The associated conserved
charges are the total energy and the total momentum:

E =

∫
d3x T 00, P i =

∫
d3x T 0i.

Theorem: If Tµν is not symmetric, we can make it
symmetric. Let Γρµν be antisymmetric on the first two
indices. Then Tµν + ∂ρΓ

ρµν is a symmetric conserved
quantity for some choice of Γ.

Proof: ∂µ(Tµν + ∂ρΓ
ρµν) = (∂µ∂ρ)Γ

ρµν = 0, since
we have antisymmetric indices on Γ and symmetric
indices on the derivatives. So conserved.

Choose Γ to obey ∂ρ(Γ
ρµν − Γρνµ) = 0 for symmetry

on µ, ν indices.

1.4 Hamiltonian dynamics of fields

Definition: The conjugate momentum of the field φ is de-
fined to be:

π =
∂L
∂φ̇

.

Definition: The Hamiltonian density isH = πφ̇−L, where
φ̇ is eliminated everywhere for π. The Hamiltonian is:

H =

∫
d3x H.

Note: In the Hamiltonian formalism, there are also
equations for dynamics (Hamilton’s equations). These are
given by:

φ̇ =
∂H

∂π
, π̇ = −∂H

∂φ
,

where the derivatives are functional derivatives.

Also note that the Hamiltonian formalism is Lorentz
invariant because it is equivalent to the Lagrangian
formalism.
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1.5 Angular momentum of classical fields

Example: Consider a Lorentz transformation Λµν . The
infinitesimal generator of this transformation, given by

Λµν = δµν + εωµν ,

can easily by shown to be antisymmetric (i.e. ωµν = −ωνµ)
using ΛT ηΛ = η.

Choosing specific ω’s gives rotations (choosing ω to
have only non-zero entries in lower right 3 × 3 block) and
boosts (choosing only non-zero entries to be in rest of
matrix).

A Lorentz-invariant theory gives us conserved quan-
tities from ωµν .

Theorem: A scalar field transforms as

φ′(x) = φ(x)− εωµνxν∂µφ(x),

under the above infinitesimal Lorentz transformation.

Proof: We know φ′(x) = φ(Λ−1x). So just need
Λ−1. But ΛT ηΛ = η implies (Λ−1)µν = ηµσΛτσητν . Hence
(Λ−1)µν = δµν − εωµν . Substituting into φ(Λ−1x) and
Taylor expanding, we get the result.

Since the Lagrangian is a scalar field, the Lagrangian also
transforms as:

L′(x) = L(x)− εωµνxν∂µL(x).

Notice that ∂µ(ωµνL) = ωµνx
ν∂µL(x), by a short calcula-

tion. So the Lagrangian changes by a total derivative!

It follows from Noether’s Theorem that we have a
conserved current:

jµ = −ωρνxνTµρ ,

after a short calculation. The associated conserved charge
is

Q = −
∫
d3x ωρνT

0ρxν .

For ω a rotation generator, only Latin indices survive. In-
deed, we can write ωjk = εijkφ

i in the standard way. Then
the conserved charge is:

Q = −εijk
∫
d3x φiT 0jxk =

1

2
εijk

∫
d3x φi

(
T 0kxj − T 0jxk

)
.

Taking φi = (1, 0, 0), (0, 1, 0), (0, 0, 1) in succession gives
the three conserved quantities:

Definition: The conserved angular momentum of a
field is:

Qi =
1

2
εijk

∫
d3x

(
T 0kxj − T 0jxk

)
.

2 Free quantum field theory

2.1 Second quantisation

Definition: To quantise a system of fields, we use the sec-
ond quantisation scheme. We promote the fields φa(x),
πb(x) (as functions of three-position) to operators labelled
by x (that is, there are two operators for each 3-position).
We impose the commutation relations:

[πa(x), πb(y)] = 0, [φa(x), φb(y)] = 0,

[φa(x), πb(y)] = iδ b
a δ

3(x− y).

An operator-valued function of space is a quantum field.

2.2 Quantising Klein-Gordon theory

Theorem: The Hamiltonian of Klein-Gordon theory is

H =

∫
d3x

(
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2

)
.

Proof: Quick calculation.

We now quantise, so promote φ and π to quantum
fields obeying the above commutation relations.

To solve the theory, we use the following trick. Write
φ and π in terms of creation and annihilation operators
in momentum space (analogous to quantum harmonic
oscillator):

φ(x) =

∫
d3p

(2π)3
1√
2ωp

(
ape

ix·p + a†pe
−ix·p

)
,

π(x) =

∫
d3p

(2π)3
(−i)

√
ωp

2

(
ape

ix·p − a†pe−ix·p
)
,

where ωp =
√
|p|2 +m2 = Ep. Inverting, we find the defi-

nitions of the operators ap and a†p:

ap =

∫
d3x

(√
ωp

2
φ(x) +

i√
2ωp

π(x)

)
e−ix·p,

a†p =

∫
d3x

(√
ωp

2
φ(x)− i√

2ωp
π(x)

)
eix·p.

To obtain this, we take the Fourier transform of φ(x), π(x)
and use the delta function identity:

δ3(x) =

∫
d3p

(2π)3
eix·p.

Theorem: [ap, aq] = 0, [a†p, a
†
q] = 0, [ap, a

†
q] =

(2π)3δ3(p− q).

Proof: Follows directly from definitions of ap, a†p.
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Theorem: The Hamiltonian of quantum Klein-Gordon the-
ory may be written as:

H =
1

2

∫
d3p

(2π)3
ωp

(
apa
†
p + a†pap

)
.

Proof: Substitute in the expressions for φ(x) and π(x) in
terms of the creation and annihilation operators, and be
very careful with the algebra!

2.3 The free vacuum and normal ordering

Definition: The vacuum state |0〉 is the state for which
ap |0〉 = 0.

Theorem: The energy of the vacuum state is infi-
nite: H |0〉 =∞|0〉.

Proof: We have:

H |0〉 =

∫
d3p

(2π)3
1

2
ωp[ap, a

†
p] |0〉 =

1

2

∫
d3p

(2π)3
ωpδ

3(0) |0〉 .

There are two kinds of divergence here. The first is
because space is infinitely large (called infrared diver-
gence); if we worked in a finite volume V instead, we
would have:

(2π)3δ3(0) =

∫
d3x eix·0 = V.

So we can safely remove the delta function by considering
energy density instead. Then we get a second divergence
(called ultraviolet divergence) from:

E

V
=

∫
d3p

(2π)3
1

2
ωp.

This is because p can be arbitrarily large; i.e. we’re
assuming the theory holds for arbitrarily small distance
scales. Instead, we should cut off the integral at some Λ,
called the ultraviolet cutoff, where the theory breaks down.

To fix the problem of infinite energy practically, we in-
troduce normal ordering of operators.

Definition: Let φ1(x1)...φn(xn) be a string of opera-
tors. Its normal ordering is the same string, but with all
creation operators moved to the left and all annihilation
operators moved to the right. The normal ordered string is
written:

: φ1(x1)φ2(x2)...φn(xn) :

In particular, the normal-ordered Hamiltonian is:

: H :=

∫
d3p

(2π)3
ωpa

†
pap,

and so H |0〉 = 0, i.e. we’ve removed the infinite constant.

2.4 Momentum in the quantum theory

Theorem: The quantum normal-ordered momentum, P, in
Klein-Gordon theory is:

P =

∫
d3p

(2π)3
pa†pap.

Proof: Computing the energy-momentum tensor, we see
that T 0i = −π∇φ. Hence:

P = −
∫
d3x π∇φ = ... =

1

2

∫
d3p

(2π)3
p
(
apa
†
p + a†pap

)
,

after a calculation (using the fact odd terms integrate
to zero). After normal ordering, we get the required
expression.

2.5 Particles in Klein-Gordon theory

From now on, redefine H to be the normal ordered
Hamiltonian. Then:

Theorem: We have [H, ap] = −ωpap, [H, a†p] = ωpa
†
p.

Proof: Quick calculation using relation [ap, a
†
q] =

(2π)3δ3(p− q).

Definition: We define the state |p〉 by |p〉 = a†p |0〉.

Theorem: (i) H |p〉 = ωp |p〉; (ii) P |p〉 = p |p〉, where P is
the normal-ordered momentum operator.

Proof: (i) H |p〉 = Ha†p |0〉 = [H, a†p] |0〉 = ωp |p〉 . For
(ii), we have:

P |p〉 =

∫
d3q

(2π)3
qa†q[aq, a

†
p] |0〉 = p |p〉

We can interpret the results of the above Theorem
as follows. (i) The state has energy E =

√
|p|2 +m2; (ii)

the state is a momentum eigenstate with momentum p.
This shows that the state |p〉 is a particle of momentum p
and mass m.

2.6 Multi-particle states

Definition: We define the multi-particle state
|p1,p2, ...,pn〉 to be a†p1

...a†pn |0〉.

Note that since the a†p commute, multi-particle states
are symmetric under exchange of particles in this theory.
So these particles are bosons.

4
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Definition: The space spanned by the multi-particle
states is called Fock space.

2.7 Relativistic normalisation

Let the vacuum be normalised as 〈0|0〉 = 1. Then

〈p|q〉 = 〈0|apa
†
q|0〉 = 〈0|[ap, a

†
q]|0〉 = (2π)3δ3(p− q).

Note 〈p|q〉 is a scalar, so should be Lorentz invariant. But it
isn’t! To fix this, we need to normalise our states differently.

Theorem: (i) The measure∫
d3p
2Ep

is Lorentz invariant; (ii) 2Epδ
3(p− q) is Lorentz invariant.

Proof: (i) Notice
∫
d4p is trivially Lorentz invariant.

Also note the dispersion relation p20 = |p|2 + m2 is trivially
Lorentz invariant. Hence∫

d4p δ(p20 − |p|2 −m2)

∣∣∣∣
p0>0

is a Lorentz invariant. Using the identity

δ(g(x)) =
∑

xi roots of g

δ(x− xi)
|g′(xi)|

,

we’re done. (ii) follows since∫
d3p
2Ep

2Epδ
3(p− q) = 1.

The measure is Lorentz invariant, and 1 is Lorentz invari-
ant, so 2Epδ

3(p− q) must be Lorentz invariant too.

This Theorem shows that if we define |p〉 =
√

2Ep |p〉 , we
get

〈p|q〉 =
√

2Ep
√

2Eq(2π)3δ(p− q) = 2Ep(2π)3δ3(p− q),

and so we’re saved.

Definition: We define the relativistically normalised
momentum eigenstates to be |p〉 =

√
2Ep |p〉 . Throughout

the rest of the course we will use relativistically normalised
states.

2.8 Complex scalar field theory

The quantisation of Klein-Gordon theory generalises to
complex scalar fields easily.

Definition: Free complex scalar field theory is described
by the Lagrangian

L = ∂µψ∂
µψ∗ − µ2ψ∗ψ.

To solve quantum complex scalar field theory, we introduce
raising and lowering operators as before. But since ψ is
complex, ψ† = ψ∗ is not necessarily equal to ψ, so we get
some extra creation and annihilation operators:

ψ =

∫
d3p

(2π)3
1√
2Ep

(
bpe

ix·p + c†pe
−ix·p

)
π =

∫
d3p

(2π)3
i

√
Ep

2

(
b†pe
−ix·p − cpe

ix·p
)

This time π comes from π = ψ̇∗ = ∂L/∂ψ̇, i.e. we get a
change in sign of the i due to the complex conjugate.

The commutation relations are:

[ψ(x), π(y)] = iδ3(x− y), [ψ†(x), π†(y)] = −iδ3(x− y),

with all others zero. These imply the commutation rela-
tions:

Theorem: The creation and annihilation operators
obey: [bp, b

†
q] = (2π)3δ(p− q) and [cp, c

†
q] = (2π)3δ(p− q),

with all other commutation relations zero.

Proof: Same as in real scalar case.

We can also compute the normal-ordered Hamiltonian:

H =

∫
d3p

(2π)3
Ep(b†pbp + c†pcp).

2.9 Conserved charges

In both Klein-Gordon theory and in free complex scalar
field theory we can construct a special conserved charge
Q which we associate with particle number.

In Klein-Gordon theory, we introduce (out of thin air):

Definition: The number operator is given by:

N =

∫
d3p

(2π)3
a†pap.

This is called the number operator because it counts the
number of particles in a multi-particle state:

Theorem: N |p1, ...,pn〉 = n |p1, ...,pn〉 .

Proof: We have

N |p1, ...,pn〉 =

∫
d3q

(2π)3
a†qaqa

†
p1
...a†pn |0〉 .

Now commute aq past each a†pi , and use induction.

Theorem: [N,H] = 0, i.e. particle number is con-
served.

Proof: Tedious calculation.

5
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Constructing a number operator is easier in complex
scalar field theory, since we can use internal symmetry of
the Lagrangian:

Definition: An internal symmetry of a theory is a
symmetry of the Lagrangian involving only a transforma-
tion of the fields.

In complex scalar field theory, we have that ψ 7→ eiαψ
is an internal symmetry of the Lagrangian. By Noether’s
Theorem, this gives rise to the conserved quantity:

Q = i

∫
d3x (ψ̇∗ψ − ψ∗ψ̇) = i

∫
d3x (πψ − ψ†π†).

In the quantum theory, this is the normal-ordered operator:

Q =

∫
d3p

(2π)3
(c†pcp − b†pbp),

i.e. it consists of the difference of two number operators
Nb and Nc of Klein-Gordon form.

Theorem: [Q,H] = 0, i.e. the difference between
Nb and Nc is conserved.

Proof: Tedious calculation.

The fact Q is conserved is important. It gives the in-
terpretation that b and c correspond to two different
particles, whose difference is always constant. Thus we
should view b and c particles as particles and correspond-
ing antiparticles (of opposite charge).

2.10 The Heisenberg picture

Definition: Heisenberg operators are defined from
Schrödinger operators by: OH(t) = eiHtOS(t)e−iHt.
Heisenberg states are defined by |ψ〉H = |ψ(0)〉S (i.e. the
corresponding Schrödinger state at time 0).

Clearly, multiplying by eiHt on the left and e−iHt on
the right, we arrive at equal time commutation relations for
the quantum fields in the Heisenberg picture:

[φ(x, t), π(y, t)] = iδ3(x− y),

with all others zero. The Heisenberg picture also gives an
equation of motion for the quantum fields:

Theorem (Heisenberg’s equation of motion):
We have: ȮH(t) = i[H,OH ].

Proof: Use the Definition of the Heisenberg operators.

Theorem: eiHtape
−iHt = e−iEptap, eiHta†pe−iHt = eiEpta†p.

Proof: Use Maclaurin expansion of LHS, together
with commutators [H, ap] = −Epap, and [H, a†p] = Epa

†
p.

This immediately gives the Heisenberg quantum fields:

φ(x) =

∫
d3p

(2π)3
1√
2Ep

(
ape
−ix·p + a†pe

ix·p
)
,

π(x) =

∫
d3p

(2π)3
(−i)

√
Ep

2

(
ape
−ix·p − a†peix·p

)
.

These expansions are also now manifestly Lorentz invari-
ant. Note also: the Heisenberg Hamiltonian is the same
as the Schrödinger Hamiltonian.

It’s also possible to recover the Klein-Gordon equa-
tion in operator form from the Heisenberg picture:

φ̇ = i[H,φ(x)]

=
i

2

∫
d3y ([π(y)2, φ(x)] +∇yφ(y)∇y[φ(y), φ(x)]

+∇y[φ(y), φ(x)]∇yφ(y)) = ... = π(x).

Similarly, π̇ = ∇2φ − m2φ. Combining these equations
gives the Klein-Gordon equation.

2.11 Quantised angular momentum

Now we have the Heisenberg picture, it is easy to show
that particles in Klein-Gordon theory have spin 0.

Theorem: The normal-ordered quantum angular mo-
mentum operator in KG theory is:

Ji = − i
2
εijk

∫
d3p

(2π)3
a†p

(
pj

∂

∂pk
− pk ∂

∂pj

)
ap.

Proof: Putting the KG energy-momentum tensor into the
general angular momentum conserved charge from ear-
lier, we find:

Ji = εijk

∫
d3x π(x)xj∂kφ(x).

It’s easiest to quantise with Heisenberg fields (so we don’t
pick up signs by differentiating), then pick an arbitrary time
later on (Ji is conserved so it doesn’t matter what time we
pick). Substituting the Heisenberg fields in, we get:

− i
2
εijk

∫
d3x

d3p
(2π)3

d3q
(2π)3

√
Ep

Eq

(
ape
−ip·x − a†peip·x

)
·

xj(−iqk)
(
aqe
−iq·x − a†qeiq·x

)

6
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To get delta functions, absorb (−ixj) into the exponentials
using derivatives:

− i
2
εijk

∫
d3x

d3p
(2π)3

d3q
(2π)3

√
Ep

Eq

(
ape
−ip·x − a†peip·x

)
·

qk
(
aq

∂

∂qj
e−iq·x + a†q

∂

∂qj
eiq·x

)
Now integrate over x to get delta functions:

=
i

2
εijk

∫
d3p

(2π)3
d3q

√
Ep

Eq
qk
(

(a†pa
†
q − apaq)

∂

∂qj
(δ3(p + q))

+(a†paq − apa
†
q)

∂

∂qj
(δ3(p− q))

)
.

Need to integrate by parts now. Easiest to define:

L
(q)
i = iεijkq

k ∂

∂qj
,

as in ordinary quantum mechanics. This operator clearly
satisfies the Leibniz property, so can be used in integration
by parts. Note also that L(q)

i f(q2) = 0, since acting with
∂/∂qj produces something proportional to qj , L(q)

i f(q2) ∝
εijkq

jqk = 0, so L operators pass straight through square
root energy:

=
1

2

∫
d3q

(2π)3
(a−qL

(q)
i aq−a†−qL

(q)
i a†q+aqL

(q)
i a†q−a†qL

(q)
i aq).

The first two terms are zero, because they are odd.
This can be seen by sending q 7→ −q in these terms,
then integrating by parts. The Li are symmetric so are
unchanged by the transformation.

Hence after normal ordering we have:

Qi ==
1

2

∫
d3q

(2π)3
(L

(q)
i a†qaq − a†qL

(q)
i aq).

Integrate by parts on the first term, and we’re done.

This result allows us to determine the angular mo-
mentum of the quantum KG field.

Theorem: Qi |p〉 = Lp
i |p〉. That is, KG particles are

spinless.

Proof: We have:

Qi |p〉 = −
∫

d3q
(2π)3

a†qL
(q)
i [
√

2Eqaqa
†
p |0〉].

Integrate by parts to move L off the particle state. Then
use commutation relations of a and a† to create a δ func-
tion; the result follows.

2.12 Causality

Definition: A theory is causal if spacelike separated
operators commute. That is, if x and y are spacelike
separated, then [O1(x), O2(y)] = 0.

Theorem: In Klein-Gordon theory, [φ(x), φ(y)] = 0
for spacelike separated x and y, and [φ(x), φ(y)] 6= 0 for
null or timelike separated x and y (i.e. the theory is causal).

Proof: Define ∆(x − y) = [φ(x), φ(y)]. A short cal-
culation shows:

∆(x− y) =

∫
d3p

(2Ep)(2π)3

(
e−ip·(x−y) − eip·(x−y)

)
.

This expression uses the Lorentz invariant integration
measure, and only has 4-vector products in the integrand,
so it’s Lorentz invariant. For a timelike separation, we can
transform to x − y = (t, 0, 0, 0) by Lorentz transformation,
which gives a non-zero result when we insert into the
integral.

For a spacelike separation, we can transform to a
frame where the events x and y occur at equal times, so
that p · (x − y) = −p · (x − y). Swapping p 7→ −p in the
second term cancels the first (modulus of Jacobian of
transformation is 1).

2.13 Propagators

Make a particle at y. What’s the probability we’ll see it at x?

Definition: The propagator is defined by D(x − y) =
〈0|φ(x)φ(y)|0〉.

Theorem: An integral expression for the propagator
is:

D(x− y) =

∫
d3p

(2π)32Ep
e−ip·(x−y).

Proof: Brief calculation.

Note D(x − y) does not vanish for (x − y)2 < 0.
However, ∆(x− y) = D(x− y)−D(y−x) = 0 does vanish
as we saw above. Since there is no way to order spacelike
separated events, it is just as probable for a particle to go
from x to y as it is y to x.

For complex scalar fields, we see [ψ(x), ψ†(y)] = 0
for x and y spacelike separated. By the same argument,
this shows the amplitude for a particle to go from x to y
cancels the amplitude for an antiparticle to go from y to x.
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2.14 The Feynman propagator

Definition: The Feynman propagator is ∆F (x − y) =
〈0|T{φ(x)φ(y)}|0〉, where T stands for time-ordering, given
by:

T{φ(x)φ(y)} =

{
φ(x)φ(y) if x0 > y0,

φ(y)φ(x) otherwise.

Theorem: An integral expression for the Feynman propa-
gator is

∆F (x− y) =

∫
d4p

(2π)4
ie−ip·(x−y)

p2 −m2
,

where integration along p0 is defined by its analytic
continuation in the complex plane, given by the contour:

Proof: Notice that p2−m2 = (p0)2−E2
p = (p0−Ep)(p0+Ep),

so the poles are at p0 = ±Ep as expected. The residue at
the poles is ±e±iEp(x

0−y0)/2Ep respectively.

When x0 > y0, close in the LHP so we can use Jor-
dan’s Lemma. As p0 → ∞, we see we can apply Jordan’s
Lemma, so we get (in combination with the Residue
Theorem, and a minus since the contour is anticlockwise):

∆F (x− y) =

∫
d3p

(2π)4
1

2Ep
(−2πi)ie−iEp(x

0−y0)eip·(x−y).

Hence ∆F (x − y) = D(x − y). Similarly, for x0 < y0, get
∆F (x− y) = D(y − x), so done.

Using the contour above is equivalent to instead cal-
culating the integral

∆F (x− y) = lim
ε→0

∫
d4p

(2π)4
ie−ip·(x−y)

p2 −m2 + iε
.

Using this integral is called the iε prescription. All it does
is push the poles off the real axis slightly.

Theorem: The Feynman propagator is a Green’s
function for the Klein-Gordon operator.

Proof: We have:

(∂2t −∇2 +m2)∆F (x− y) =

∫
d4p

(2π)4
i(−p2 +m2)

p2 −m2 + iε
e−ip·(x−y)

= −i
∫

d4p

(2π)4
e−ip·(x−y) = −iδ4(x− y).

3 Interacting scalar theory

3.1 Types of theory

Consider perturbations to the free Lagrangian:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 −

∞∑
n=3

λnφ
n

n!
.

Begin with some dimensional analysis. Since [S] = 0, we
find [L] = 4. So [φ] = 1. This gives [λn] = 4− n. There are
three cases:

• 4 − n > 0, i.e. n = 3. Then [λ3] = 1, so λ3/E is di-
mensionless, where E is the energy scale. So for low
energies these terms are important, but can be ne-
glected at high energies. We call such terms are rele-
vant perturbations, and the theories renormalisable.

• 4−n = 0, i.e. n = 4. Then [λ4] = 0, so the perturbation
is small for λ4 � 1. These terms are called marginal
perturbations. We call the theories renormalisable.

• 4 − n < 0, i.e. n > 4. Then [λn] = 4 − n, so λ4En−4

is dimensionless. This is small at low energies, and
large at high energies. We call such terms irrelevant
perturbations, and the theories non-renormalisable.

In this course we will only consider relevant and marginal
perturbations.

3.2 The interaction picture

Write the Hamiltonian of an interacting theory as
H = H0 + Hint, where H0 is the free theory Hamilto-
nian. In general:

Definition: Interaction picture operators are defined
by OI(t) = eiH0tOSe

−iH0t, where OS is the Schrödinger
operator. Interaction picture states are defined by
|ψ(t)〉I = eiH0t |ψ(t)〉S .

Theorem: ȮI(t) = i[H0, OI(t)].

Proof: ȮI(t) = iH0e
iH0tOSe

−iH0t − ieiH0tOSe
−iH0tH0 =

i[H0, OI(t)].

Theorem: We have:

i
d |ψ〉I
dt

= HI(t) |ψ〉I ,

where HI = (Hint)I , i.e. the interaction part of the Hamil-
tonian in the interaction picture.

Proof: We have:
d

dt
(eiH0t |ψ〉S) = ieiH0tH0 |ψ〉S − ie

iH0tH |ψ〉S ,

by the Schrödinger equation. Now note −Hint = H0 − H,
and so we put the pieces together to get the result.
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Slogan: Interaction operators evolve according to the
Heisenberg equation with free Hamiltonian H0. Interac-
tion states evolve according to the Schrödinger equation
with Hamiltonian HI , i.e. just the interaction part.

Hence the field operators in the interaction picture
are just the free field Heisenberg operators:

φI(x) =

∫
d3p

(2π)3
√

2Ep

(
ape
−ip·x + a†pe

ip·x
)
,

where ap and a†p are the free creation and annihilation
operators, still obeying [ap, a

†
p’] = (2π)3δ(p − p′). Note

ap |0〉 for the vacuum of the free theory, but ap |Ω〉 6= 0, for
the vacuum |Ω〉 of the interacting theory.

3.3 Dyson’s formula

We want to know how states evolve in interacting theory;
to find out, define:

Definition: The interaction time-evolution operator is
defined by |ψ(t)〉I = U(t, t0) |ψ(t0)〉I .

Another useful realisation of this operator is as the
interaction picture version of the Schrödinger time
evolution operator: U(t, t0) = eiH0t

′
US(t, t0)e−iH0t =

eiH0t
′
e−iH(t−t0)e−iH0t.

Theorem: The time-evolution operator obeys the
equation:

i
dU(t, t0)

dt
= HIU(t, t0), U(t, t) = I.

Proof: Boundary condition clear by Definition. For equa-
tion, note:

HI |ψ(t)〉I = i
d

dt
(U(t, t0) |ψ(t0)〉I) = i

dU(t, t0)

dt
|ψ(t0)〉I .

LHS equality follows from state evolution equation
above. RHS equality is just differentiation. Write
|ψ(t)〉I = U(t, t0) |ψ(t0)〉I , and compare left and right.

To solve, integrate directly iteratively: U(t, t0) =

I + (−i)
t∫

t0

dt′ HI(t
′) + (−i)2

t∫
t0

dt′
t′∫
t0

dt′′ HI(t
′)HI(t

′′) + ...

To get Dyson’s formula, we write each of the multiple inte-
grals in a clever way, using the diagram:

This diagram shows

t∫
t0

dt′
t′∫
t0

dt′′ HI(t
′)HI(t

′′) =
1

2

t∫
t0

dt′
t∫

t0

dt′′ T{HI(t
′)HI(t

′′)},

where T stands for time-ordering. Similar diagrams show
that the same thing happens for all other terms in the ex-
pansion. So we can always put a time-ordering inside the
multiple integrals, then just integrate over the same range
each time. Hence we have:

Dyson’s formula:

U(t, t0) = Texp

−i t∫
t0

dt′ HI(t
′)

 .

3.4 Scattering and meson decay example

In scattering problems, we assume that the initial and
final states are well-separated, so are essentially non-
interacting. Thus we assume the initial and final states are
eigenstates of the free theory.

Definition: The S-matrix is defined as:

S = lim
t→∞
t0→−∞

U(t, t0).

The amplitude for an initial state |i〉 to scatter into a final
state |f〉 is given by 〈f |S|i〉.

Example: Consider scalar Yukawa theory :

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 + ∂µψ∂

µψ∗ − µ2ψψ∗ − gψ∗ψφ.

Consider meson decay into a nucleon and an anti-nucleon:
|i〉 =

√
2Epa

†
p |0〉, |f〉 =

√
4Eq1

Eq2
b†q1
c†q2
|0〉 (note these

are in the free theory).

By Dyson’s formula, we have to first order in g:

〈f |S|i〉 = 〈f |Texp
(
−i
∫
d4x gψ∗(x)ψ(x)φ(x)

)
|i〉

= −ig 〈f |
∫
d4x T{ψ∗(x)ψ(x)φ(x)}|i〉+O(g2)

= −ig 〈f |
∫
d4x ψ∗(x)ψ(x)φ(x)|i〉+O(g2),

since there’s only one time in the first order integral, so
the time-ordering is trivial. Note also that the zeroth-order
term vanishes.

We’ll see how to calculate such integrals in a nice
way shortly.
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3.5 Wick’s theorem

From Dyson’s formula, we know we want a quick way of
computing quantities like 〈f |T{HI(x1)...HI(xn)}|i〉 .

Definition: A contraction of a pair of fields in a string
φ(x1)φ(x2)...φ(xn) is defined by:

φ(x1)...φ(xi)...φ(xj)...φ(xn) :=

∆F (xi − xj)φ(x1)...φ(xi−1)φ(xi+1)...φ(xj−1)φ(xj+1)...φ(xn).

Wick’s Theorem: The time-ordering of a string of
fields may be written as:

T{φ(x1)...φ(xn)} =: φ(x1)...φ(xn) : + : all contractions :

Proof (Sketch): By induction. The base case is for two
fields, i.e. T{φ(x)φ(y)}. Write:

φ+(x) =

∫
d3p

(2π)3
1√
2Ep

ape
−ip·x,

φ−(x) =

∫
d3p

(2π)3
1√
2Ep

a†pe
ip·x.

Assume x0 > y0. Then

T{φ(x)φ(y)} = (φ+(x) + φ−(x))(φ+(y) + φ−(y))

=

normal ordered string︷ ︸︸ ︷
φ+(x)φ+(y) + φ−(x)φ−(y) + φ−(y)φ+(x) + φ−(x)φ+(y)

+ [φ+(x), φ−(y)]︸ ︷︷ ︸
the propagator

.

Recall D(x − y) = 〈0|φ(x)φ(y)|0〉 = 〈0|φ+(x)φ−(y)|0〉 =
〈0|[φ+(x), φ−(y)]|0〉 = [φ+(x), φ−(y)] (since φ− is a cre-
ation operator and φ+ is an annihilation operator). Thus

T{φ(x)φ(y)} =: φ(x)φ(y) : +D(x− y).

Swapping x and y in the above gives T{φ(x)φ(y)} =:
φ(x)φ(y) : +D(y − x), since normal ordering is symmet-
ric under the interchange from above expression. Thus

T{φ(x)φ(y)} =: φ(x)φ(y) : + ∆F (x− y)︸ ︷︷ ︸
contraction

.

We sketch the induction part. Write φ(xi) = φi for simplic-
ity. Now suppose Wick’s Theorem holds for T{φ2...φn}.
Consider T{φ1φ2...φn}, and suppose x01 > x0k. Then:

T{φ1φ2...φn} = φ1T{φ2...φn}
= (φ+1 + φ−1 )(: φ2...φn : + : all contractions :).

The φ−1 can stay where it is, but the φ+1 has to commute
past the normal-ordered string all the way to the RHS. Ev-
ery time it commutes past an operator in the normal or-
dered string, we get a propagator D(x1 − xk). After time
ordering this gives ∆F (x1 − xk).

Wick’s Theorem also holds for complex scalar fields. Here,
we define contractions via:

ψ(x)ψ∗(y) = ∆F (x− y), ψ(x)ψ(y) = 0 = ψ∗(x)ψ∗(y).

Here, the Feynman propagator is the nucleon propagator
(i.e. replace m with µ).

3.6 Example: nucleon-nucleon scattering

Work in scalar Yukawa theory. Consider nucleon to
nucleon scattering: |i〉 =

√
4Ep1

Ep2
b†p1
b†p2
|0〉 = |p1, p2〉,

|f〉 =
√

4Ep′
1
Ep′

2
bp′

1
bp′

2
|0〉 = |p′1, p′2〉. We are interested

only in the case when the particles interact, i.e. we should
consider 〈f |(S − I)|i〉.

By Dyson’s formula, we get:

〈f |(S − I)|i〉 = −ig 〈f |
∫
d4x ψ∗(x)ψ(x)φ(x)|i〉+

(−ig)2

2
〈f |
∫
d4x1d

4x2 T{ψ∗(x1)ψ(x1)φ(x1)ψ∗(x2)ψ(x2)φ(x2)}|i〉 ,

up to order O(g2). Note the order O(g) term cancels,
since φ(x) ∼ a + a†, and a annihilates the |i〉 state, and
a† annihilates the 〈f | state. So lowest order non-zero
contribution is order O(g2).

Use Wick’s Theorem to evaluate the time-ordered
middle part. Note that if the φ’s are not contracted, they
are in the normal-ordered part, and we get complete
annihilation as at order O(g). So must contract φ’s.

We note that we need exactly two b’s on the right,
for if we had more, we could commute two past the b†’s
in |i〉, and annihilate the |0〉. If we had less, we’d have
enough b†’s on the right to commute to the left, and with
the left overs annihilating 〈0|. Similarly, we need exactly
two b†’s on the left. So we mustn’t contract the ψ’s and
ψ∗’s.

Hence we only need the terms:

: ψ∗(x1)ψ(x1)ψ∗(x2)ψ(x2) : φ(x1)φ(x2),

and the same term with x1 ↔ x2.

Recalling how many b’s and b†’s we need, we see
that: 〈f | : ψ∗(x1)ψ(x1)ψ∗(x2)ψ(x2) : |i〉

=

∫
d3q1...d

3q4

√
16Ep1

...Ep2

(2π)12
√

2Eq1
...2Eq4

〈0|bp′
1
bp′

2
b†q1
b†q2
bq3
bq4
b†p1
b†p2
|0〉

·ei(q1·x1+q2·x2−q3·x1−q4·x2).

Using the commutation relations, we can evaluate the in-
ner product in the integral: 〈0|bp′

1
bp′

2
b†q1
b†q2
bq3
bq4
b†p1
b†p2
|0〉

= (2π)12(δ3(p′1 − q2)δ3(p′2 − q1) + δ3(p′1 − q1)δ3(p′2 − q2))

·(δ3(q4 − p1)δ3(q3 − p2) + δ3(q4 − p2)δ3(q3 − p1)).
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Putting all this back into the integral, we have:
〈f | : ψ∗(x1)ψ(x1)ψ∗(x2)ψ(x2) : |i〉

= (ei(p
′
1·x2+p

′
2·x1) + ei(p

′
2·x2+p

′
1·x1))

·(e−i(p1·x2+p2·x1) + e−i(p1·x1+p2·x2)).

Hence our expression for 〈f |(S − I)|i〉 is

(−ig)2

2

∫
d4x1d

4x2

(
eix2·(p′1−p1)+ix1·(p′2−p2)

+eix2·(p′2−p1)+ix1·(p′1−p2) + (x1 ↔ x2)

)∫
d4k

(2π)4
ieik·(x2−x1)

k2 −m2 + iε
.

Since integral is symmetric on x1 and x2, can swap in sec-
ond term, so just get twice first term. Thus left with final
answer:

i(−ig)2(2π)4δ4(p1 + p2 − p′1 − p′2)

(
i

(p1 − p′1)2 −m2 + iε

+
i

(p′2 − p1)2 −m2 + iε

)
.

3.7 Feynman diagrams and rules

Whilst the calculation using Wick’s Theorem is simpler, it
is still horrible. We therefore use a diagrammatic method
for calculating scattering amplitudes: Feynman diagrams.

Feynman diagrams:

1. Draw an external line for each particle in |i〉 and
in |f〉. Draw dashed lines for the real scalar fields
φ, and solid lines for the complex scalar fields, ψ.
Add arrows for complex fields to show the flow
of charge. Draw an in-going arrow for an initial
particle and an out-going arrow for an initial anti-
particle. Do the opposite for final particles/anti-
particles.

2. Join the lines together at vertices. We can only
join vertices in a way the the interaction term in
the Lagrangian allows. For example, if the inter-
action was φ5ψ∗ψ, we would be only be able to
join 5 real scalar lines, and two complex scalar
lines, at a vertex. No other vertices are permitted.

3. We can, however, have as many vertices as
we like. For example, in scalar Yukawa theory
(i.e interaction ψ∗ψφ) both of the following are
acceptable diagrams:

We associate Feynman diagrams to terms in the ampli-
tude, 〈f |(S − I)|i〉. Our interpretation of a Feynman dia-
gram is as follows:

• Each vertex in a Feynman diagram represents an in-
tegration variable x1. For example, a two-vertex di-
agram corresponds to the second term in the ampli-

tude, meaning an integral over
∫
d4x1d

4x2 .

• Connecting vertices with edges corresponds to con-
traction in the Wick expansion (note the external par-
ticle lines don’t have vertices on the outside). The re-
maining fields are included in the normal-ordered part.

• Recall that the fields in the normal-ordered part need
to take a very specific form; namely, they need to
annihilate the incoming particles, and produce the
outgoing particles.

After doing all our commutation work, this amounts
to putting in a factor of e−ip·x1 for a particle with
momentum p coming into a vertex x1, and eip·x1 for a
particle with momentum p going out of a vertex x1.

For example, the diagram:

Corresponds to the term:

(−ig)2
∫
d4x1d

4x2 e
ix2·(p′1−p1)+ix1·(p′2−p2)∆F (x1 − x2).

(Note: There is no factor of 2 here, because by convention,
the vertices of a Feynman diagram are unlabelled. This
means that a Feynman diagram represents both the
diagram with the vertices in one position, and with the
vertices interchanged, if this is possible.)

Note that given an amplitude of this form, we can in-
tegrate out x1, x2, etc. In particular, this gives delta
functions which fix the values of the momentum in the
propagators (if the propagators don’t form a loop). That is,
momentum conservation is imposed at each vertex by the
integration over the vertices.
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Hence, we can associate a number to each Feynman dia-
gram via the Feynman rules:

The Feynman rules:

1. At every vertex, write down a factor (−ig), where
g was the coupling of the interaction.

2. Add a factor of (2π)4δ4

 ∑
ingoing

pi −
∑

outgoing

pi

 for

global momentum conservation.

3. Impose 4-momentum conservation at each vertex
in the diagram. Write down a propagator:

i

k2 −m2 + iε

for each internal line (replacem by µ for internal ψ
fields), inserting the determined k, or leaving until
Step 4.

4. Integrate over any undetermined momenta k.

Example: For nucleon-nucleon scattering in scalar
Yukawa theory, there are two possible diagrams:

Using the diagrams and the Feynman rules, we can
just write down the answer we got above.

In practice, the Feyman rules are refined to instead
find the scattering amplitude of the process:

Definition: Write

〈f |(S − I)|i〉 = iAfi(2π)4δ4

(∑
initial

pi −
∑
final

pf

)
.

The scattering amplitude is Afi.

The Feynman rules are easily refined to compute
iAfi:

1. Write a factor of (−ig) at each vertex.

2. Impose 4-momentum conservation at each vertex.

3. For each internal line, write a factor of the propagator.

4. Integrate over any undetermined momenta.

3.8 Many examples

Example 1: For ψ(p1)ψ(p2) → φ(p′1)φ(p′2) scattering in
scalar Yukawa theory, the lowest order amplitude is:

iAfi = (−ig)2
(

i

(p1 − p′1)2 − µ2
+

i

(p1 − p′2)2 − µ2

)
.

Example 2: Consider φ(p1)φ(p2) → φ(p′1)φ(p′2) scat-
tering in φ4 theory, i.e. with interaction Lint = −λφ4/4!.
The lowest order amplitude is just −iλ.

We lose the 4! because the diagram represents the
term:

−iλ
4!

∫
d4x 〈f | : φ(x)φ(x)φ(x)φ(x) : |i〉

in the Wick expansion. When we write out this in terms of
annihilation and creation operators, we need, as before,
exactly two annihilation operators to act on |i〉 and two
creation operators to act to the left on |f〉.

How many ways of making this choice are there?
Since any of the field operators can contribute any of the
annihilation/creation operators, and order matters, there
are 4! ways, which gives 4! terms in the normal-ordered
expansion, which cancels the 4! up front.

Example 3: Consider a theory of 3 fields governed
by the Lagrangian:

L =

3∑
i=1

(
1

2
(∂µφi)(∂

µφi)−
1

2
m2φ2i

)
− 1

8
λ

(
3∑
i=1

φ2i

)2

,

with [φi, φj ] = 0. Then the propagator can be calculated. If
x0 > y0, we have for i 6= j:

〈0|T{φi(x)φj(y)}|0〉 = 〈0|φi(x)φj(y)|0〉 = 〈0|[φi(x), φj(y)]|0〉 = 0,

since all annihilation/creation operators commute if
i 6= j, so can readily annihilate |0〉 and 〈0|. For
i equal to j, just get normal propagator. Hence:
〈0|T{φi(x)φj(y)}|0〉 = δij∆F (x− y).

The interaction term gives two possible interactions:
−λφ4i /8 interactions and −λφ2iφ2j/4 interactions (for i 6= j).

To lowest order, φiφi → φiφi scattering has ampli-
tude −3iλ, using the reasoning from φ4 theory.

To lowest order, φiφj → φiφj scattering has ampli-
tude −iλ. This is because in : φi(x)φi(x)φj(x)φj(x) : we
are now more restricted as to where the fields can go; an
i and j must act to the left, and an i and j must act to the
right. So pick from 2 possible i, and 2 possible j, giving a
factor 2× 2 = 4.
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Example 4: Consider a theory governed by the La-
grangian:

L = ∂µψ
∗∂µψ − µ2ψ∗ψ +

1

2
∂µφ∂

µφ− 1

2
m2φ2

−gψ∗ψφ− h|ψ|4 − kφ3 − l∂µψ∂µψ∗φ.

Let’s calculate the vertex rules for this theory.

• For ψ∗ψφ, the amplitude is −ig, because there is no
symmetry of the operators at a vertex.

• For φ3 vertices, we have amplitude −6ik, because of
the obvious factor 3!.

• For |ψ|4 = (ψ∗)2ψ2 vertices, we have amplitude −4ih,
as with φiφj → φiφj scattering above.

• For ∂µψ∂µψ∗φ, consider a vertex such as φ(p1) →
ψ(p2)ψ∗(p3). From our interpretation of the Feynman
diagram, we expect this to give an e−ip1·x factor in
position space from the φ, but due to the derivatives,
we expect a −p2 · p3ei(p2+p3)·x from the ψ∗ψ. Hence
the amplitude is ilp2 · p3. Note that this can change
sign dependent on whether the nucleons are both in-
going/outgoing or one ingoing, other outgoing.

Note that −ig and ilp2 · p3 combine additively at a ψ∗ψφ
vertex.

3.9 Correlation functions

We won’t really use correlation functions in this course,
but they will be important in the future. Throughout this
section, work in φ4 theory.

Definition: Functions of the form

〈0|T{φ(x1)...φ(xm)S}|0〉 ,

are called correlation functions. Using the expansion for S,
a general term in this may be written (using φ(xi) = φi):

1

n!

(
−iλ
4!

)n ∫
d4y1...d

4yn 〈0|T{φ1...φmφ4(y1)...φ4(yn)}|0〉 .

Since this is sandwiched between vacuum states, any
normal ordered part from Wick’s Theorem vanishes. So
we must perform all possible contractions in all possible
ways.

Example: Consider n = 1, m = 4. We can contract
in the following ways:

• Contract each φi with a φ(x). φ1 can be paired with
any of the 4 φ(x)’s, φ2 can be paired with any of the
remaining 3 φ(x)’s, etc, so there are 4! terms of this
type. So the contribution is:

−iλ
∫
d4x∆F (x1−x)∆F (x2−x)∆F (x3−x)∆F (x4−x).

• Contract two φi fields, and two φ(x)’s, then contract
remaining φi’s with φ(x)’s. There are

(
4
2

)
ways of pick-

ing which φi’s we’ll contract, and
(
4
2

)
ways of picking

which φ(x)’s we’ll contract. There are then 2 ways of
pairing up the remaining fields. So there are a total of
6× 6× 2 = 72 terms of this type. They look like:

− iλ
2

∆F (x1−x2)

∫
d4x∆F (x3−x)∆F (x4−x)∆F (x−x),

and 5 other similar terms with x1, x2, x3, x4 permuted.
Note ∆F (x− x) = ∆F (0) =∞, which we will ignore.

• Contract all φi’s and all φ(x)’s separately. There are
3 × 3 = 9 ways of doing this (since we pick a part-
ner for φ1 from 3 other fields, then the other pairing is
determined; similarly for φ(x)’s). Terms look like:

− iλ
8

∆F (x1−x2)∆F (x3−x4)

∫
d4x∆F (x−x)∆F (x−x),

and two other similar terms with other pairings of φi’s.

This calculation can be represented by the diagrammatic
expansion:

Definition: The constant we divide by is called the
symmetry factor of a diagram. The symmetry factors are
1, 2 and 8 above.

Example: Consider n = 2, m = 4, and consider the
term with contractions:

φ1φ2φ3φ4φ(x)φ(x)φ(x)φ(x)φ(y)φ(y)φ(y)φ(y).

We can represent this as a diagram:

We now compute the diagram’s symmetry factor. From
the Wick expansion, we get a constant 1

2

(
1
4!

)2. We lose
the 1/2 immediately because of exchange of integration
variables: x↔ y.

13
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The other symmetries of this expression are:

• φ1 connects to a φ(x) - 4 choices.

• φ2 connects to a φ(x) - 3 remaining choices.

• φ3 connects to a φ(y) - 4 choices.

• φ4 connects to a φ(y) - 3 remaining choices.

• φ(x) connects to a φ(y) - 2 choices.

Final φ(x), φ(y) pair is then determined. So
4 × 3 × 4 × 3 × 2 = (4!)2/2. Hence the symmetry
factor of the diagram is 2.

We can make calculations easier by introducing posi-
tion space Feynman rules for correlation functions:

1. Write a factor of −iλ
∫
d4x for each vertex x.

2. Write a factor of ∆F (y − z) for each line from y to z.

3. Divide by the symmetry factor of the diagram.

Note we don’t need to worry about e±ip·x’s because there
are no external edges; we work with vacuum to vacuum
calculations.

We can easily upgrade these to momentum space
rules:

1. Write a factor of −iλ for each vertex.

2. Impose four-momentum conservation at each vertex.

3. Write a factor of the propagator
i

p2 −m2 + iε
for each

internal edge with momentum p.

4. Integrate over any undetermined momenta.

5. Divide by the symmetry factor of the diagram.

3.10 Computing symmetry factors

There is a recipe for computing symmetry factors from the
diagrams rather than the Wick expansion.

1. If a propagator starts and ends at the same vertex, get
a factor of 2.

2. If a pair of vertices is connected by k identical propa-
gators, get a factor of k!.

3. If vertices can be permuted without affecting the dia-
gram, get a factor of the number of permutations.

4. If there are n identical disconnected pieces, get a fac-
tor of n!.

5. In a one-vertex subdiagram of the form:

get an additional factor of 2.

Example: Consider the basketball diagram

This has symmetry factor 4! × 2 = 48 from rules 2
and 3.

3.11 Vacuum bubbles

Consider 〈0|S|0〉. Its diagrammatic expansion is:

Note all of these diagrams have no external lines.

Definition: Diagrams with no external lines are called
vacuum bubbles.

Theorem: We can write 〈0|S|0〉 as:

〈0|S|0〉 = exp
(∑

distinct connected vacuum bubble types
)
.

Proof: Too hard for this course. We can verify it to second
order, however, by checking the following:

Next term, we will see that

〈Ω|T{φ1...φm}S|Ω〉 =
(∑

connected diagrams
)
· 〈0|S|0〉 ,

where connected means every part of the diagram is con-
nected to external points. For example, this diagram is still
connected:

14
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3.12 Green’s functions

So far, we’ve neglected the true vacuum of interacting
theory: |Ω〉, obeying H |Ω〉 = 0 and 〈Ω|Ω〉 = 1 (we worked
with |0〉 obeying H0 |0〉 = 0 and 〈0|0〉 = 1).

Definition: The Green’s function is define by

G(n)(x1, ..., xn) = 〈Ω|T{φH(x1)...φH(xn)}|Ω〉 ,

where φH are Heisenberg fields.

Theorem: We have:

〈Ω|T{φH(x1)...φH(xm)}|Ω〉 =
〈0|T{φI(x1)...φI(xm)S}|0〉

〈0|S|0〉
=
∑

(connected diagrams with m external points) .

Interpretation: If we discard Feynman diagrams with
vacuum bubbles, we get the right answers (i.e. with the
true vacuum) by working with the free vacuum.

Proof: Work from the RHS to the LHS. First assume
WLOG that x01 > x02 > ... > x0m (and write x0i = ti) so we
can forget about time-ordering. Then the RHS numerator
is:

〈0|U(∞, t1)φI(x1)U(t1, t2)...U(tm−1, tm)φI(xm)U(tm,−∞)|0〉

where we’ve just converted the S-matrix into time-ordered
form. Converting the numerator of RHS to Heisenberg pic-
ture:

〈0|U(∞, 0)φH(x1)φH(x2)...φH(xm)︸ ︷︷ ︸
〈ψ|

U(0,−∞)|0〉

Define the state |ψ〉 as shown above. We want to take the
limit as t0 →∞ in:

〈ψ|U(0, t0)|0〉 = 〈ψ|US(0, t0)|0〉 ,

where US is the Schrödinger time evolution operator. This
holds since H0 annihilates |0〉.

Insert an identity operator I using resolution of identity.
Note that US(0, t0) |Ω〉 = |Ω〉, since the full Hamiltonian an-
nihilates the interacting vacuum, and US is an exponential
of the full Hamiltonian. Hence:

〈ψ|US(0, t0)|0〉 =

〈ψ|US(0, t0)

|Ω〉 〈Ω|+ ∞∑
n=1

∫ n∏
j=1

d3pj |p1...pn〉 〈p1...pn|
2Epj (2π)3


︸ ︷︷ ︸

=I

|0〉

= 〈ψ|Ω〉 〈Ω|0〉+

∞∑
n=1

∫ n∏
j=1

d3pj
(2Epj (2π)3

exp

(
i

n∑
k=1

Epkt0

)
,

since |p1...pn〉 are interaction eigenstates, and US(0, t0) =
eiHt0 . As t0 → −∞, the second term vanishes by the
Riemann-Lebesgue Lemma:

lim
µ→∞

∫ b

a

f(x)eiµx = 0,

for f absolutely integrable.

Hence 〈ψ|U(0, t0)|0〉 = 〈ψ|Ω〉 〈Ω|0〉 . So our numera-
tor reduces to:

〈0|U(∞, 0)φH(x1)...φH(xm)|Ω〉 〈Ω|0〉 .

Similarly, 〈0|U(∞, 0)|ψ′〉 = 〈0|Ω〉 〈Ω|ψ′〉, so the numerator
reduces completely to:

〈Ω|φH(x1)...φH(xm)|Ω〉 〈Ω|0〉 〈0|Ω〉 .

Finally, note the same argument applies to the denomina-
tor too: 〈0|S|0〉 = 〈0|U(∞, 0)U(0,−∞)|0〉 = 〈0|Ω〉 〈Ω|0〉.
Hence we get the LHS.

4 Cross-sections and decay rates

4.1 The Mandelstam variables

Definition: Defined the Mandelstam variables in a 2 to 2
scattering process by:

s = (p1 + p2)2, t = (p1 − p′1)2, u = (p1 − p′2)2.

Theorem: s + t + u is equal to the sum of the squares of
the initial and final masses.

Proof: Sum is 3m2
1 +m2

2 +m′21 +m′22 + 2p1 · (p2 − p′1 − p′2),
which gives result on using momentum conservation.

In particular, the Mandelstam variables are not inde-
pendent of one another.

4.2 Cross sections

In real life, we don’t have momentum eigenstates as our
initial states; instead we have sharply peaked superposi-
tions:

|i〉 =

∫
d3p̃1

(2π)32E1

d3p̃2

(2π)32E2
f1(p̃1)f2(p̃2) |p̃1p̃2〉 .

We assume the distributions fi are sharply peaked at
some p̃i = pi.

The outgoing particles |f〉 are still considered mo-
mentum eigenstates; this is a good approximation for
collider experiments.

The transition probability for 2 to n scattering, with
initial momenta p1, p2 (sharply peaked around these
momenta) and final momenta qi, is given by:

W = | 〈f |(S − I)|i〉 |2.
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Inserting the integral form of |i〉, we have W =

(2π)8
∫

d3p̃1

(2π)32E1

d3p̃2

(2π)32E2

d3p̃′1
(2π)32E′1

d3p̃′2
(2π)32E′2

|Afi|2f1(p̃1)

f∗1 (p̃′1)f2(p̃2)f∗2 (p̃′2)δ4

(∑
i

qi − p̃1 − p̃2

)
δ4

(∑
i

qi − p̃′1 − p̃′2

)
Expand the second delta function explicitly, and use∑
i qi = p1 + p2 ≈ p̃1 + p̃2 to write W =∫
d4x

∫
d3p̃1

(2π)32E1
f1(p̃1)eip̃1·x

∫
d3p̃′1

(2π)32E′1
f∗1 (p̃′1)e−ip̃

′
1·x∫

d3p̃2

(2π)32E2
f2(p̃2)eip̃2·x

∫
d3p̃′2

(2π)3E′2
f∗2 (p′2)e−ip̃

′
2·x(

(2π)4δ4

(∑
i

qi − p̃1 − p̃2

)
|Afi|2

)
.

Recall the formula for the wavefunction:

ψi(x) =

∫
d3p

(2π)3
√

2Ep
eip·xfi(p).

Inserting into the above:

W =

∫
d4x

1√
2E1

1√
2E′1

1√
2E2

1√
2E′2
|ψ1(x)|2|ψ2(x)|2

(2π)4|Afi|2δ4
(∑

i

qi − p̃1 − p̃2

)
.

Using p̃1 + p̃2 ≈ p1 + p2, and E1 ≈ E′1, E2 ≈ E′2, we find
that

dW

d4x
=
|ψ1(x)|2

2E1

|ψ2(x)|2

2E2
(2π)4δ4

(∑
i

qi − p1 − p2

)
|Afi|2.

This is the transition probability per unit time.

We now convert this into something measurable. Suppose
that we are in particle 1’s rest frame, and that it has an
effective cross-sectional area dσ. Let ρ = |ψ1(x)|2 be the
probability density of the target particle, and φ be the flux,
i.e. the probability density passing the point per unit time.
Here, φ = |ψ2(x)|2v, where v is the relative velocity of the
particles. Hence we have: dW/d4x = dσρφ, and so

dσ =
(2π)4

F
δ4

(
p1 + p2 −

n∑
i

qi

)
|Afi|2,

where F is the flux factor, F = 4E1E2v.

Theorem: F = 4
√

(p1 · p2)2 −m2
1m

2
2.

Proof: Work in rest frame of second particle, i.e.
p2 = (m2, 0), p1 = (

√
m2

1 + p21,p1). The relative ve-
locity is then v = |p1|/E1, and we get the result using
E2

1 = m2
1 + |p1|2. The answer is Lorentz invariant so holds

in all frames.

Hence we have a final result:

Total cross-section: The total cross-section is σ =∫ n∏
i=1

(
d3qi

(2π)32Eqi

)
|Afi|2

F
(2π)4δ4

(
p1 + p2 −

n∑
i

qi

)
,

where F = 4
√

(p1 · p2)2 −m2
1m

2
2 is the flux factor.

4.3 2 to 2 scattering

In 2 to 2 scattering, we use the Mandelstam variables.
Note:

t = m2
1 +m′21 − 2Ep1

Eq1
+ 2p1 · q1 ⇒

dt

d cos(θ)
= 2|p1||q1|,

where θ is the (frame-dependent) angle between p1 and
q1, i.e. it is the scattering angle.

To simplify our general calculation, write

d3q2

2Eq2

= d4q2 δ(q
2
2 −m′22 )H(q02),

whereH is the Heaviside function (this is the reverse of the
calculation showing Lorentz invariance of the measure).
Expand the q1 integral in polars, then in terms of φ, t and
energy Eq1

:

d3q1

2Eq1

=
|q1|2d|q1|d cos(θ)dφ

2Eq1

=
1

4|p1|
dEq1

dφdt.

Using the total cross-section formula above, and perform-
ing the q2 and φ integrals, we find

dσ

dt
=

1

8πF|p1|

∫
dEq1

|Afi|2δ(s−m′22 +m′21 −2q1 ·(p1+p2)).

This is simplest in the centre of mass frame. Let p1 =
(
√
|p1|2 +m2

1,p1) and p2 = (
√
|p1|2 +m2

2,−p1). Then by
considering s, we find:

|p1| =
λ1/2(s,m2

1,m
2
2)

2
√
s

, F = 2λ1/2(s,m2
1,m

2
2),

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. Thus:

Differential cross section: In the centre of mass
frame, (

dσ

dt

)
COM

=
|Afi|2

16πλ(s,m2
1,m

2
2)
.
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4.4 Decay rates

For a particle decaying, we are considering 1 to n scatter-
ing. Thus from above we need to consider:

dW

d4x
=
|ψ(x)|2

2Ep
|Afi|2(2π)4δ4

(
p−

n∑
i

qi

)
.

This is equal to the probability density of the decaying par-
ticle multiplied by the rate at which it decays, dΓ, the differ-
ential width. Hence we have:

Γ =
1

2Ep

∫ n∏
i=1

d3qi
(2π)32Eqi

|Afi|2(2π)4δ4

(
p−

n∑
i=1

qi

)
.

Note this is not Lorentz invariant; it is the time taken in the
rest frame of the particle.

4.5 Example calculation

In scalar Yukawa theory, the decay width of a meson is:

Γ =
g2

16πm

(
1− 4µ2

m2

)1/2

.

To calculate this, we first find |Afi|2 = g2 from the Feynman
rules. Then we put this into the above formula, in the rest
frame so that p = (Ep, 0) = (m, 0). The calculation also
requires us to use the fact that

δ(f(x)) =
∑

roots xi

δ(x− xi)
|f ′(xi)|

.

5 The Dirac equation and spinors

5.1 The Lorentz algebra

Consider a column vector φa(x) of fields. Under a Lorentz
transformation Λ, the most general transformation is:

φa(x) = Da
b(Λ)φb(Λ−1x).

Since applying two Lorentz transformations Λ1, Λ2 con-
secutively is the same as applying Λ2Λ1, we find that D is
a representation of the Lorentz group. To get fermions in
QFT we pick the spinor representation.

To find this rep, we look at the Lie algebra of the
Lorentz group.

Definition: The Lie algebra of the Lorentz group is
called the Lorentz algebra.

Write an infinitesimal Lorentz transformation as:

Λµν = δµν + εωµν +O(ε2).

We saw ωµν , a general element of the Lorentz algebra, is
antisymmetric. Introduce a basis for the Lorentz algebra
as (the obvious antisymmetric basis):

(Mρσ)µν = ηρµησν − ησµηρν .

Here, we have antisymmetry on ρσ, since we need exactly
6 independent matrices to span. Lowering indices,

(Mρσ)µν = ηρµδσν − ησµδρν .

We can then write a general Lorentz algebra element as

ωµν =
1

2
Ωρσ (Mρσ)

µ
ν .

Here, Ωρσ is antisymmetric (any symmetric part would can-
cel with Mρσ), and ωµν = 1

2Ωρσ(ηρµδσν − ησµδρν ) = Ωµν .

Theorem: The structure constants of the basis are
from:

[Mρσ,Mτν ] = ηστMρν − ηρτMσν + ηρνMστ − ησνMρτ .

Proof: Brief calculation.

We can recover finite Lorentz transformations connected
to the identity I by exponentiating: Λ = exp

(
1
2ΩρσM

ρσ
)
.

5.2 The spinor representation

To construct the spinor representation of the Lorentz
group (and of the Lorentz algebra) we go through a couple
of stages.

Definition: The Clifford algebra is an algebra gener-
ated by objects γµ obeying {γµ, γν} = 2ηµν1. Explicitly,
this means γµγν = −γνγµ for ν 6= µ and (γi)2 = 1,
(γ0)2 = −1.
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The simplest solution to the Clifford algebra is a set of
4× 4 matrices.

Definition: The chiral representation of the Clifford
algebra is the set of matrices

γ0 =

(
0 I2
I2 0

)
, γi =

(
0 σi

−σi 0

)
,

where σi are the Pauli matrices, obeying their own algebra
relations: [σi, σj ] = 2iεijkσk, {σi, σj} = 2δijI2.

Any similarity transformation γµ 7→ UγµU
−1 also gives a

representation of the Clifford algebra.

Definition: The spinor representation of the Lorentz
algebra is given by:

Sρσ =
1

4
[γρ, γσ] =

1

2
γργσ − 1

2
ηρσ.

Theorem: Sµν indeed constitutes a representation of
the Lorentz algebra.

Proof: First show [Sµν , γρ] = γµηνρ − γνησµ, then
deduce

[Sρσ, Sτν ] = ηστSρν − ηρτSσν + ησνSµτ − ησνSρτ .

Definition: The spinor representation of the Lorentz
algebra gives rise to the spinor representation of the
Lorentz group written:

S[Λ] = exp

(
1

2
ΩρσS

ρσ

)
.

Definition: A Dirac spinor is a collection of fields ψα(x),
written as a column vector (ψ0(x), ψ1(x), ψ2(x), ψ3(x))T ,
which transforms under a Lorentz transformation as:

ψα(x) 7→ S[Λ]αβψ
β(Λ−1x).

5.3 Rotations and boosts of spinors

The spinor representation is inequivalent to the fundamen-
tal (vector) representation of the Lorentz group. We can
see this by considering rotations and boosts of spinors.

Theorem: Rotation of a spinor by 2π changes it by
a minus sign; rotation by 4π leaves it invariant.

Proof: Use chiral representation of gamma matrices.
For a rotation, the only non-zero Sµν components are:

Sij =
1

4

[(
0 σi

−σi 0

)
,

(
0 σj

−σj 0

)]
= − i

2
εijk

(
σk 0
0 σk

)
.

Since Ωij is antisymmetric, we can write it as Ωij =
−εijkφk for some vector φφφ. Then

S[Λ] = exp

(
1

2
ΩρσS

ρσ

)
=

(
eiφφφ·σσσ/2 0

0 eiφφφ·σσσ/2

)
.

For a 2π rotation, φφφ = (0, 0, 2π). Then S[Λ] = −I4. For a
4π rotation, φφφ = (0, 0, 4π), then S[Λ] = I4.

A vector would transform under a 2π rotation via:

Λ = exp

(
1

2
ΩρσM

ρσ

)
= exp


0 0 0 0
0 0 2π 0
0 −2π 0 0
0 0 0 0

 = I4.

Theorem: Under a boost in the direction χχχ by speed
|χχχ|, the spinor representation of the Lorentz group is

S[Λ] =

(
e−χχχ·σσσ/2 0

0 eχχχ·σσσ/2

)
.

Proof: Same as rotations. Only non-zero components are

S0i =
1

2

(
−σi 0

0 σi

)
,

and boost parameters may be written Ω0i = −Ωi0 = χi.

For boosts, SS† = S2, so the representation is not
unitary. In fact:

Theorem: There are no finite dimensional unitary
representations of the Lorentz group.

Proof: Too hard for this course.

We can however prove that our spinor representation
cannot be unitary:

Theorem: The spinor representation is not unitary,
for any representation of the Clifford algebra.

Proof: The rep is unitary iff (Sµν)† = −Sµν . Note

(Sµν)† = −1

4
[(γµ)†, (γν)†].

So we would need all γµ’s Hermitian or all γµ’s anti-
Hermitian. Since (γ0)2 = I, γ0 has real eigenvalues so
cannot be anti-Hermitian. Since (γi)2 = −I, it cannot have
real eigenvalues, so cannot be Hermitian.

18



J. M. Moore, 2019

5.4 Constructing a Lorentz invariant action

To build a Lorentz invariant action from spinors, need to
make Lorentz scalars and Lorentz vectors from spinors.

Definition: The Dirac adjoint of ψ(x) is ψ(x) := ψ†(x)γ0 =
(ψ∗)T (x)γ0.

Lemma: S[Λ]† = γ0S[Λ]−1γ0

Proof: Work in the chiral rep of the Clifford algebra.
Then (γ0)† = γ0, (γi)† = −γi, so (γµ)† = γ0γµγ0. Thus

(Sµν)† =
1

4

[
(γµ)†, (γν)†

]
= −γ0Sµνγ0.

Lemma: S[Λ]−1γ0S[Λ] = Λµνγ
ν .

Proof: We have S[Λ] = exp
(
1
2ΩρσS

ρσ
)
. Hence

S[Λ]−1γµS[Λ] =

(
1− 1

2
ΩρσS

ρσ

)
γµ
(

1 +
1

2
ΩτνS

τν

)
= γµ − 1

2
Ωρσ[Sρσ, γµ].

Compare to Λ = exp
(
1
2ΩρσM

ρσ
)

= 1 + 1
2ΩρσM

ρσ. Thus,
we must show (Mρσ)µνγ

ν = −[Sρσ, γµ]. Computing the
LHS and RHS, we see they are indeed equal.

Theorem: ψ(x)ψ(x) is a Lorentz scalar, and ψ(x)γµψ(x)
is a Lorentz vector.

Proof: Under a Lorentz transformation ψ(x)ψ(x) maps to

ψ†(Λ−1x)S[Λ]†γ0S[Λ]ψ(Λ−1x) = ψ†(Λ−1x)γ0ψ(Λ−1x)

by the first Lemma. Under a Lorentz transformation,
ψ(x)γµψ(x) maps to

ψ(Λ−1x)S[Λ]−1γµS[Λ]ψ(Λ−1x),

so apply second Lemma and we’re done.

Definition: The Dirac Lagrangian is defined by

L = ψ(x)(iγµ∂µ −m)ψ(x).

From above, this is Lorentz invariant (note ∂µ 7→ Λνµ∂ν
under a Lorentz transformation, i.e. transforms in opposite
way to Lorentz vector).

This Lagrangian describes a free spinor field. The
dimensions are: [ψ] = 3/2, and [m] = 1.

5.5 The Dirac equation

Theorem: The Euler-Lagrange equations of the Dirac ac-
tion are:

(iγµ∂µ −m)ψ = 0, i(∂µψ)γµ +mψ = 0.

Proof: Varying ψ, we get the first equation, and varying ψ
we get the second equation (after integration by parts).

Definition: The equation (iγµ∂µ − m)ψ = 0 is called the
Dirac equation.

Definition: We define /A = Aµγ
µ = Aµγµ. This is

called slash notation.

In slash notation, the Dirac equation is: (i/∂ −m)ψ = 0.

The Dirac equation is, in a sense, the ‘square root’
of the Klein-Gordon equation. Indeed, each individual
component of a spinor solves the Klein Gordon equation:

Theorem: Each spinor component solves the Klein-
Gordon equation.

Proof: We have (i/∂ − m)ψ = 0. Apply the operator
(i/∂ +m). We then have:

0 = (i/∂ +m)(i/∂ −m)ψ = −(γµγν∂µ∂ν +m2)ψ

= −
(

1

2
{γµ, γν}∂µ∂ν +m2

)
ψ,

since ∂µ∂ν is symmetric. Use Clifford and we’re done.

5.6 Chiral spinors

S[Λ] is block diagonal in the chiral rep. Hence S is the
sum of irreps, acting on subspaces of the space of spinors.

Definition: We write a spinor in the chiral rep as
ψ = (uL, uR)T , where uL and uR are in C2. We call uL
and uR chiral or Weyl spinors.

From the rotation and boost matrices above, uL and
uR transform identically under rotations, but oppositely
under boosts.

Decomposing the Dirac Lagrangian into Weyl spinors, we
have:

L = iu†Lσ
µ∂µuL + iu†Rσ

µ∂µuR −m(u†LuR + u†RuL).

Here, we define σµ = (I,σσσ), σµ = (I,−σσσ). Then the chiral
rep is

γµ =

(
0 σµ

σµ 0

)
.
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Terms like u†LuR mean we annihilate a right Weyl spinor,
and create a left Weyl spinor. This does not occur if
m = 0, i.e. left/right handedness does not mix. However, it
is impossible to prevent this occurring if m 6= 0.

Definition: In the massless case, the equations of
motion reduce to

iσµ∂µuL = 0, iσµ∂µuR = 0,

which are called the Weyl equations.

5.7 Degrees of freedom

Definition: The number of degrees of freedom of a field
theory is the half the dimension of the phase space at
each spacetime point.

For a real scalar φ, the conjugate momentum is π = φ̇. So
there is 1

2×2 = 1 degree of freedom. For a complex scalar,
there are two degrees of freedom (one for a particle, and
one for the antiparticle).

For a spinor ψ, the conjugate momentum is π = iψ†,
which is not independent of ψ. So the 4 complex com-
ponents of ψ give 8 real components, and no more from
iψ†. Hence there are 1

2 × 8 degrees of freedom. These
represent a spin- 12 particle: spin-up particle, spin-down
particle, spin-up antiparticle, spin-down antiparticle.

5.8 Rep independent Weyl spinors

Definition: Define γ5 = iγ0γ1γ2γ3.

Theorem: {γµ, γ5} = 0, and (γ5)2 = I.

Proof: (γ5)2 = −(γ0γ1γ2γ3)(γ0γ1γ2γ3). Drag each
gamma matrix one at a time through the string. Start with
γ0. It passes through three other gamma matrices, so pick
up a minus sign, then hits γ0 which gives −I. Repeat with
others to get result.

The anti-commutation relation can be proved by ob-
serving that if Γ is a string of gamma matrices, then
γµΓ = (−1)nΓγµ where n is the number of gamma matri-
ces in Γ not equal to γµ (this follows since γµγν = −γµγν
for µ 6= ν and γµγν = γνγµ if µ = ν).

Definition: The projection operators are defined by
PL = 1

2 (I − γ5) and PR = 1
2 (I + γ5).

Theorem: P 2
L = PL, P 2

R = PR and PLPR = 0.

Proof: Simple calculation.

Definition: Define a left-handed spinor by ψL = PLψ,
where ψ is a Dirac spinor. Similarly define a right-handed
spinor by ψR = PRψ.

We note that in the chiral rep,

γ5 =

(
I 0
0 −I

)
,

so that PR projects onto uR and PL projects onto uL.
However, the above Definition has allowed us to extend
this in a rep-independent way.

5.9 Pseudoscalars, axial vectors and parity

Lemma: [Sµν , γ
5] = 0.

Proof: Use Sµν = 1
4 [γµ, γν ] and {γ5, γµ} = 0.

Using this Lemma, we see that ψ(x)γ5ψ(x) is Lorentz
invariant, and so is ψ(x)γ5γµψ(x). These are not scalars
and vectors though! We will see why soon.

Definition: The parity transformation is denoted P .
It transforms x0 7→ x0 and xi 7→ −xi, i.e. it reflects space.

Theorem: Parity exchanges the left and right-handed
chiral spinors: PuL = uR, PuL = uR.

Proof: We know uL/R 7→ eiφφφ·σσσ/2uL/R under a rota-
tion, and uL/R 7→ e±iχχχ·σσσ/2uL/R under a boost. Parity
does not affect rotations, but flips boosts. So indeed
PuL/R = uR/L.

Immediately, this may be generalised to the rep-
independent form: PψL = ψR and PψR = ψL.

Theorem: For a Dirac spinor ψ, and the chiral rep of
the Clifford algebra, parity acts as Pψ = γ0ψ.

Proof: We note that in the chiral rep, ψ = (uL, uR)T .
Hence Pψ = (uR, uL)T = γ0ψ.

This has an obvious generalisation to Dirac spinors
not using the chiral rep.

Theorem: Under parity, ψψ is invariant. ψγµψ is in-
variant if µ = 0, and changes sign if µ = i.

Proof: Work in chiral rep. From above, ψψ 7→
ψ†(γ0)†(γ0)2ψ = ψψ, since (γ0)† = γ0. Similarly, get
the result for vectors (get minus since {γi, γ0} = 0).

This is what we’d expect for a scalar and a vector.
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However:

Theorem: Under parity, ψγ5ψ changes sign. ψγ5γµψ also
changes sign if µ = 0, and is invariant if µ = i.

Proof: Same proof as above.

This is completely opposite to scalars and vectors!

Definition: We call these respective quantities pseu-
doscalars and axial vectors.

We can add pseudoscalar and axial vector terms to
the Lagrangian. These terms actually arise in nature and
break parity invariance, e.g. the weak force.

Definition: A theory which puts left and right-handed
spinors on equal footing is called vectorlike. Else, a theory
is called chiral.

5.10 Symmetries and conserved currents

Theorem: The energy-momentum tensor of the Dirac La-
grangian is

Tµν = iψγµ∂νψ.

Proof: Under a translation xµ 7→ xµ − εµ, the spinor
transforms as ψ(x) 7→ ψ(x+ ε) = ψ(x) + εµ∂µψ(x). Hence
Tµν = iψγµ∂νψ − ηµνL.

To get the Noether current in general, we needed
to impose the equations of motion. So impose
(i/∂ −m)ψ = 0⇒ ψ(i/∂ −m)ψ = 0⇒ L = 0.

Theorem: The Noether current corresponding to Lorentz
transformations of the Dirac Lagrangian is

(Jµ)ρσ = xρTµσ − xσTµρ︸ ︷︷ ︸
orbital ang. momentum

−iψγµSρσψ︸ ︷︷ ︸
spin ang. momentum

.

Proof: Under a Lorentz transformation, spinors transform
as ψα 7→ S[Λ]αβψ

β(Λ−1x). Now recall S[Λ]αβ = δαβ +
1
2Ωρσ(Mρσ)αβ , and (Λ−1x)µ = xµ − ωµνx

ν . Hence the
changes in ψα, ψ(α) are (using Ωµν = ωµν which we saw
way back at the start of spinors):

δψα = −ωµν
(
xν∂µψ

α − 1

2
(Sµν)αβψ

β

)
,

δψα = −ωµν
(
xν∂µψα +

1

2
(Sµν)βαψβ

)
.

We’ve calculated δψα using ψ 7→ ψS[Λ]−1 under the
Lorentz transformation. To calculate the Noether current,
use the standard formula and L = 0.

Theorem: The Dirac Lagrangian’s internal symmetry ψ 7→
eiαψ gives rise to the Noether current

jµV = ψγµψ.

The conserved charge is Q =

∫
d3xψ†ψ, which corre-

sponds to charge/particle number conservation.

Proof: Standard method.

Theorem: The Dirac Lagrangian’s axial symmetry
ψ 7→ eiαγ

5

ψ, which appears only in the massless limit
m = 0, gives rise to the conserved current

jµA = ψγµγ5ψ.

Proof: Note e−iαγ
5

γ0 = γ0eiαγ
5

. So ψ 7→ ψeiαγ
5

under this
transformation. Now applying the standard method gives
the current.

Axial symmetry is interesting. This is because it is a
symmetry that does not hold after quantisation. It is called
an anomaly.

5.11 Plane-wave solutions of Dirac equation

To quantise, we need to study plane-wave solutions of the
Dirac equation.

Theorem: A solution of the Dirac equation of the
form ψ = u(p)e−ip·x is given by:

u(p) =

(√
p · σξ√
p · σξ

)
,

where ξ is a two component spinor, which we can nor-
malise such that ξ†ξ = 1.

Proof: Substitute into the Dirac equation in the chiral
rep to obtain

(/p−mI)u(p) = 0 ⇒
(
−m pµσ

µ

pµσ
µ −m

)
u(p) = 0.

Insert u(p) = (u1, u2)T . Then (p · σ)u2 = mu1 and
(p · σ)u1 = mu2. Each equation implies the other, since
(p·σ)(p·σ) = ... = pµp

µ = m2. So (p·σ)(p·σ) = (p·σ)(p·σ).

WLOG, write u1 = (p · σ)ξ1. Then the second equa-
tion implies u2 = mξ1. Thus we find

u(p) = A

(
(p · σ)ξ1

mξ1

)
is a solution. Choosing the normalisation constant A =
1/m and choosing ξ =

√
p · σξ1, WLOG, we get the given

solution.
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It is also possible to get negative frequency solutions: ψ =
v(p)eip·x, which take the form:

v(p) =

( √
p · ση

−
√
p · ση

)
,

where η†η = 1.

Note: ξ and η describe the spin of the field. ξ = (1, 0)
corresponds to spin up and ξ = (0, 1) corresponds to spin
down.

Definition: The helicity operator is defined by h = p̂·s, i.e.
the projection of angular momentum along the direction of
motion:

h =
i

2
εijkp̂

iSjk =
1

2
p̂i

(
σi 0
0 σi

)
.

5.12 Properties of the plane-wave solutions

Theorem: In a basis of orthonormal 2-component spinors
ξs, s = 1, 2, such that (ξ†)rξs = δrs, we have the orthogo-
nality relations:

ur(p)† · us(p) = 2p0δ
rs, ur(p) · us(p) = 2mδrs,

vr(p)† · vs(p) = 2p0δ
rs, vr(p) · vs(p) = −2mδrs,

us(p) · vr(p) = 0, us(p)† · vr(−p) = 0.

Proof: Note (
√
p · σ)2 = p ·σ ⇒ ((

√
p · σ)†)2 = p ·σ† = p ·σ,

so assuming we take a canonical square root,
(
√
p · σ)† =

√
p · σ. Similarly (

√
p · σ)† =

√
p · σ.

The formulae then follow from a natural calculation, using
the facts that p ·σ+p ·σ = 2p0I, and (p ·σ)(p ·σ) = m2. For
the very last relation, it’s easiest to write p′ = (p0,−p).

Theorem: The following formulae hold for the outer-
products of the plane-wave solutions:

2∑
s=1

us(p)us(p) = /p+m,

2∑
s=1

vs(p)vs(p) = /p−m.

Proof: Follow similar calculations as in the previous proof.
This time we need to know:

2∑
s=1

ξs(ξs)†.

This can quickly be calculated to be the identity using an
orthonormal basis for the 2-component spinors: ξ1 = (1, 0)
and ξ2 = (0, 1). This gives:

2∑
s=1

ξs(ξs)† =

(
1
0

)(
1 0

)
+

(
0
1

)(
0 1

)
= I.

Using this gives the result, together with some calcula-
tions.

5.13 Trace theorems

When calculating cross-sections and decay rates for
spinor fields, we need to use trace theorems of the form:

Theorem (Examples): (i) The trace of an odd num-
ber of gamma matrices is zero (none of them γ5); (ii)
tr(γµγν) = 4ηµν ; (iii) tr(γ5) = 0; (iv) tr(γ5γµγν) = 0; (v)
tr(γ5γµγνγργσ) = 4iεµνρσ.

Proof: (i) Consider tr(γµ1

1 γµ2

2 ...γ
µ2n+1

2n+1 ). We can insert a
(γ5)2 = I, and use the following argument:

tr(γµ1

1 γµ2

2 ...γ
µ2n+1

2n+1 ) = tr(γµ1

1 γµ2

2 ...γ
µ2n+1

2n+1 (γ5)2)

= tr(γ5γµ1

1 γµ2

2 ...γ
µ2n+1

2n+1 γ
5) (cyclicity)

= (−1)2n+1tr(γµ1

1 γµ2

2 ...γ
µ2n+1

2n+1 ),

by anticommuting γ5 back through all other gamma
matrices (since {γ5, γµ} = 0). Hence trace is zero.

(ii) To find the trace of an even number of gamma
matrices, we use a similar trick. Use cyclicity to move
one gamma matrix to the other end of the string, then
anti-commute it back to the beginning:

tr(γµγν) = tr(γνγµ) = tr(−γµγν + 2ηµνI),

and so the result follows (use tr(I) = 4).

(iii) Use same trick as (i), but insert (γ0)2 = I in-
stead of (γ5)2 = I.

(iv) Pick α 6= µ, ν and insert γα2, then same trick as
(iii) works.

(v) We note that interchanging any two of the gamma
matrices in the trace changes the sign of the answer.
So this trace must be proportional to εµνρσ. Hence
tr(γ5γµγνγργσ) = λεµνρσ. Picking µνρσ = 0123, and
recalling from general relativity that εµνρσ = −εµνρσ in
Minkowski spacetime, we have

−λ = tr(γ5γ0γ1γ2γ3) = −itr(γ52) = −4i.
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6 Quantising the Dirac field

6.1 Anti-commutation relations

In the Schrödinger picture, the quantised spinor fields are:

ψ(x) =

2∑
s=1

∫
d3p

(2π)3
1√
2Ep

(
bspu

s(p)eip·x + (csp)†vs(p)e−ip·x
)
,

ψ†(x) =

2∑
s=1

∫
d3p

(2π)3
1√
2Ep

(
(bsp)†us(p)†e−ip·x + cspv

s(p)†eip·x
)

Here, the sum is over possible spins, the annihilation and
creation operators are introduced for both spin states,
and u and v are the positive and negative frequency
plane-wave solutions to the Dirac equation. Note that both
these objects have four components, i.e. we’ve omitted
indices: ψ(x) ≡ ψα(x).

Unlike the KG field we saw earlier, we need to impose
anticommutation relations on the spinor fields:

{ψα(x), ψβ(y)} = 0 = {ψ†α(x), ψ†β(x)},

{ψα(x), ψ†β(y)} = δαβδ
3(x− y).

Theorem: These anticommutation relations imply
{brp, (bsq)†} = (2π)3δrsδ3(p − q), and {crp, (csq)†} =

(2π)3δrsδ3(p− q), with all other anticommutators zero.

Proof: Same as in bosonic case. However, we do
need to use some spinor identities from the previous
section. Best to include all indices.

Also note that to kill off the gamma matrices, we
need to consider p 7→ −p, parity, etc.

If we instead assumed commutation relations on the spinor
fields, we would find that [brp, (b

s
q)†] = (2π)3δrsδ3(p − q),

and [crp, (c
s
q)†] = −(2π)3δrsδ3(p−q). The weird minus sign

means that we must interpret c as the creation operator
and c† as the annihilation operator. This leads to the
Hamiltonian being unbounded below, which is unphysical.

6.2 The Hamiltonian

Theorem: The classical Hamiltonian for a spinor field is

H = ψ(−iγi∂i +m)ψ.

Proof: The conjugate momentum is π = iψ†. So simply
computing H = πψ̇ − L, we get the result. Note all indices
have been suppressed.

Theorem: The quantised, normal-ordered Hamiltonian is:

H =

∫
d3p

(2π)3
Ep

2∑
s=1

(
(bsp)†bsp + (csp)†csp

)
.

Proof: The trick is to evaluate it in chunks. Since p · x =
−xipi, ∂ieip·x = −ipieip·x. Hence (−iγi∂i +m)ψα =∫

d3p
(2π)3

1√
2Ep

2∑
s=1

(
bsp(−γipi +m)αβu

s
β(p)eip·x

+(csp)†
(
−γipi +m

)
αβ
vsβ(p)e−ip·x

)
.

Recall that us(p) and vs(p) are solutions of the Dirac equa-
tion with (γµpµ−m)us(p) = 0 and (γµpµ+m)vs(p). Hence
we can rewrite the above as:∫

d3p
(2π)3

√
Ep

2
γ0αβ

2∑
s=1

(
bspu

s
β(p)eip·x + (csp)†vsβ(p)e−ip·x

)
.

The rest of the calculation is relatively straightforward,
but we do need to use the inner-product formulae for the
plane-wave spinors partway through the calculation.

Theorem: [H, (brp)†] = Ep(brp)†, [H, brp] = −Epb
r
p.

Similar relations hold for the c’s.

Proof: Trivial from above.

This shows that we can interpret b and c as creation
and annihilation operators.

We now label particles by their spin as well as
their momentum: |p, r〉 := (brp)† |0〉 . We note
that because we have anti-commutation relations,
|p1, r1; p2, r2〉 = − |p2, r2; p1, r1〉. That is, these particles
are fermions.

6.3 Heisenberg fields

As in the bosonic case, the Heisenberg fields are:

ψ(x) =

2∑
s=1

∫
d3p

(2π)3
1√
2Ep

(
bspu

s(p)e−ip·x + (csp)†vs(p)eip·x
)
,

ψ†(x) =

2∑
s=1

∫
d3p

(2π)3
1√
2Ep

(
(bsp)†us(p)†eip·x + cspv

s(p)†e−ip·x
)
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6.4 Causality and propagators

As in bosonic theory, we want to study the causality of the
theory.

Definition: Define (in analogy to ∆(x − y) in bosonic
theory) the function:

iSαβ(x− y) = {ψα(x), ψβ(y)}.

Theorem: iS(x − y) = (i/∂x + m)[D(x − y) − D(y − x)],
where /∂x = γµ∂/∂xµ, and D(x − y) is the propagator as
previously defined.

Proof: Via a short calculation. Need to use outer
product identity for plane-wave spinors.

We know that for spacelike separated x and y,
D(x− y)−D(y − x) = 0. Hence S vanishes for spacelike
separations, i.e. the anticommutator {ψα(x), ψβ(y)} = 0
for spacelike separations.

This appears wrong! But it is not. In fermionic the-
ory, all observables are bilinear in ψ and ψ, hence satisfy
normal commutation relations, and hence do commute at
spacelike separations as a consequence of the above.

6.5 The Feynman propagator

Definition: The Feynman propagator of fermionic theory
is defined by:

SF (x− y) = 〈0|T{ψ(x)ψ(y)}|0〉 .

Note this is a 4×4 matrix. Also, the time-ordering operator
is defined differently for fermions:

T{ψ(x)ψ(y)} =

{
ψ(x)ψ(y) if x0 > y0,

−ψ(y)ψ(x) otherwise.

The reason the minus is required is for Lorentz invariance.
When we have spacelike separated x and y; both time-
orderings are acceptable depending on the frame, and we
need to impose {ψ(x), ψ(y)} = 0 regardless of frame.

Slogan: Strings of fermionic operators inside a time-
ordering anticommute.

Theorem: The Feynman propagator has integral repre-
sentation:

SF (x− y) = i

∫
d4p

(2π)4
e−ip·(x−y)

(/p+m)

p2 −m2 + iε
.

Proof: Completely analogous to bosonic case.

Theorem: SF (x − y) is a Green’s function for the Dirac
equation.

Proof: Again, analogous to bosonic case.

6.6 Changes to Wick’s Theorem

Normal ordering requires modification in fermionic theory;
it is no longer symmetric under interchange of fields. We
find:

: ψ1ψ2 := − : ψ2ψ1 : .

Contractions are defined similar to before: ψ(x)ψ(y) =
SF (x − y), with all other fermionic contractions zero
(including contractions of a spinor field with a scalar field).

Wick’s Theorem is affected because we can only contract
fields which are next door now, though:

: ψ1ψ2ψ3ψ4 := − : ψ1ψ3ψ2ψ4 := −SF (x1 − x3) : ψ2ψ4 : .

7 Interacting fermionic theory

7.1 Fermionic Yukawa theory

Definition: The Lagrangian of fermionic Yukawa theory is
given by

L =
1

2
∂µφ∂

µφ− 1

2
µ2φ2 + ψ̄(i/∂ −m)ψ − λφψ̄ψ.

Analysing dimensions, [φ] = 1, [ψ] = 3
2 , so [λ] = 0. Hence

this is a renormalisable theory.

Example: Consider nucleon-nucleon scattering
ψ(p, s)ψ(q, r) → ψ(p′, s′)ψ(q′, r′) (where s, r, s′ and
r′ label the spins). The initial and final states are:

|i〉 =
√

2Ep
√

2Eqb
s
p
†brq
† |0〉 , |f〉 =

√
2Ep

√
2Eqb

s′

p’
†
br

′

q′
†
|0〉

Thinking about the interaction term ψ̄ψφ, we see that the
first non-zero contribution to the scattering is (from Dyson’s
formula): 〈f |(S − 1)|i〉 =

〈f | (−iλ)2

2!

∫
d4x1d

4x2 T{ψ̄(x1)ψ(x1)φ(x1)ψ̄(x2)ψ(x2)φ(x2)} |i〉 .

Wick’s Theorem allows us to expand the time-ordering. We
must contract the scalar fields, since if left uncontracted,
normal ordering would force them to annihilate |i〉 or |f〉.
This leaves us with the only contributing term:

〈f | (−iλ)2

2!

∫
d4x1d

4x2 : ψ̄(x1)ψ(x1)ψ̄(x2)ψ(x2) : ∆F (x1−x2) |i〉 .
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Deal with the action of the normal ordering on |i〉 first. Note
that the creation operators b† must be cancelled by the an-
nihilation operators b in the two ψ’s. So anticommuting in-
side the normal ordering, we have (showing spinor indices
explicitly):

: ψ̄α(x1)ψα(x1)ψ̄β(x2)ψβ(x2) : bsp
†brq
† |0〉 =

− : ψ̄α(x1)ψ̄β(x2)ψα(x1)ψβ(x2) : bsp
†brq
† |0〉 =

−
∫

d3k1 d
3k2

(2π)62
√
Ek1

Ek2

[ψ̄α(x1)umk1,α][ψ̄β(x2)unk2,β ]·

e−i(k1·x1+k2·x2)bmk1
bnk2
bsp
†brq
† |0〉 ,

where all other terms in the mode expansion of ψ(x1),
ψ(x2) cancel, since they contain c’s and c†’s, which an-
nihilate |i〉 or |f〉. Simplifying the b, b† expression using the
anticommutation relations, we find that

bmk1
bnk2
bsp
†brq
† |0〉 = (2π)6(δ3(k2 − p)δ3(k1 − q)δnsδmr

−δ3(k1 − p)δ3(k2 − p)δmsδnr) |0〉 .

This gives the final expression for the |i〉 side:

: ψ̄α(x1)ψα(x1)ψ̄β(x2)ψβ(x2) : bsp
†brq
† |0〉 =

− 1

2
√
EpEq

(
[ψ̄(x1)urq][ψ̄(x2)usp]e−i(q·x1+p·x2)

−[ψ̄(x1)usp][ψ̄(x2)urq]e−i(p·x1+q·x2)

)
|0〉 .

Now applying this to |f〉 on the left (careful when calculat-
ing |f〉, because the order of the creation operators mat-
ters - they anticommute!), and expanding ψ̄ in exactly the
same way, we find that 〈f |(S − 1)|i〉 =

− (−iλ)2

2!

∫
d4x1d

4x2

(
[ūs

′

p′urq][ūr
′

q′usp] eix1·(p′−q)+ix2·(q′−p)

−(r′ ↔ s′, p′ ↔ q′)

)
∆F (x1 − x2).

Use the expression for the scalar Feynman propagator:

∆F (x1 − x2) =

∫
d4k

(2π)4
ie−ik·(x1−x2)

k2 − µ2 + iε

to convert the exponentials into delta functions. This gives
the final result:

Afi = −(−iλ)2

(
[ūs

′

p′urq][ūr
′

q′usp]

(q′ − p)2 − µ2 + iε
−

[ūr
′

q′usq][ūs
′

p′usp]

(p′ − p)2 − µ2 + iε

)
.

Note that the overall sign of the answer is up
for debate - for example, we could have chosen
|i〉 =

√
2Eq

√
2Epb

r
q
†bsp
† |0〉, which reproduces this

result only by anticommuting the b†’s before we start.

However, this doesn’t matter, since for all observ-
ables (i.e. cross-sections and decay rates), we take the
modulus squared of Afi first.

7.2 Feynman rules for fermions

Calculations such as these lead to:

The Feynman rules: The amplitude Afi (up to a mi-
nus sign) is given by the following procedure. Begin
by drawing all possible Feynman diagrams for the pro-
cess. To each diagram, associate a value via:

1. At every vertex, write down a factor of (−iλ)
(obviously this is different for different interaction
terms).

2. Impose 4-momentum conservation at every ver-
tex.

3. For each internal scalar φ line, write a factor of the
scalar propagator:

i

p2 − µ2 − iε
.

4. For each incoming fermion line, write a usp, and for
each outgoing fermion write a ūsp.

5. For each incoming anti-fermion, write a vsp and for
each outgoing anti-fermion write a v̄sp.

6. For each internal fermion line, with spinor indices
α→ β, write a fermion propagator:

i(/p+m)βα

p2 −m2 + iε
.

7. Contract spinor indices meeting at a vertex (in
practice, it’s easiest to work back to front in the
diagram when doing this).

8. For each closed fermionic loop, introduce an ad-
ditional minus sign.

9. Integrate over all undetermined momenta.

Rule 8 may seem a little mysterious, but ultimately comes
from the anti-commutativity of fermion fields. For example,
for φ(p) → φ(p) propagation, we can include the one-loop
term:

Wick’s Theorem requires we contract all fermion fields as:

: ψ̄α(x)ψα(x)ψ̄β(y)ψβ(y) :

(Note we can’t contract two α’s, because when they are
next to one another, they are just a number!) To get
the standard form of the spinor contraction, we must anti-
commute the final ψ to the front, past three spinor fields.
So we get an extra factor of −1, as per the Feynman rule.
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7.3 Cross-sections & decays of fermions

Let’s now make some predictions using the theory. First of
all, we make some modifications due to spin.

Definition: In most experiments, beams of particles
are prepared with random initial spin; therefore, we aver-
age over initial spins when we calculate cross-sections
and decay rates. Also, unless we want to discriminate par-
ticular spins for sum reasons, we sum over all the possible
final spin states. Thus the final cross-section/decay rate
should use the modified amplitude squared:

1

4

∑
r′,s′,r,s

|Afi|2.

This procedure is called taking the spin-sum average. We
write |Afi|2 for the spin-sum average of |Afi|2.

Example: For nucleon-nucleon scattering as above,
we found that Afi was of the form Afi = A − B, for two
horrible expressions A and B. Therefore,

|Afi|2 = |A|2 + |B|2 −A†B −B†A.

Let’s calculate |A|2 here, and do the rest later. Recall that

A =
λ2

u− µ2 + iε
[ūs

′

p′urq][ūr
′

q′usp],

where u is one of the Mandelstam variables. So, |A|2 =

λ4

4(u− µ2)2

∑
r,s,r′,s′

ūs
′

p′,α u
r
q,αū

r
q,β︸ ︷︷ ︸

=(/q+m)αβ

us
′

p′,β ū
r′

q′,γ u
s
p,γ ū

s
p,δ︸ ︷︷ ︸

=(/p+m)γδ

ur
′

q′,δ,

where the underbraces show how we can use the outer
product identities from when we studied spinors a long
time ago. Thus we get:

λ4

4(u− µ2)2
Tr((/q +m)(/p

′ +m))Tr((/p+m)(/q
′ +m)).

It’s now possible to use the trace identities from way back
when we studied spinors to calculate:

|A|2 =
4λ4

(u− µ2)2
(q · p′ +m2)(p · q′ +m2)

We can write q · p′ and p · q′ in terms of the Mandelstam
variables via:

u = (p− q′)2 = p · p− 2p · q′ + q′ · q′ = 2m2 − 2p · q′,

so p · q′ = m2 − 1
2u. Similarly, p′ · q = m2 − 1

2u. Hence:

|A|2 =
(u− 4m2)2

(u− µ2)2
.

7.4 Diagrammatic calculation of |Afi|2

Given generic terms C, D inAfi, suppose we want to com-
pute CD†. There is a recipe in terms of diagrams to go
straight to the trace form of the answer.

1. Draw the Feynman diagram that gave C, and draw the
Feynman diagram for D next to it, but with initial and
final momenta exchanged.

2. Join up all fermion lines with identical momenta.

3. Apply the Feynman rules, as usual. The rule for a
fermion loop in this case, however, is to take the trace
of the product of all matrices (/p + m) where p is the
momentum of each fermion in the loop. We follow the
loop backwards when multiplying the matrices.

Example: We can calculate A in nucleon-nucleon
scattering using the method above. The A and A† Feyn-
man diagrams side by side are:

So inserting the loop we have:

This immediately gives the trace result we got be-
fore, by the Feynman rules and the fermion loop rule.

Example: We can finally calculate the whole cross
section for nucleon-nucleon scattering now. Using the
above techniques we can compute |A|2, |B|2 and AB†

(note that AB† + BA† = 2 Re(AB†), so it’s sufficient just
to compute this). Putting them all into the formula for 2 to
2 scattering, we find:

dσ

dt
=

λ4

16πs(s− 4m2)2

(
(u− 4m2)2

(u− µ2)2
+

(t− 4m2)2

(t− µ2)2

+
1

2

(
(s− 4m2)2 − (u− 4m2)2 − (t− 4m2)2

(t− µ2)(u− µ2)

))
To get the full cross section from the differential cross
section, we need to integrate over t.

Recall that in the centre of mass frame, the sum of
three momentum is zero, so p = −q, p′ = −q′, and by
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conservation of energy,√
m2 + |p|2 +

√
m2 + |q|2 =

√
m2 + |p′|2 +

√
m2 + |q′|2

⇒ |p| = |p′|.

Thus all energies and masses are equal in this problem.
Hence t = (p− p′)2

= p2 + p′
2 − 2p · p′ = E2 − |p|2 + E′

2 − |p′|2 − 2EE′ + 2p · p′

= 2|p|2(cos(θ)− 1)

Since θ ∈ [0, π] is the scattering angle, it follows we must
integrate over the range [−4|p|2, 0].

We can finish the whole calculation in the massless
limit. Recall that:

s = (p+ q)2 = p2 + q2 + 2p · q = 2m2 + 2(EpEq − p · q)

= 2m2 + 2(m2 + |p|2 + |p|2) = 4(m2 + |p|2).

Note we have dt = 2|p|2d cos(θ), and so in the massless
limit

dt

d cos(θ)
=
s

2
.

Hence:
dσ

dΩ
=

s

4π

dσ

dt
=

3λ4

64π2s
.

We can now integrate over the sphere, since s has no θ or
φ dependence. We get:

σ =
3λ4

16πs
.

This is actually wrong by a factor of 2 - why? Because the
final particles are identical, in the big cross-section formula
where we integrate over momenta, in some regions we’ll
count the same scenario twice. Thus we must divide by 2
right at the end of the calculation.

8 Quantum electrodynamics

8.1 Definitions and gauge invariance

Definition: The photon field is a vector field written Aµ.
The field-strength tensor for Aµ is given by:

Fµν = ∂µAν − ∂νAµ.

The Lagrangian for the free electrodynamic theory is

L = −1

4
FµνF

µν .

Theorem: The equation of motion of Aµ is ∂µFµν = 0.

Proof: Quick calculation.

Theorem: The Bianchi identity holds:

∂λFµν + ∂µFνλ + ∂νFλµ = 0.

Proof: Just insert definition in terms of Aµ and check.

The above definitions and theorems are motivated by
the following. When we write:

Aµ =

(
φ
A

)
,

and define the electric and magnetic fields by:

E = −∇φ− Ȧ, B = ∇× A,

then the field-strength tensor becomes:

Fµν =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 .

When inserted into ∂µF
µν = 0, this recovers the un-

sourced Maxwell equations: ∇ · E = 0 and Ė = ∇ × B.
When inserted into the Bianchi identity, we recover the
Maxwell equations ∇ · B = 0 and Ḃ = −∇× E.

We now want to quantise. We know from our gen-
eral physics knowledge that the photon has two real
degrees of freedom, but Aµ has 4! How do we cut these
down? We notice the following about this theory:

• A0 is time independent, since it has no kinetic term
in the Lagrangian (would need ∂0A0 - not allowed by
antisymmetry of Fµν).

Also note that ∇ · E = 0 implies ∇2A0 + ∇ · Ȧ = 0,
which can be solved via Green’s function:

A0 =

∫
d3x′

∇ · Ȧ
4π|x− x′|

,

so A0 is completely determined by the evolution of the
other fields. Thus reduced to 3 degrees of freedom.
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• The Lagrangian has a gauge symmetry given by
Aµ 7→ Aµ + ∂µλ(x), where λ is any function such that
λ → 0 as |x| → ∞. It’s easy to check Fµν is invariant
under this symmetry, and thus so is L.

Gauge symmetries are not like true symmetries. They rep-
resent a redundancy in our description of the system in the
following sense. The equation of motion can be written as
ηµν∂ρF

ρν = 0, so expanding F ρν , we have

(ηµν(∂ρ∂
ρ)− ∂µ∂ν)Aν = 0.

Note that the operator (∂µν(∂ρ∂
ρ)− ∂µ∂ν) is not invertible,

since it annihilates any function of the form ∂µλ(x). So
Aµ is impossible to determine uniquely ; instead, it is
determined up to a choice of gauge.

Definition: When Aµ can be reached from Aν by a
gauge transformation, we say they are in the same gauge
orbit. Our configuration space of Aµ’s is therefore foliated
by gauge orbits.

Picking a gauge is the process of picking a point on
each gauge orbit in a smooth manner. Our choice of
gauge must intersect each gauge orbit exactly once:

Important examples of gauge choices are:

Definition: Coulomb gauge is specified by the con-
dition ∇ · A = 0.

Theorem: Coulomb gauge is a valid choice of gauge.

Proof: If Aµ is our initial field, obeying ∇ · A = 0, suppose
we want to gauge-transform to A′µ. Generally, this will
have ∇ · A′ = f(x) for some f . So A′µ = Aµ + ∂µλ(x)
implies that ∇2λ = f . This is Poisson’s equation, so has
solutions, so we can gauge-transform from Aµ to A′µ.

Definition: Lorentz gauge is specified by the condi-
tion ∂µAµ = 0.

Theorem: Lorentz gauge is a valid choice of gauge.

Proof: Similar proof to Coulomb.

Lorentz gauge has the advantage that it is manifestly
Lorentz invariant. Coulomb gauge has the advantage
that the condition ∇ · A = 0 makes it clear how another
degree of freedom is absorbed, leaving two real degrees
of freedom for the photon.

8.2 Quantisation in Lorentz gauge

The photon field is easiest to quantise in Lorentz gauge,
∂µA

µ = 0. How do we impose this gauge condition?

Theorem: Replacing the free Lagrangian L = − 1
4F

µνFµν
by

L = −1

4
FµνF

µν − 1

2α
(∂µA

µ)2

for some α, automatically imposes Lorentz gauge. The
new equation of motion is:

∂µ∂
µAν +

(
1

α
− 1

)
∂ν∂µA

µ = 0.

Proof: Lorentz gauge is imposed using the 1/α equation
of motion; that is, we must treat 1/α as dynamical and
consider the term we’ve added as a Lagrange multiplier.
The equation of motion is found by standard methods.

Definition: Confusingly, different choices of α are
also referred to as different gauges. α = 1 is called
Feynman gauge, and α = 0 (i.e. retaining only the second
term − 1

2 (∂µA
µ)2) is called Landau gauge.

Theorem: The conjugate momenta are given by:

π0 = − 1

α
∂µA

µ, πi = −Ȧi + ∂iA0.

Proof: We have

∂L
∂σAρ

= −Fσρ − 1

α
ησρ∂νA

ν .

Inserting σ = 0 and expanding Fσρ, we can read off the
results.

Using this Theorem, we can compute the classical
Poisson bracket structure of the theory:

Theorem: {Aµ(x), Aν(y)} = 0 = {πµ(x), πν(y)}, and

{Aµ(x), πν(y)} = ηµνδ
3(x− y).

Proof: The field-theoretic Poisson bracket is:

{f, g} =

∫
d3x′

∑
i

(
δf

δφi(x′)
δg

δπi(x′)
− δf

δπi(x′)
δg

δφi(x′)

)
,

where the δ derivative is the variational derivative. The first
two Poisson bracket identities are then obvious. The third
is given by:

{Aµ(x), πν(y)} =

∫
d3x

(
δAµ
δAα

δπν
δπα

− δπν
δAα

δAµ
δπα

)
=

∫
d3x′ δαµηανδ

3(x− x′)δ3(y− x′)

= ηµνδ
3(x− y).
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It is now a simple matter to write down the commutation
relations of the quantised theory:

[Aµ(x), Aν(y)] = 0 = [πµ(x), πν(y)],

[Aµ(x), πν(y)] = iηµνδ
3(x− y).

We now want to perform a mode expansion for Aµ(x) and
πµ(x). We make the usual mode expansion for Aµ(x):

Aµ(x) =

3∑
λ=0

∫
d3p

(2π)3
1√
2|p|

(
ελµ(p)aλpe

ip·x + ελµ
∗
(p)aλp

†
e−ip·x

)
.

Here, note the energy factor in the denominator has
become |p| since photons are massless. The ελ vectors
are called polarisation vectors.

WLOG, we may choose ε0 to be timelike, and εi to
be spacelike. We may also WLOG assume that the
polarisation vectors obey the orthonormality relation:

ελ · ελ
′

= ηλλ
′
.

We can choose the polarisation vectors to parallel classical
electrodynamics. Choose ε1 and ε2 to be the transverse
polarisations of the photon, i.e. ε1 · p = ε2 · p = 0. Choose
ε3 to be the longitudinal polarisation, i.e. the polarisation in
the direction of travel of the photon. Then if a photon has
4-momentum pµ = |p|(1, 0, 0, 1), we may take WLOG the
polarisation vectors to be:

ε0 =


1
0
0
0

 , ε1 =


0
1
0
0

 , ε2 =


0
0
1
0

 , ε3 =


0
0
0
1

 .

A useful result is the completeness relation for the polari-
sation vectors:

Theorem: We have:

3∑
λ=0

ελµ(p)ελν
∗
(p) = ηµν .

Proof: Use the basis above. Since the final result is basis
independent, it holds for all possible polarisations.

We have a similar relation, but only summing over
the physical degrees of freedom:

Theorem: We have:

3∑
λ=1

ελµ(p)ελν
∗
(p) = −ηµν +

pµpν
p2

.

Proof: PROOF STILL REQUIRED HERE.

In the Heisenberg picture, the mode expansion becomes
(as usual):

Aµ(x) =

3∑
λ=0

∫
d3p

(2π)3
1√
2|p|

(
ελµ(p)aλpe

−ip·x + ελµ
∗
(p)aλp

†
eip·x

)
We can then compute: Ȧµ(x) =

−i
3∑

λ=0

∫
d3p

(2π)3

√
|p|
2

(
ελµ(p)aλpe

−ip·x − ελµ
∗
(p)aλp

†
eip·x

)
Recall π0 = − 1

α Ȧ
0 − 1

α∇ · A, and πi = −Ȧi + ∂iA0. Since
the A fields commute, they also commute with their spa-
tial derivatives, so we can actually write the (equal-time)
commutation relations above as:

[Aµ(x, t), Aν(y, t)] = 0 = [Ȧµ(x, t), Ȧν(y, t)],

[Aµ(x, t), Ȧ0(y, t)] = −αiδ0µδ3(x− y),

[Aµ(x, t), Ȧi(y, t)] = −iδiµδ3(x− y).

Theorem: We have the following:

[aλp , a
λ′

q ] = 0 = [aλp
†
, aλ

′

q
†
], [a0p, a

i
q
†
] = 0,

[a0p, a
0
q
†
] = −α(2π)3δ3(p− q),

[aip, a
j
q
†
] = δij(2π)3δ3(p− q).

Proof: Long calculation; can verify quickly by substituting
into above commutation relations and using the complete-
ness relation for the polarisation vectors.

8.3 The propagator

Theorem: The photon propagator is 〈0|T{Aµ(x)Aν(y)}|0〉

=

∫
d4p

(2π)4
−i

p2 + iε

(
ηµν + (α− 1)

pµpν
p2

)
e−ip·(x−y).

Proof: Set x0 > y0 and compute Aµ(x)Aν(y) sandwiched
between 〈0| and |0〉. The calculation will reach the point:∫

d3p
(2π)3

e−ip·(x−y)

2|p|

(
−αε0µ(p)ε0ν

∗
(p) + εiµ(p)εiν

∗
(p)
)
.

Use the completeness relation for the physical states i =
1, 2, 3 to evaluate εiµ(p)εiν

∗
(p), and by subtracting the full

completeness relation and the physical completeness re-
lation, find that

ε0µ(p)ε0ν
∗
(p) =

pµpν
p2

.

Introduce a contour integral over p0 to get the remaining
factors, as for the scalar propagator.
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8.4 The Gupta-Bleuler condition

Some of the commutation relations for the a’s look unusual.
Define |p, λ〉 = aλp

† |0〉. Then

〈p, λ = 0|q, λ = 0〉 = 〈0|a0pa0q
†|0〉 = −α(2π)3δ3(p− q).

So the state 〈p, λ = 0〉 has negative norm. This is very bad.

To fix this, we need to use the constraint from the α
equation; i.e. we need to impose the Lorentz gauge
condition ∂µAµ = 0. There are three ways of doing this:

1. Enforce this equation as an operator equation. Then
π0 = − 1

α∂µA
µ = 0, and then our commutation rela-

tions break down.

2. Impose ∂µAµ |ψ〉 = 0 on all physical state |ψ〉. Again,
this is too strong, since it’s clear that ∂µAµ ∼ ap − a†p,
so that ∂µAµ does not annihilate the vacuum. Thus
not even the vacuum is a physical state in this regime!

3. Finally, writing:

A+
µ (x) =

∫
d3p

(2π)3
1√
2|p|

3∑
λ=0

(
ελµ(p)aλpe

−ip·x) ,
A−µ (x) =

∫
d3p

(2π)3
1√
2|p|

3∑
λ=0

(
ελµ
∗
(p)aλp

†
eip·x

)
,

we say that physical states |ψ〉 are those defined
by ∂µA

+µ(x) |ψ〉 = 0. Therefore, ∂µAµ has van-
ishing matrix element between all physical states:
〈ψ′|∂µAµ|ψ〉 = 0.

Definition: The condition ∂µA
+µ(x) |ψ〉 = 0 is called

the Gupta-Bleuler condition.

Write |ψ〉 = |ψT 〉 |φ〉 for a generic state, where |ψT 〉
contains all the transverse elements of the photon (i.e.
those created by a1 and a2). By expanding ∂µA

+µ

completely, we find that the Gupta-Bleuler condition in the
polarisation basis above is equivalent to:

(a3k − a0k) |φ〉 = 0,

which means that physical states must contain combina-
tions of longitudinal and timelike polarisations only.

Clearly this means that some states can have zero
norm. This is also not very good; we thus treat these zero
norm states as an equivalence class. Two states differing
only in timelike/longitudinal pairs are treated as physically
equivalent.

Indeed, no observables depend on pairs |φ〉, e.g. the
Hamiltonian of the theory is

H =

∫
d3p

(2π)3
|p|

(
3∑
i=1

aip
†
aip − a0p

†
a0p

)
.

Since (a3k − a0k) |ψ〉 = 0 on physical states, we see that
〈ψ|a3p

†
a3p − a0p

†
a0p|ψ〉 = 0. So the timelike and longitudinal

pieces cancel leaving only the transverse contribution.

8.5 Coupling to fermions

Theorem: Any operator coupled to a photon must be a
conserved current.

Proof: Interaction terms in the Lagrangian coupling
to photon appear as −jµAµ. These give rise to the
classical equation of motion ∂µF

µν = jν when added to
the Lagrangian, and hence taking the derivative ∂ν of both
sides, we see ∂νjν = 0.

Thus if we want to add fermions to our theory, we
need to add fermionic conserved currents. But we have
loads of these! An example is ψγµψ.

Definition: The Lagrangian of quantum electrodynamics
(QED) is given by

L = −1

4
FµνF

µν + ψ(i/∂ −m)ψ − eψγµAµψ,

where e is some coupling constant.

It’s crucial that this is gauge invariant. We can see
that it is by defining:

Definition: The covariant derivative is defined by

Dµψ = ∂µψ + ieAµψ.

In terms of the covariant derivative, the QED Lagrangian is

L = −1

4
FµνF

µν + ψ(i /D −m)ψ.

Theorem: Under a gauge transformation ψ 7→ e−ieλ(x)ψ
of the spinor field, the expression Dµψ transforms to
e−ieλ(x)Dµψ.

Proof: We have

Dµψ 7→ ∂µ(e−ieλ(x)ψ) + ie(Aµ + ∂µλ(x))e−ieλ(x)ψ =

e−ieλ(x)∂µψ − ieψ(∂µλ(x))e−ieλ(x)ψ + ie(Aµ + ∂µλ(x))e−ieλ(x)ψ

= e−ieλ(x)Dµψ,

as required.

From this result, it’s easy to see that the QED Lagrangian
is indeed gauge invariant.
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The coupling constant e has an important interpretation.
Since the equations of motion here are:

∂µF
µν = eψγνψ,

it follows that we have a conserved charge:

Q = −e
∫
d3xψγ0ψ = −e

∫
d3p

(2π)3

2∑
s=1

(
bsp
†bsp − csp

†csp

)
.

Hence Q = −eN is conserved, where N is the different
between the number of particles and anti-particles. It
appears that e should have the interpretation of the
electric charge of the fermion. Particles have the opposite
charge of their anti-particles.

When we calculate cross-sections and decay rates
later on, it will be useful to define:

Definition: The fine-structure constant is

α =
e2

4π
≈ 1

137
.

It’s easy to write down the Feynman rules of QED:

1. The photon propagator is given by:

− i

p2

(
ηµν + (α− 1)

pµpν
p2

)
In Feynman gauge (α = 1), this is just −iηµν/p2.

2. For an incoming or outgoing photon, add a polarisa-
tion vector εµin/ε

µ
out.

3. The only interaction vertex, between two fermions and
a photon, has value −ieγµ.

8.6 Coupling to scalars

For a complex scalar φ, note that if we define the covariant
derivative by

Dµφ = ∂µφ− ieqAµφ,
where q is the charge of φ in units of e, we have under
a gauge transformation φ(x) 7→ eieqλ(x)φ(x) that Dµφ 7→
eieqλ(x)Dµφ. Thus

L = −1

4
FµνF

µν + (Dµφ)(Dµφ)†

is a gauge invariant Lagrangian.

Definition: The above Lagrangian is the Lagrangian
of scalar electrodynamics.

Writing out the Lagrangian in full, we have the inter-
action terms:

Lint = ieq(φ†∂µφ− (∂µφ)†φ)Aµ + e2q2AµA
µφ†φ.

This immediately gives the vertex rules:

1. There is a vertex where two photons and two scalar
particles meet. The factor is −ie2q2.

2. There is a vertex where two scalars and a photon
meet. This has a derivative coupling. Since

∂µφ =

∫
d3p

(2π)3
1√
2Ep

(
(−ipµ)bpe

−ip·x + (ipµ)cp
†eip·x

)
,

we get a factor of eq and:

• −ipµ for an incoming scalar of momentum pµ;
• ipµ for an outgoing anti-scalar of momentum pµ;
• ipµ for an incoming anti-scalar of momentum pµ

(from (∂µφ)† term);
• −ipµ for an outgoing scalar of momentum pµ

(again, from (∂µφ)† term).

8.7 Example

Example: Consider electron to muon scattering:
e−(p, s)e+(q, r) → µ−(p′, s′)µ+(q′, r′). There is only one
diagram for this process, since electrons and muons don’t
couple. The Feynman rules give:

iAfi = − i(−ie)
2

s
[ūs

′

m(p′)γµvr
′

m(q′)][v̄re(q)γµuse(p)].

Neglecting masses of the fermions, and calculating the
spin-sum average we have:

|A|2 =
2e4

s2
(u2 + t2).

(It’s possible to use fermion loop techniques here.)

The differential cross section is therefore:

dσ

dt
=
e4(u2 + t2)

8πs4
.

Since we are working in the massless limit, u = −s − t,
and thus

dσ

dt
=
e4(2t2 + 2st+ s2)

8πs4
.

Also s = (p + q)2 = 2p · q = 4|p|2 (assuming p = −q, i.e.
in the COM frame) and

t = (p− p′)2 = −2p · p′ = 2|p||p′|(cos(θ)− 1).

Using conservation of energy: 2
√
|p|2 = 2

√
|p′|2 ⇒ |p| =

|p′|, so all momentum have the same magnitude in this
problem. Thus t = 1

2s(cos(θ) − 1). When θ = 0, get t = 0.
When θ = π, get t = −s. So integrate in the range [−s, 0].

Doing so gives the final answer: σ = 4πα2/3s (on
replacing e2 by α appropriately).

Any corrections to the amplitude would be at loop or-
der with 4 vertices, i.e. O(e4) = O(α2). Hence the
amplitude would become A = αA0 + α2A1 + · · · , and thus
the cross section would be corrected at order O(α3). This
is very small!
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