
Part III: Symmetries, Fields and Particles - Revision

Lectures by Nick Dorey, notes by James Moore

1 Lie groups

1.1 Definitions

Definition: A Lie group is a group which is also a manifold.
The group operations are smooth maps. That is, if we work
in some coordinate patch P , with coordinates {θi}i=1...D,
then group multiplication:

g(θθθ)g(θ′θ′θ′) = g(φφφ)

gives a smooth map of the coordinates φi = φi(θθθ,θ′θ′θ′). Also,
group inversion

g(θθθ)g(θ̃θθ) = g(θ̃θθ)g(θθθ) = e.

must give a smooth map of the coordinates θ̃i = θ̃i(θθθ).

Definition: The dimension of a Lie group G, dim(G), is
the dimension of its group manifold.

Example: G = (RD,+) is a Lie group. The group
multiplication x′′ = x + x′ is obviously smooth, and the
group inverse x−1 = −x is again obviously smooth.

1.2 Proving objects are manifolds

Theorem (Implicit Function): Let x = (x1, ..., xn+m) ∈
Rn+m. Suppose for α = 1, ...,m we have differentiable
functions

Fα : Rn+m → R.

Define
M = {x : Fα(x) = 0, α = 1, ...,m}.

If the Jacobian matrix

Jαi =
∂Fα

∂xi

has rank m, then M is a manifold of dimension n.

Example: Consider the 2-sphere S2. Let m = 1 and
n = 2. Define F 1(x) = x2 + y2 + z2 − r2. Then

J =
(
∂F 1

∂x
∂F 1

∂y
∂F 1

∂z

)
= 2

(
x y z

)
.

Since (x, y, z) spans a space of dimension 1 whenever
(x, y, z) 6= (0, 0, 0) we’re done (since (0, 0, 0) not on
sphere). It follows that x2 + y2 + z2 = r2 is a manifold.

Theorem (Open Subset): An open subset of a manifold
is a manifold.

Theorem (Closed Subgroup): A closed subgroup
of a Lie group is also a Lie group.

1.3 Matrix groups

Definition: Write Matn(F) for the set of n × n matrices
over the field F.

Theorem: Matn(F) is a manifold for F = R or C.

Proof: Trivially, Matn(R) = Rn2

which is obviously a
manifold, and Matn(C) = R2n2

, which is obviously a
manifold.

Note, however, that Matn(F) is not a Lie group, be-
cause not all matrices are invertible.

Definition: The general linear group is defined by

GL(n,F) = {M ∈ Matn(F) : det(M) 6= 0},

and the special linear group is defined by

SL(n,F) = {M ∈ Matn(F) : det(M) = 1}.

Theorem: GL(n,F) and SL(n,F) are Lie groups (for
F = R,C).

Proof: GL(n,F) is a manifold by the open subset
theorem. It is a Lie group because matrix multiplication
and inversion are clearly smooth functions of the coordi-
nates. Then SL(n,F) is a closed subgroup of GL(n,F), so
is a Lie group by the closed subgroup theorem.

Theorem: The general/special linear groups have
dimensions:

dim(GL(n,R)) = n2, dim(GL(n,C)) = 2n2,

dim(SL(n,R)) = n2 − 1, dim(SL(n,C)) = 2n2 − 2.

Proof: GL(n,F) is just an open subset of Matn(F) so has
the same dimension as Matn(F). Special linear groups
have the additional constraint det(A) = 1. This takes one
degree of freedom in real case, 2 in complex case (need
both real and imaginary parts to match).
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1.4 Orthogonal groups

Definition: The orthogonal group is defined by
O(n) = {M ∈ GL(n,R) : MTM = I}.

Since det(MTM) = 1 ⇒ det(M)2 = 1 ⇒ det(M) = ±1,
O(n) has two connected components.

Definition: The special orthogonal group is defined
by SO(n) = {M ∈ O(n) : det(M) = 1}.

SO(n) has only one connected component. Both
O(n) and SO(n) are obviously Lie groups by the closed
subgroup theorem.

Theorem: Orthogonal transformations preserve lengths
of vectors.

Proof: Let v′ = Mv with M ∈ O(n). Then

|v′|2 = v′Tv′ = vTMTMv = vTv = |v|2.

Definition: Given a frame {v1, ...,vn}, we define the vol-
ume element by

Ω = εi1i2...inv
i1
1 ...v

in
n .

A transformation v′ = Mv preserves volume if |Ω′| = |Ω|.
A transformation preserves orientation if Ω′ has the same
sign as Ω.

Theorem: Elements of O(n) preserve volume. Ele-
ments of SO(n) preserve volume and orientation.

Proof: We have:

Ω′ = εi1i2...inv
′i1
1 ...v′inn = εi1i2...inM

i1
j1
vj11 ...M

in
jn
vjnn

= det(M)εj1...jnv
j1
1 ...v

jn
n ,

by a standard property of det. Result is clear from here.

In particular, this theorem implies that elements of
O(n) with det(M) = +1 are rotations and elements of
O(n) with det(M) = −1 are the compositions of a rotation,
followed by a reflection.

Theorem: The dimensions of the orthogonal groups
are:

dim(O(n)) = dim(SO(n)) =
1

2
n(n− 1).

Proof: Orthogonal matrices have orthonormal columns:
mT
i mj = δij . Consider building up M ∈ O(n) column by

column.

First column is any unit vector: mT
1 m1 = 1. So n − 1

degrees of freedom.

Second column is a unit vector obeying mT
2 m1. So

n − 2 degrees of freedom. Similarly, third column is a
unit vector obeying two orthogonality relations, so n − 3
degrees of freedom.

Hence total dimension is: n−1+n−2+ ...+1 = 1
2n(n−1).

Since SO(n) is just some connected component of O(n),
it has the same dimension as the manifold of O(n).

Theorem: The eigenvalues of an orthogonal matrix
obey: (i) λ is an eigenvalue ⇒ λ∗ is an eigenvalue; (ii)
|λ| = 1.

Proof: (i) Let Mv = λv. Then Mv∗ = λ∗v∗ since M
is a real matrix. (ii) Evaluate (Mv∗)TMv in two ways. We
have:

(Mv∗)TMv = v†MTMv = v†v;

(Mv∗)TMv = (λ∗v∗)Tλv = |λ|2v†v.

The result follows.

1.5 Orthogonal groups of small dimension

Example: Consider G = SO(2). A general element is:

M(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

This is uniquely specified by some θ ∈ [0, 2π]. Hence the
group manifold isM(SO(2)) ∼= S1, the circle.

Example: Consider G = SO(3). As discussed be-
fore, these are the 3D rotation matrices. A general
element may be specified by a unit vector n̂, the axis
of rotation, and θ ∈ [0, 2π], the angle of rotation; write
M(n̂, θ) to mean the associated element in G. However,
we must identify:

M(n̂, 2π − θ) = M(−n̂, θ) (see diagram).

Thus we restrict θ ∈ [0, π], and quotient the coordi-
nates (n̂, θ) by the equivalence relation (n̂, π) ∼ (−n̂, π)
(see diagram).

2
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This identification allows us to write the coordinates asωωω =
θn̂, so that the full set of coordinates is:

B3 = {ωωω ∈ R3 : |ωωω| ≤ π}.

The group manifold is B3, together with the proviso
that whenever we leave the ball B3, we reappear at the
antipodal point to the point at which we left (see diagram).

The group manifold M(SO(3)) has the properties
that it is (i) compact; (ii) has no boundary; (iii) is path
connected, but is not simply connected (recall simply
connected means all loops are homotopic to a point).

The proof of (iii) is geometric: consider a loop that
connects two antipodal points as shown in the diagram.
Then we can never contract the loop, because we can
never bring the endpoints together (try moving one, the
other will move in the opposite direction):

We can identify the fundamental group of the mani-
fold as follows. The only non-trivial loops are the ones
that connect antipodal points. If we do travel along one of
these loops, then another, then we can contract to a point
by moving one of the loops round:

Hence the fundamental group must be π1(SO(3)) ∼= Z2.

1.6 Non-compact matrix groups

Consider matrices preserving more general metrics.

Definition: The matrix group O(p, q) are defined by:

O(p, q) = {M ∈ GL(n,R) : MT ηM = η},

where η = diag(+1,+1, ...,+1︸ ︷︷ ︸
p times

,−1,−1, ...,−1︸ ︷︷ ︸
q times

).

Example: The Lorentz group is O(3, 1), which con-
sists of matrices preserving the Minkowski metric.

Example: A general element of the group SO(1, 1)
(with obvious meaning) can be written as:

M(φ) =

(
cosh(φ) sinh(φ)
sinh(φ) cosh(φ)

)
, φ ∈ R.

The group manifold is M(SO(1, 1)) = R; this is non-
compact as it is not bounded.

Definition: We say a Lie group is compact if its manifold
is compact (i.e. closed and bounded). Otherwise a Lie
group is non-compact.

Example: The matrices

U =

(
α β
β∗ α∗

)
with |α|2− |β|2 = 1 form a group. Writing α = x1 + ix2 and
β = x3 + ix4, we see the determinant condition translates
to x2

1 + x2
2 − x2

3 − x2
4 = 1. So this is a manifold by the

implicit function theorem, and it is also non-compact.

1.7 Subgroups of GL(n,C)

Definition: The unitary group is defined by

U(n) = {U ∈ GL(n,C) : U†U = I}.

Unitary matrices are analogous to rotations in the complex
plane. They preserve the length of complex vectors,
|v|2 = v†v. In fact, we can directly relate unitary matrices
to real rotations in double the dimensions. We have:

Lemma: U(n) is path-connected.

Proof: Let A ∈ U(n). Then A is diagonalisable via a
unitary matrix: A = Bdiag(eiθ1 ...eiθn)B†. Notice any
matrix of the form Bdiag(eitθ1 ...eitθn)B† is unitary. Then
0 ≤ t ≤ 1 is a path from the identity to A. So given any
V ∈ U(n), construct the path from V to the identity, then
the path from the identity to A. So path-connected.

Theorem: U(n) is isomorphic to a subgroup of SO(2n).

Proof:Let a general element of U(n) be A + iB, where A,
B are real. The action of A + iB on the complex vector
x + iy, x,y ∈ Rn is given by:

(A+ iB)(x + iy) = Ax−By + i(Bx +Ay).

This suggests defining a map ψ : U(n)→ SO(2n) by:

ψ(A+ iB) =

(
A −B
B A

)
.

To show U(n) is isomorphic to a subgroup of SO(2n),
need (i) ψ maps into SO(2n); (ii) ψ injective; (iii) ψ a
homomorphism. Then U(n) is isomorphic to im(ψ).

(ii) ψ is injective, since ψ(A + iB) = ψ(C + iD) ⇒
A + iB = C + iD, by comparing the matrix expansions.
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(iii) ψ is a homomorphism, as can be verified by a short
calculation.

Finally, for (i), we use A+ iB ∈ U(n)⇒

(A+iB)†(A+iB) = I ⇒ ATA+BTB = I, ATB−BTA = 0.

These conditions allow us to verify ψ(A + iB) ∈ O(2n)
by a calculation. Finally, notice ψ is continuous, det is
continuous and U(n) is path-connected. So image of
det ◦ψ is path-connected, so is equal to {+1} or {−1}.
Now ψ(In) = I2n, hence det ◦ψ = +1, and we’re done.

Theorem: For U ∈ U(n), |det(U)| = 1.

Proof: det(U†U) = 1⇒ det(U)∗ detU = 1.

Definition: The special unitary group is defined by

SU(n) = {U ∈ U(n) : det(U) = 1}.

Both U(n) and SU(n) are trivially Lie groups, by the closed
subgroup theorem.

Theorem: dim(U(n)) = n2, dim(SU(n)) = n2 − 1.

Proof: Similar to O(n) proof. The columns of a unitary
matrix are orthonormal: u†iuj = δij . So choosing u1, need
u†1u1 = 1. But u†1u1 ∈ R, so Im(u†1u1) = 0 is automatically
satisfied. So there are 2n−1 real degrees of freedom here.

For u2, lose 1 degree of freedom from normalisation
as above, but orthogonality u†1u2 = 0 needs both the real
and imaginary parts to vanish. Hence 2n − 3 degrees of
freedom here. So dimension is: 2n−1+2n−3+...+1 = n2.

For SU(n), we lose one additional degree of free-
dom from det(U) = 1, since det(U) is already constrained
to be a phase, so is dependent only on some θ.

1.8 Unitary groups of small dimension

Definition: Two Lie groups G and G’ are isomorphic
if there exists a smooth bijection with smooth inverse
f : G → G′ such that for all g1, g2 ∈ G, we have
f(g1g2) = f(g1)f(g2).

Example: Consider G = U(1) = {z ∈ C : |z| = 1}.
This looks like a circle so we might expect U(1) to be
isomorphic to SO(2). Define f : U(1) → SO(2) by
f(eiθ) = M(θ) where θ ∈ [0, 2π), and as before:

M(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Clearly, this map is invertible, smooth and has smooth
inverse. Also f(eiθeiφ) = M(θ + φ) = M(θ)M(φ) =
f(eiθ)f(eiφ), using M(θ + φ) = M(θ)M(φ), which follows
from the trigonometric addition formulae.

It follows that indeed U(1) ∼= SO(2).

Example: Consider G = SU(2). Any element of G
can be written uniquely in the form:

U =

(
α β
−β∗ α∗

)
,

where |α|2 + |β|2 = 1. It’s then easy to check that any ele-
ment of G can be written uniquely in the alternative form:

U = a0I + ia · σσσ,

where a0 ∈ R, a = (a1, a2, a3) ∈ R3 and a2
0 +a2

1 +a2
2 +a2

3 =
1. Here, σσσ is the vector of Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The condition a2
0 + a2

1 + a2
2 + a2

3 = 1 shows the group
manifold is M(SU(2)) ∼= S3, the 3-sphere. In particular,
the 3-sphere is simply-connected. So SU(2) 6∼= SO(3).
They are distinct Lie groups.

More on this later; these Lie groups are in fact re-
lated by a quotient.

The expression U = a0I + ia · σσσ makes these matri-
ces easier to calculate with. The product of two SU(2)
matrices U = a0I + ia · σσσ and V = b0I + ib · σσσ is:

UV = a0b0I + ia0b · σσσ + ib0a · σσσ − (a · σσσ)(b · σσσ).

Now notice:

(a ·σσσ)(b ·σσσ) = aiσibjσj = aibj(σiσj) = aibj(Iδij + iεijkσk).

Hence:

UV = (a0b0 − a · b)I + i(a0b + b0a + a× b) · σσσ.

4
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2 Lie algebras

2.1 Definitions

Definition: A Lie algebra g is a vector space with bilinear
product (called the Lie bracket) [·, ·] : g × g → g which is
antisymmetric, and obeys the Jacobi identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Theorem: A vector space V with associative product ∗ is
a Lie algebra with Lie bracket:

[X,Y ] = X ∗ Y − Y ∗X.

Proof: Tedious checking.

Definition: The dimension of a Lie algebra is the di-
mension of its underlying vector space.

2.2 Calculations in a basis

Since Lie algebras are vector spaces, we can work in a
basis: B = {T a}. We can write any element asX = XaT

a.

Definition: For a choice of basis {T a}, we call T a

the generators of the Lie algebra.

In a basis, we clearly have: [X,Y ] = XaYb[T
a, T b].

So knowing the Lie brackets of the generators determines
the Lie algebra.

Definition: Write [T a, T b] = fabcT
c. We call fabc

the structure constants of the Lie algebra in basis {T a}.

Theorem: The structure constants obey:

f bac = −fabc , fabc f
cd
e + fdac f

cb
e + f bdc f

ca
e = 0.

Proof: Follows from antisymmetry and Jacobi.

2.3 More definitions

Definition: Two Lie algebras g and g′ are isomorphic if
there exists a bijective linear map f : g → g′ such that
[f(X), f(Y )] = f([X,Y ]) for all X,Y ∈ g.

Definition: A subalgebra h ⊆ g is a subset of g
which is also a Lie algebra.

Definition: An ideal is a subalgebra which satisifes
strong closure: [X,Y ] ∈ h for all X ∈ g and Y ∈ h.

Example: Every Lie algebra has two trivial ideals,
h = {0} and h = g.

Definition: The derived algebra is defined by

g′ = [g, g] = spanR{[X,Y ] : X,Y ∈ g}.

Definition: The centre Z(g) is defined by

Z(g) = {X ∈ g : [X,Y ] = 0,∀Y ∈ g}.

A Lie algebra is called Abelian if Z(g) = g (i.e. all brackets
are zero).

Theorem: The derived algebra and the centre are
both ideals of a Lie algebra.

Proof: Consider the derived algebra first. This is a
real span so is trivially a subalgebra. For any X ∈ g and
Y ∈ g′ ⊆ g, [X,Y ] is a commutator of elements in g, so
[X,Y ] ∈ g′.

Now consider the centre. Let X,Y ∈ Z(g). Then
[αX + βY, Z] = α[X,Z] + β[Y, Z] = 0 since
[X,Z] = [Y,Z] = 0 for all Z ∈ g. So the centre is a
subalgebra. For any Z ∈ g and X ∈ Z(g), we have
[Z,X] = 0 ∈ Z(g). Hence this is an ideal.

Definition: g is simple if it is non-Abelian and has
no non-trivial ideals.

3 Lie algebras from Lie groups

3.1 Tangent spaces

Definition: Let M be a manifold. For p ∈ M , introduce
coordinates {xi} in a patch P around p, with xi = 0 at p.
The tangent space Tp(M) is defined to be the vector space
spanned by the differential operators:{

∂

∂xi

∣∣∣∣
x=0

}
,

which act on functions f(x) : M → R (when written in
terms of their coordinates on M ). A tangent vector is an
element of the tangent space; the most general form is:

V = vi
∂

∂xi

∣∣∣∣
x=0

, vi ∈ R.

The action on functions f(x) : M → R (written in terms of
their coordinates on M ) is given by:

V f = vi
∂f(x)

∂xi

∣∣∣∣
x=0

.

There is a natural correspondence between tangent
vectors at a point p and tangent vectors to curves through
a point p on a manifold.

5
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Theorem: There is a one-to-one correspondence be-
tween tangent vectors to smooth curves C : R → M
through p and tangent vectors V at p.

Proof: Let’s begin with a curve C and construct the tan-
gent vector VC ∈ Tp(M). Write the points in C : R → M
as g(t), with g(0) = p. By the chain rule, the tangent to the
curve may be written

dg(t)

dt
=
dxi(t)

dt
· ∂g(x)

∂xi
.

where g(x) is the point on the manifold with coordinates x.
Since the curve is smooth, the xi(t) are smooth functions,
so this derivative is allowed. Hence:

ġ(0) = ẋi(0)
∂g(x)

∂xi

∣∣∣∣
x=0

.

So the natural corresponding member of the tangent space
is:

VC = ẋi(0)
∂

∂xi

∣∣∣∣
x=0

.

Conversely, given a vector

V = vi
∂

∂xi

∣∣∣∣
x=0

,

we can choose any curve C with Taylor series
xi(t) = xi(0) + tẋi(0) + ... = tvi + ... at t = 0 (we
can construct an explicit curve using the exponential map,
see Section 3.8 later.

From the above Theorem, it’s clear that for a curve
C, the corresponding tangent vector VC is the derivative
along C. That is, given a function f , we have:

VCf = ẋi(0)
∂f(x)

∂xi

∣∣∣∣
x=0

=
df

dt

∣∣∣∣
t=0

,

by the chain rule.

3.2 The Lie algebra of a matrix Lie group

Definition: The Lie algebra of a Lie group G, denoted
L(G), is the tangent space to the identity of G:

L(G) = Te(G).

We now show that L(G) is indeed a Lie algebra in the
sense of Section 2 by constructing a bracket [·, ·]. We’ll do
this for matrix Lie groups here.

Theorem: Suppose {θθθ} are coordinates on the ma-
trix Lie group near the identity. Let g(θθθ) be the group
elements near the identity, and let g(0) = e. Then Te(G)
can be identified with the subspace of Matn(F) spanned
by: {

∂g(θθθ)

∂θi

∣∣∣∣
θθθ=0

}
.

Proof: Define the map ρ : Te(G)→ Matn(F) by:

ρ

(
∂

∂θi

)
=
∂g(θθθ)

∂θi

∣∣∣∣
θθθ=0

,

and extend by linearity. This is injective since:

ρ

(
vi

∂

∂θi

)
− ρ

(
wi

∂

∂θi

)
= ρ

(
(vi − wi) ∂

∂θi

)
(vi − wi)∂g(θθθ)

∂θi

∣∣∣∣
θθθ=0

.

Provided none of the coordinates are redundant, none of
the ∂g(θθθ)/∂θi can be zero (else we could describe things
without that coordinate - it just remains constant), this is
zero iff vi = wi. So ρ is a bijection between a subspace of
Matn(F) and L(G).

From now on then, identify L(G) with the subspace
of Matn(F). There is then an obvious bracket, the matrix
commutator:

[X,Y ] = XY − Y X.

By some tedious checking, this can be seen to be bilinear,
antisymmetric and satisfy the Jacobi identity. We just need
to show that [X,Y ] ∈ L(G).

Theorem: [X,Y ] ∈ L(G).

Since X and Y are in the Lie algebra, there exist
curves through e such that

g1(t) = I+Xt+W1t
2+O(t3), g2(t) = I+Y t+W2t

2+O(t3).

We need to product a curve with tangent [X,Y ]. Define:

h(t) = g−1
1 (t)g−1

2 (t)g1(t)g2(t) ∈ G.

This is in G because multiplication and inversion keep us
in G, and h is smooth because multiplication and inversion
are smooth maps in a Lie group. Then:

g1(t)g2(t) = g2(t)g1(t)h(t).

Write h(t) = I + h1t+ h2t
2 +O(t3). Expanding both sides:

g1(t)g2(t) = I + t(X + Y ) + t2(XY +W1 +W2) +O(t3),

g2(t)g1(t)h(t) = (I + t(X + Y ) + t2(Y X +W1 +W2) +O(t3))h(t).

Comparing powers of t, we see h1 = 0, and h2 = [X,Y ].
Hence

h(t) = I + t2[X,Y ] +O(t3).

So we’re close but still a bit off. Simply define
g3(s) = h(

√
s) for s > 0, to find the one-sided tan-

gent vector [X,Y ] for s > 0.

For s < 0, instead start with h̃(t) = g−1
2 (t)g−1

1 (t)g2(t)g1(t),
to eventually define g3(s) = h̃(

√
−s) for s < 0. This gives

the other side of the tangent, again equal to [X,Y ].

6
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3.3 Examples of matrix Lie algebras

Example: Consider G = SO(2). A general curve at the
identity is:

g(t) = M(θ(t)) =

(
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

)
with θ(0) = 0. Then

ġ(0) =

(
0 −1

+1 0

)
θ̇(0).

Hence L(SO(2)) consists of 2× 2 antisymmetric matrices.

Example: Consider G = SO(n). A general curve is
g(t) = R(t) ∈ SO(n), with R(0) = I. We have:

RT (t)R(t) = I ⇒ ṘT (t)R(t) +RT (t)Ṙ(t) = 0.

So ṘT (0)+Ṙ(0) = 0 (sinceR(0) = I). There are no further
constraints on the matrices Ṙ(0) from det(R) = 1, since
all orthogonal matrices in a neighbourhood of the identity
obey this automatically (recall it splits into two connected
components). Thus

L(O(n)) = L(SO(n)) = {n× n antisymmetric matrices}.

Thus we can verify:

dim(L(SO(n))) =
1

2
n(n− 1),

as should be the case (Lie algebra must have same
dimensions as Lie group).

Lemma: The derivative of det(U(t)) is:

det′(U(t)) = det(U(t))tr
(
U−1(t)U ′(t)

)
.

Proof: We have:

det′(U(t)) = lim
h→0

(
det(U(t+ h))− det(U(t))

h

)

= det(U(t)) lim
h→0

(
det(I + hU−1(t)U ′(t) +O(h2))− 1

h

)
.

Consider the Taylor expansion of det(I + hM +O(h2)). At
linear order, this is det(I + hM), which when expanded is
the characteristic polynomial of M ; the coefficient of h is
the trace of M , and the constant term is det(I) = 1. The
formula follows.

Example: Consider G = SU(n). If g(t) = U(t) is a
general curve with U(0) = I, then

U†(t)U(t) = I ⇒ U̇†(0) + U̇(0) = 0,

similar to O(n) and SO(n). There is now an extra condition
from determinant. Expanding in a Taylor series about t =
0, we have:

1 = det(U(t))︸ ︷︷ ︸
condition

= 1 + t · tr
(
U̇(0)

)
+O(t2).

So we need U̇(0) to be traceless too. Hence

L(SU(n)) = {n× n traceless, anti-Hermitian C matrices},
L(U(n)) = {n× n anti-Hermitian C matrices}.

Again, we can verify the dimensions are correct. For
L(U(n)), there are 2 · 1

2n(n − 1) degrees of freedom for
off-diagonal elements (2 for complex, 1

2n(n − 1) above-
diagonal elements). There are n degrees of freedom from
the on-diagonal elements, since anti-Hermitian ⇒ the di-
agonal elements can be any real numbers. Total is:

2 · 1

2
n(n− 1) + n = n2,

as expected. For L(SU(n)), we lose a degree of freedom
from the trace condition.

Example: Consider G = SU(2). From above,

L(SU(2)) = {2× 2 traceless, anti-Hermitian matrices}.

A basis is T a = − 1
2 iσa, where σa are the Pauli matrices.

The structure constants can be computed from:

[T a, T b] = −1

4
[σa, σb] = −1

4
(σaσb − σbσa)

= −1

4
(δabI + iεabcσc − δabI − iεbacσc) = −1

2
εabciσc.

Hence the structure constants are: fabc = εabc.

Example: Consider G = SO(3). From above,

L(SO(3)) = {3× 3 real antisymmetric matrices}

Use the basis:

T̃ 1 =

0 0 0
0 0 −1
0 1 0

 , T̃ 2 =

 0 0 1
0 0 0
−1 0 0

 , T̃ 3 =

0 −1 0
1 0 0
0 0 0

 .

This can be written as (T̃ a)bc = −εabc. By a short calcula-
tion,

[T̃ a, T̃ b] = εabcT̃
c.

So this Lie algebra has the same structure constants as
L(SU(2)). This implies:

L(SO(3)) ∼= L(SU(2)),

even though SO(3) 6∼= SU(2), as we saw earlier.
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3.4 Translations of a Lie group

Definition: The left and right translations of a Lie group G
by an element h ∈ G are:

Lh : G→ G, Lh(g) = hg,

Rh : G→ G, Rh(g) = gh.

These maps are both smooth (as this is a Lie group,
multiplication of elements is smooth). We also have:

Theorem: Translations are bijective.

Proof: Surjective: For any g′ ∈ G, let g = h−1g′.
Then Lh(g) = g′. Similarly for right translation.

Injective: If Lh(g) = Lh(g′), then hg = hg′ ⇒ g = g′.
Similarly for Rh.

Theorem: (Lh)−1 = Lh−1 .

Proof: We have: Lh−1(Lh(g)) = Lh−1(hg) = h−1hg = g.
Similarly Lh(Lh−1(g)) = g.

Hence Lh is (i) a bijection, (ii) the inverse is a smooth map
since it is of translation form. So Lh is a diffeomorphism
of G. Similarly Rh is a diffeomorphism.

Introduce coordinates {θi} in some region containing
the identity element. Then for group elements g, g′, with
g′ = hg, near the identity, we have:

g′ = g(θθθ′) = Lh(g) = h · g(θθθ).

So translation induces a map between coordinates θ′i =
θ′i(θθθ). Since Lh is a diffeomorphism, the Jacobian matrix

J ij (θθθ) =
∂θ′i

∂θj

of this transformation is invertible. We can use this feature
to define a map from the tangent space at g to the tangent
space at hg = Lh(g):

Definition: The differential of the translation Lh is
the map L∗h : Tg(G)→ Thg(G) defined by

L∗h

(
vj

∂

∂θj

)
= J ij (θθθ)vj

∂

∂θ′i
=: v′i

∂

∂θ′i
.

This is supposed to mirror the chain rule:

vj
∂

∂θj
= vj

∂θ′i

∂θj
∂

∂θ′i
.

3.5 Vector fields

Definition: A vector field V is a map on a Lie group G,
assigning to each point g ∈ G a tangent vector V (g) ∈
Tg(G). In coordinates:

V (g(θθθ)) = V (θθθ) = vi(θθθ)
∂

∂θi
.

A vector field is smooth if the components vi(θθθ) are
smooth functions.

The differential of the translation Lg defines a vector
field: given any tangent vector ω ∈ Te(G), define:

V (g) = L∗g(ω) = J ij (θθθ)ωj
∂

∂θ′i
.

As the Jacobian matrix is smooth and non-singular, and
ω 6= 0, V (g) is smooth and non-vanishing.

In particular, starting for a basis {ωa} of the tangent
space Te(G) of dimension D, we get D independent,
nowhere-vanishing vector fields on G: Va(g) = L∗g(ωa).

Definition: {Va(g)}a=1...D are called left-invariant vector
fields on G, since they obey:

L∗h(Va(g)) = L∗h(L∗g(ωa)) = L∗hg(ωa) = Va(hg).

Using the Hairy Ball Theorem, and the above work,
we can deduce that no Lie group has S2 as a manifold.
We have:

Theorem (Hairy Ball): Any smooth vector field on
S2 has at least two zeros (or one double zero).

If S2 were a Lie group manifold, differentials of trans-
lations would give us two nowhere-vanishing vector fields,
as above.
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3.6 Left translation of matrix Lie groups

For a matrix Lie group, L∗h : Te(G)→ Th(G) is such that:

L∗h(X) = hX ∈ Th(G).

Here, h ∈ G, X ∈ L(G). It’s not immediately obvious the
result is in Th(G); we will prove it is.

Theorem: For h ∈ G, X ∈ L(G), we have hX ∈ Th(G).

Proof: Since X ∈ L(G), there exists a curve g(t) ∈ G with
g(0) = e, ġ(0) = X. So near t = 0,

g(t) = I + tX +O(t2).

Define a new curve h(t) = h · g(t) ∈ G. Then near t = 0,

h(t) = h+ thX +O(t2),

so hX ∈ Th(G).

3.7 Curves and the exponential map

Theorem: For any smooth curve g(t) with g(0) = e, we
have g−1(t)ġ(t) ∈ L(G) for all t.

Proof: For any t0, note that:

ġ(t0) ∈ Tg(t0)(G),

since near t = t0, g(t) = g(t0) + (t− t0)ġ(t0) +O(|t− t0|2).
Multiplying this Taylor expansion by g−1(t0), we see that:

g−1(t0)ġ(t0) ∈ L(G)

for all t0. Since this holds for all t0, relabel t0 7→ t.

Theorem (Converse of previous theorem): For
any X ∈ L(G), we can find a unique curve g(t) with
g−1(t)ġ(t) = X, and g(0) = e.

Proof: Uniqueness/existence Theorem for ODEs.

Definition: The solution to g−1(t)ġ(t) = X, g(0) = e, is
called the exponential, and is written g(t) = Exp(tX).

For matrix Lie algebras, we can construct this explic-
itly:

ġ(t) = g(t)X, g(0) = I ⇒ g(t) = exp(tX),

where exp is the matrix exponential :

exp(M) =

∞∑
l=0

1

l!
M l.

3.8 Application: one-parameter subgroups

Definition: A one-parameter subgroup of a Lie group G is
a subgroup of the form:

SX,J = {g(t) = Exp(tX) : t ∈ J},

for X ∈ L(G) and J ⊆ R some interval.

Theorem: SX,R is a Lie subgroup (for a matrix Lie
group G).

Proof: Identity is g(0) = I. Associativity is inherited
from G. Need to show closure and inverses. Note:

g(t1)g(t2) =

∞∑
l,r=0

tl1
l!

tr2
r!
X lXr =

∞∑
r=0

1

r!

(
r∑
i=0

r!

i!(r − i)!
ti1t

r−i
2

)
Xr

=

∞∑
r=0

(t1 + t2)r

r!
Xr = g(t1 + t2).

Hence closed. This also shows g−1(t) = g(−t).

This is a Lie group because it is a manifold with the
single chart φ(g(t)) = t.

From this Theorem, we can identify possible one-
parameter subgroups. There are two cases:

(i) There exists t1 6= 0 such that g(t1) = I. Then J =
[0, t1] gives a one-parameter subgroup, with SX,J ∼=
U(1). This is compact.

(ii) There does not exist such a t1. Then J = R is the
only possibility. SX,R is non-compact.

3.9 Reconstructing G from L(G)

Recall g(t) = Exp(tX) solves g−1(t)ġ(t) = X, g(0) = e.
Taking t = 1, and allowing X to vary, we get a map

Exp : L(G)→ G.

Definition: This map is called the exponential map.

Theorem: The exponential map is a bijection be-
tween L(G) and some neighbourhood of e ∈ G.

Proof: Too difficult for this course.

9
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The Lie algebra can then be used to recover multiplication
in the Lie group. This is achieved using the Baker-
Campbell-Hausdorff formula:

Theorem: Let gX = Exp(X), gY = Exp(Y ). Then
gXgY = Exp(Z) for some Z ∈ L(G), given by

Z = X + Y +
1

2
[X,Y ] +

1

2
([X, [X,Y ]]− [Y, [X,Y ]]) + ...

Proof: Too difficult for this course.

Exp can fail to be a global bijection (between L(G)
and G) in only two ways:

(1) G is not connected. Then Exp is not surjective, and
maps only to the connected component containing the
identity.

(2) G contains a U(1) subgroup. Then Exp is not injective.

Example: Consider G = O(n). The Lie algebra is
the set of antisymmetric matrices. But if X is antisymmet-
ric,

tr(X) + tr(XT ) = 0⇒ 2tr(X) = 0.

So X is traceless too. Let X have eigenvalues λ1, ..., λn.
Then:

det(Exp(X)) = eλ1 ...eλn = eλ1+...+λn = exp(tr(X)) = 1.

Hence Exp is not surjective: its image is SO(n).

Example: Consider G = U(1). The Lie algebra is
the 1D anti-Hermitian matrices, i.e.

L(U(1)) = {X = ix ∈ C : x ∈ R}.

Then g = Exp(X) = eix. So Exp is not injective, since ix
and 2πi+ ix give the same Lie group element.

3.10 The relation between SU(2) and SO(3)

We can construct a global 2-to-1 function, called a double-
covering, from d : SU(2) → SO(3), finally relating these
two Lie groups. Define d by:

d(A)ij =
1

2
tr
(
σiAσjA

†)
Here, it’s clear to see that d(A) = d(−A). So two points in
SU(2) get sent to the same point in SO(3). Similarly, the
inverse of this map is:

d−1(R)ij = ± (I2 + σiRijσj)

2
√

1 + tr(R)
,

where R ∈ SO(3).

Theorem: (i) d(A) ∈ SO(3); (ii) d−1(R) is really the
inverse of d; (iii) SO(3) ∼= SU(2)/Z2.

Proof: (i) is an exercise in index manipulation; need
to show d(A)ij(d(A))Tjk = δik. Use the Pauli matrix
identity:

3∑
i=1

(σi)αβ(σi)γδ = 2δαδδγβ − δαβδγδ.

Also note that the map is continuous, SU(2) is connected
so the image is connected. Since d(I) = I, d(A) ∈ SO(3).

For (ii), let R = d(A). Then

tr(d(A)) =
1

2
(σi)abAbc(σj)cdA

†
da

= (δadδbc −
1

2
δabδcd)AbcA

†
da

= tr(A)tr(A†)− 1.

Also:

(σiRijσj)ab = (σi)ac(σj)cb(σi)deAef (σj)fgA
†
gd

=
1

2
(2δaeδcd − δacδde)(2δcgδbf − δcbδfg)AefA†gd

= 2A†abtr(A
†)−A†aeAeb −AagA

†
gb +

1

2
δabAdfA

†
fd

= 2Aabtr(A†)− δab.

Putting all this together,

d−1(R)ab = ± Aabtr(A†)√
tr(A)tr(A†)

.

Now if tr(A) = λ1 + λ2, then tr(A†) = tr(A−1) = 1
λ1

+ 1
λ2

.
Hence

tr(A†) =
λ2 + λ1

λ2λ1
= λ2 + λ1 = tr(A),

since det(A) = 1. Hence d−1(R) = d−1(d(A)) = ±Aab.

(iii) It’s possible to show the map is a homomorphism too,
by similar index manipulation. Since the map is 2 to 1, the
kernel is precisely {I,−I}, since I3 = d(I2) = d(−I2). The
result follows by the first isomorphism theorem.

Slogan:

SO(3) ∼=
SU(2)

Z2
.
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4 Representations

4.1 Definitions

Definition: A representation of a Lie group G is a smooth
homomorphism D : G → GL(n,F) for some n, F = R,C.
The homomorphism property means we need:

D(g1)D(g2) = D(g1g2).

Definition: A representation of a Lie algebra g is a linear
map d : g→ Matn(F), for some n, such that

[d(X1), d(X2)] = d([X1, X2]).

Definition: The dimension of a representation is the
dimension n of the corresponding matrices in each case.

Definition: The vector space V = Fn on which the
matrices of the representation act is called the represen-
tation space.

4.2 Lie algebra reps and Lie group reps

Theorem: Let D be a representation of dimension n of a
matrix Lie group G. Let X1 ∈ L(G), and let g1(t) ∈ G be a
curve with g1(0) = e, ġ1(0) = X1. Then

d(X1) =
d

dt
(D(g1(t)))

∣∣∣∣
t=0

is a representation of L(G).

Proof: Let g2(t) ∈ G be a curve with g2(0) = e, ġ2(0) = X2.
Define, as usual, h(t) = g−1

1 (t)g−1
2 (t)g1(t)g2(t) ∈ G. This

has Taylor expansion: h(t) = I + t2[X1, X2] + O(t3) as
before. Now apply D to h(t):

D(h(t)) = D(I + t2[X1, X2] +O(t3))

= D(I) + t2
d

d(t2)
(D(h(t)))

∣∣∣∣
t=0

+ ...

= I + t2d([X1, X2]) + ...

by Taylor expansion. Applying D to g−1
1 g−1

2 g1g2, we have:

D(g1)−1D(g2)−1D(g1)D(g2) = ... = I+t2[d(X1), d(X2)]+...

similarly. Hence d([X1, X2]) = [d(X1), d(X2)].

Note this is also a linear map, since the derivative
of D : G → GL(V ) at the identity is a linear map
d : Te(G)→ TI(GL(V )), i.e. d : g→ gl(V ).

Theorem: Conversely, suppose d is a representation
of L(G). Then if g = Exp(X), D(g) = Exp(d(X)) obeys:

D(g1g2) = D(g1)D(g2).

Proof: Just use BCH formula.

Note: This is not necessarily a representation of the
Lie group, since Exp can fail to be surjective.

4.3 Important representations

Definition: The trivial representation d0 of a Lie algebra is
defined by

d0(X) = 0

for all X ∈ g. Its dimension is dim(d0) = 1.

Definition: The fundamental representation df of a
matrix Lie algebra is defined by

df (X) = X.

Its dimension is dim(df ) = n.

Definition: The adjoint representation dadj of a D-
dimensional Lie algebra is defined by

dadj(X) = adX ,

where adX : g → g is defined by adX(Y ) = [X,Y ]. Since
this is a linear map between vector spaces, adX can be
identified with a D ×D matrix, so that dim(dadj) = D.

Theorem: The matrix of adX is (RX)bc = Xaf
ab
c .

Proof: Let X = XaT
a and Y = YaT

a. Then

adX(Y ) = [X,Y ] = XaYbf
ab
c .

Theorem: The adjoint representation dadj is indeed a
representation.

Proof: First verify preservation of bracket. We have:

(dadj(X) ◦ dadj(Y )) (Z) = [X, [Y, Z]],

(dadj(Y ) ◦ dadj(X)) (Z) = [Y, [X,Z]],

hence

[dadj(X), dadj(Y )](Z) = [X, [Y,Z]]− [Y, [X,Z]]

= [[X,Y ], Z] = dadj([X,Y ])

by Jacobi identity and antisymmetry. Hence
[dadj(X), dadj(Y )] = dadj([X,Y ]). Finally, linearity is
trivial by linearity of adX .

4.4 Isomorphic and irreducible reps

Definition: Two representations R1 and R2 of a Lie
algebra are isomorphic or equivalent if there exists a
non-singular matrix S such that R2(X) = SR1(X)S−1

for all X. (That is, we can just change bases in the
representation’s codomain.)

Definition: A representation R with representation
space V has an invariant subspace U ⊆ V if

R(X)u ∈ U

for all X ∈ g, u ∈ U . (Slogan: We’re stuck in U !)
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We note that if U is an invariant subspace of a representa-
tion R, then R(X) takes a block upper-triangular structure
for each X ∈ g:

R(X) =

(
A B
0 C

)
.

Example: All representations have two trivial invariant
subspaces: U = {0} and U = V .

Definition: An irreducible representation (abbreviated
to irrep) is a representation with no non-trivial invariant
subspaces.

4.5 Rep theory of LC(SU(2))

When studying L(SU(2)), we worked with the basis
{T a = − 1

2 iσa} with [T a, T b] = εabcT
c. However, when

studying rep theory it is best to complexify the Lie algebra
first.

Definition: The complexification of L(SU(2)) is:

LC(SU(2)) = spanC

{
T a = −1

2
iσa

}
.

Theorem: LC(SU(2)) = {traceless 2× 2 matrices}.

Proof: Clearly LC(SU(2)) = {λ1σ1 +λ2σ2 +λ3σ3 : λi ∈ C}.
Note tr(

∑
j λjσj) = 0, so all matrices in LC(SU(2)) are

traceless.

Conversely, let a, b and c be any complex numbers.
Then (

a b
c −a

)
=

(
b+ c

2

)
σ1 +

(
b− c

2

)
iσ2 + aσ3.

So any complex traceless matrix is in LC(SU(2)).

Working with LC(SU(2)) allows us to introduce a complex
basis:

H = σ3 =

(
1 0
0 −1

)
, E+ =

1

2
(σ1 + iσ2) =

(
0 1
0 0

)
,

E− =
1

2
(σ1 − iσ2) =

(
0 0
1 0

)
.

Definition: This basis is called the Cartan-Weyl basis. H
is called the Cartan element. E± are called step operators.

Any element of LC(SU(2)) can be written as:

X = XH +X+E+ +X−E− =

(
XH X+

X− −XH

)
.

To recover the real Lie algebra, we note we can still use
this expansion, we just need to impose the conditions
X+ = X∗−.

Theorem: The Cartan-Weyl basis has commutators:

[H,E±] = ±2E±, [E+, E−] = H.

Proof: Tedious checking.

Theorem: adH is diagonalisable.

Proof: Simply note that adH(E±) = ±2E± and
adH(H) = 0. So the Cartan-Weyl basis diagonalises
adH .

Definition: The eigenvalues of adH are called the
roots of the Lie algebra.

Now consider representations R of LC(SU(2)). We
assume that R(H) is diagonalisable.

Definition: The eigenvectors of R(H) obey
R(H)vλ = λvλ. We call the eigenvalues {λ} the
weights of the representation.

Note: Roots ≡ weights of adjoint representation.

Theorem: Irreducible representations of LC(SU(2))
are uniquely determined by a greatest weight Λ ∈ Z≥0.
This weight is called the highest weight. The weight set
for the representation RΛ (i.e. the rep with highest weight
Λ) is:

SRΛ
= {−Λ,−Λ + 2, ...,Λ− 2,Λ},

with each weight appearing with multiplicity one.

Proof: First note:

R(H)R(E±)vλ = (λ± 2)R(E±)vλ.

For a finite-dimensional rep R, there can only be finitely
many weights, so there must exist a weight Λ ∈ C such
that

R(H)vΛ = ΛvΛ, R(E+)vΛ = 0.

Assuming R is irreducible, we must be able to apply
R(X)’s to vΛ to get all other basis vectors. Since R(H),
R(E+) don’t help us, the remaining basis vectors must
come from acting with R(E−). Define:

vΛ−2n = (R(E−))nvΛ.

12
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Acting with R(H) on these new vectors gives us back the
same new vectors, with eigenvalues

R(H)vΛ−2n = (Λ− 2n)vΛ−2n.

So these vectors are independent for all n, and we’ve
produced the entire basis this way.

To finish, we need to consider acting with R(E+):

R(E+)vΛ−2n = R(E+)R(E−)vλ−2n+2

= R(E−)R(E+)vΛ−2n+2 + (Λ− 2n+ 2)vΛ−2n+2.

When n = 1, get R(E+)vΛ−2 = ΛvΛ. When n = 2, get
R(E+)vΛ−4 = (2Λ− 2)vΛ−2. By induction, we find

R(E+)vΛ−2n = rnvΛ−2n+2,

where
rn = rn−1 + Λ− 2n+ 2.

Also R(E+)vΛ = 0 ⇒ r0 = 0. This allows us to solve the
recurrence relation for rn to find

rn = (Λ + 1− n)n.

Finally, since R is finite dimensional, there is also a low-
est weight, say Λ − 2N . We must have R(E−)vΛ−2N =
vΛ−2N−2 = 0, which implies rN+1 = 0. Hence:

(Λ−N)(N + 1) = 0,

i.e. Λ = N . This produces the weight set given in the
Theorem, shows that Λ is a non-negative integer, and
determines the representation uniquely (since we’ve said
how all elements act on a basis).

Definition: Let RΛ be the representation of LC(SU(2))
with highest weight Λ.

Theorem: dim(RΛ) = Λ + 1.

Proof: Follows from classification, since R(H) has
Λ + 1 distinct eigenvalues, each of multiplicity one.

Example: R0 is the trivial representation, R1 is the
fundamental representation and R2 is the adjoint repre-
sentation.

4.6 Application: Reps of real L(SU(2))

To get a representation of the real Lie algebra L(SU(2)),
we pass back to the generators:

T a = −1

2
iσa,

so that:

T 1 =
1

2i
(E+ + E−), T 2 =

1

2
(E+ − E−), T 3 =

1

2i
,

Then for a given representation R of LC(SU(2)), we have:

R(T 1) =
1

2i
(R(E+) +R(E−)) ,

R(T 2) =
1

2
(R(E+)−R(E−)) ,

R(T 3) =
1

2i
R(H).

For any X ∈ L(SU(2)), we have X = XaT
a for Xa ∈ R.

The resulting representation of L(SU(2)) acts as

R(X) = XaR(T a).

4.7 Application: Reps of SU(2), SO(3) from
LC(SU(2))

SU(2) is connected, so for any A ∈ SU(2), we can write

A = Exp(X), L(SU(2)).

Starting from the irrep RΛ, we can define the representa-
tion:

Definition: DΛ(A) = Exp(RΛ(X)).

This is a valid rep of SU(2). For a rep of SO(3) ∼=
SU(2)/Z2, we must also have DΛ(−I) = DΛ(+I), since
then

DΛ(−A) = DΛ(+A),

for all A ∈ SU(2).

Theorem: If Λ is even, DΛ is a rep of SO(3) and
SU(2). If Λ is odd, it is only a rep of SU(2).

Proof: Notice

−I = Exp(iπH) =

(
eiπ 0
0 e−iπ

)
.

Hence DΛ(−I) = Exp(iπRΛ(H)). Now RΛ(H) has eigen-
values {λ} in the weight set:

SΛ = {−Λ,−Λ + 2, ...,+Λ},

so DΛ(−I) has eigenvalues exp(iπλ) = (−1)λ = (−1)Λ

(last equality since all λ’s differ by 2). To be a valid
rep of SO(3), we need DΛ(−I) = DΛ(+I) = I. So all
eigenvalues must be 1. It follows that Λ must be even.

Definition: If DΛ is a rep of SU(2) only, it is called
a spinor representation.

13
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4.8 New representations from old

Definition: If R is a rep of a real Lie algebra g, then the
conjugate representation R is defined by:

R(X) = R(X)∗.

Definition: Let R1, R2 be representations, with rep-
resentation spaces V1, V2. Define their direct sum to be
the representation R1 ⊕R2 acting on V1 ⊕ V2 by:

(R1 ⊕R2)(X)(v1 ⊕ v2) = (R1(X)v1)⊕ (R2(X)v2).

The matrix of (R1 ⊕R2)(X) has the block diagonal form:

(R1 ⊕R2)(X) =

(
R1(X) 0

0 R2(X)

)
.

Hence thus is a reducible representation. Also note
dim(R1 ⊕R2) = dim(R1) + dim(R2).

Definition: Let R1, R2 be representations, with rep-
resentation spaces V1, V2. Define their tensor product to
be the representation R1 ⊗R2 acting on V1 ⊗ V2 by:

(R1 ⊗R2)(X) = R1(X)⊗ I2 + I1 ⊗R2(X),

where I1 and I2 are the identity maps on V1 and V2

respectively.

Theorem: This indeed constitutes a representation.

Proof: Only non-trivial property to check is that com-
mutators map to commutators:

[R1 ⊗R2(X), R1 ⊗R2(Y )]

= [R1(X)⊗ I2 + I1 ⊗R2(X), R1(Y )⊗ I2 + I1 ⊗R2(Y )]

= R1(X)R1(Y )⊗ I2 +R1(X)⊗R2(Y ) +R1(Y )⊗R2(X)

+I1 ⊗R2(X)R2(Y )−R1(Y )R1(X)⊗ I2 −R1(Y )⊗R2(X)

−R1(X)⊗R2(Y )− I1 ⊗R2(Y )R2(X)

= R1 ⊗R2([X,Y ]),

since Ri([X,Y ]) = Ri(X)Ri(Y )−Ri(Y )Ri(X).

Definition: A fully reducible representation can be
written as the direct sum of irreps. For a fully reducible
representation, there exists a basis in which the matrix of
the representation is:

R(X) = diag(R1(X), R2(X), ..., Rn(X)),

i.e. it has block-diagonal form, where the Ri are irreps.

Theorem: If Ri are irreps of a simple Lie algebra g, then
the tensor product is fully reducible. That is,

R1 ⊗R2 ⊗ ...⊗Rm = R̃1 ⊕ R̃2 ⊕ ...⊕ R̃m̃,

for some irreps R̃j , some m̃.

Proof: Too difficult for this course.

4.9 The Clebsch-Gordan formula

Let RM and RN be irreps of LC(SU(2)) as we found
earlier, with highest weights M and N , and representation
spaces VM and VN .

Theorem (Clebsch-Gordan): We have:

RM ⊗RN = R|N−M | ⊕R|N−M |+2 ⊕ ...⊕RN+M .

Proof: We know that RM ⊗ RN is fully reducible, so is the
direct sum of irreps of LC(SU(2)). Hence:

RM ⊗RN =
⊕

Λ∈Z≥0

LΛ
M,NRΛ.

The coefficients LΛ
M,N denote how many times the

summand RΛ is repeated on the RHS. They are called
Littlewood-Richardson coefficients.

To determine these coefficients, we just recall: the
weights of the LHS and RHS must be the same. On
the LHS, for eigenvectors vλ, v′λ′ of RM (H) and RN (H)
respectively, we have:

(RM ⊗RN )(H)(vλ ⊗ v′λ′)
= (RM (H)vλ)⊗ v′λ′ + vλ ⊗ (RN (H)v′λ′) = (λ+ λ′)(vλ ⊗ v′λ′).

So the weight set of RM ⊗RN is:

SM,N = {λ+ λ′ : λ ∈ SM , λ′ ∈ SN}.

WLOG, let M > N . Let λ = N − 2n and λ = M − 2m be
general weights in SM , SN so that:

λ+ λ′ = N +M − 2(n+m).

Then the multiplicities in this weight set are clearly:

• N +M has multiplicity 1 (n = m = 0), N +M − 2 has
multiplicity 2 (n = 1,m = 0 or n = 0,m = 1), N+M−4
has multiplicity 3, ... etc

• N +M − 2N has multiplicity N + 1 (n = N,m = 0, or
..., or n = 0,m = N ). Now n is at its maximum though,
so if we want to reduce further, we’ll have to increase
m.

• N + M − 2(N + 1) has multiplicity N + 1 again, (n =
N,m = 1, or ..., or n = 0,m = N + 1), etc.
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• N+M−2M has multiplicityN+1 (n = N,m = M−N ,
or ..., or n = 0,m = M ). Afterwards, the multiplicities
decrease again, since we have reached the maximum
m value.

• N+M−2(M+1) has multiplicity N , N+M−2(M+2)
has multiplicity N − 1, etc. N −M − 2(M + N) has
multiplicity 1.

The highest weight on the LHS is N + M , of multiplicity
1. So we must need exactly one summand RN+M on the
RHS (any higher, would get different highest weight, any
lower, wouldn’t get highest weight).

Subtracting off the weight set of RN+M from the list
in SM,N leaves us with highest weight N +M −2N , now of
multiplicity 1 since we’ve used it in RN+M . So get a single
summand of RN+M−2N = RM−N on the RHS. Continuing
in this fashion, we get Clebsch-Gordan.

Example: Let N = M = 1. Recall S1 = {1,−1}.
So

S1,1 = {−2, 0, 0, 2} = S0 + S2.

Hence R1 ⊗R1 = R2 ⊕R0.

5 The Killing form

5.1 Definitions

Definition: An inner product on a vector space is a sym-
metric, bilinear map

i : V × V → F.

An inner product is non-degenerate if for all v ∈ V , there
is a w ∈ V such that i(v, w) 6= 0.

Definition: The Killing form is the map κ : g× g→ F:

κ(X,Y ) = tr(adX ◦ adY ).

Theorem: κ is an inner product.

Proof: κ is symmetric, by cyclicity of trace. κ is bilin-
ear; suffices to show linear in first argument by symmetry.
Linearity follows from adX linear in X, and tr linear.

5.2 Matrix representations

Theorem: The matrix representation of κ is

κab = fadc f
bc
d .

Proof: Want the trace of [X, [Y, ·]]. Consider first [X, [Y,Z]].
Let X = XaT

a, Y = YaT
a, Z = ZaT

a. Then:

[X, [Y, Z]] = XaYbZcf
ad
e f

bc
dT

e = M(X,Y )ceZc︸ ︷︷ ︸
components

T e.

Here, we’ve expressed this in its final form, since
(Mijxj)xi = (Mx)ixi, where xj are components and xi
are the basis vectors. Thus the matrix of [X, [Y, ·]] is:

M(X,Y )ce = XaYbf
ad
e f

bc
d .

Then

κ(X,Y ) = tr(M(X,Y )) = fadc f
bc
dXaYb,

which gives the matrix as κab = fadc f
bc
d .

5.3 Properties of the Killing form

Theorem (Invariance): The Killing form is invariant under
the adjoint action:

κ([Z,X], Y ) + κ(X, [Z, Y ]) = 0.

Proof: By definition of adjoint map, we have:

ad[Z,X] = adX ◦ adX − adX ◦ adZ .

Hence:

κ([Z,X], Y ) = tr(adZ ◦ adX ◦ adY )− tr(adX ◦ adZ ◦ adY ),

κ(X, [Z, Y ]) = tr(adX ◦ adZ ◦ adY )− tr(adX ◦ adZ ◦ adY ).

Sum, use cyclicity, then done.

Theorem: If g is simple, κ is the unique invariant in-
ner product on g up to an overall scalar multiple.

Proof: Too difficult for this course.

Definition: A Lie algebra is of compact type if there
exists a basis {T a} in which the Killing form has matrix
κab = −κδab, for some constant κ > 0.

Then by Sylvester’s Law of Inertia, κ has signature
(−,−, ...,−) in all bases.
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5.4 Complexification and real forms

Definition: Let g be a real Lie algebra with basis {T a} in
which the structure constants are real. Then

g = spanR {T a} .

Define the complexification of g by:

gC = spanC {T a} .

Definition: Let gC be a complex Lie algebra. Then g is a
real form of gC if g has complexification gC.

Real forms of a complex Lie algebra are not unique:

Example: The complexified Lie algebra of L(SU(2))
is LC(SU(2)), the traceless 2 × 2 complex matrices, as
we saw earlier. But L(SL(2,R)) consists of only trace-
less 2 × 2 matrices, and so its complexification is also
LC(SU(2)).

To show these aren’t the same, we evaluate their
Killing forms. The structure constants of L(SU(2)) are
fabc = εabc, and hence

κab = εadcεbcd = −εadcεbdc = −δab.

So L(SU(2)) is of compact type.

We can find the Killing form of L(SL(2,R)) similarly
and see it is not of compact type; so these are not
equivalent real forms (i.e. not isomorphic as Lie algebras).

5.5 Cartan’s theorem

Definition: A Lie algebra is semi-simple if it has no
Abelian ideals.

Theorem: Any semi-simple Lie algebra has a real
form of compact type.

Proof: Too hard for this course.

Theorem: A finite dimensional semi-simple Lie alge-
bra can be written as the direct sum of a finite number
of simple Lie algebras (by this, we mean the underlying
vector space is g⊕ f⊕ ..., with [g, f] = 0 for all summands).

Proof: Let g be of compact type. Let i be an ideal of
g. Let i⊥ be its orthogonal complement with respect to the
Killing form. Let X ∈ i, Y ∈ g, Z ∈ i⊥. Then by invariance:

κ(X, [Y,Z]) = −κ([Y,X], Z) = 0

since [Y,X] ∈ i, as i an ideal. So [Y,Z] ∈ i⊥, and i⊥ is
thus an ideal. Since κ is an inner product, standard linear

algebra then says g = i⊕ i⊥.

The summands commute because of the following:

κ([X,Z], Y ) = −κ(Z, [X,Y ]) = 0,

since [X,Y ] ∈ i. Since of compact type, Killing form is
non-degenerate, so [X,Z] = 0 (since holds for all Y ∈ g).

Finally, note that i, i⊥ are closed under taking the
bracket so are Lie algebras, and are compact because
they inherit a restricted Killing form from g.

Iterating we see any Lie algebra of compact type is
the direct sum of simple Lie algebras of compact type.

Now need to prove the result for a complex semi-
simple Lie algebra gC. We know from above this has a
real form of compact type, say g. Then from above:

g =
∑
i

gi,

for gi simple, compact Lie algebras. Then just take
complexification of both sides (obvious that sum of com-
plexifications is complexification of sum).

Cartan’s Theorem: The Killing form κ is non-degenerate
if and only if g is semi-simple.

Proof: Suppose g is not semi-simple. Then g has an
Abelian ideal j. Let dim(g) = D, and dim(j) = d. Choose
a basis

B = {T a} = {T i : i = 1, ..., d} ∪ {Tα : α = d+ 1, ..., D}.

where {T i} span j. As j is Abelian, we have [T i, T j ] = 0.
As j is an ideal, we also have [Tα, T j ] = fαjkT

k ∈ j, thus:

f ija = 0 − (1), fαjβ = 0 − (2).

(Early Latin indices for a, b, c = 1, ..., D, late Latin indices
for i, j = 1, ..., d, and Greek indices for α = d + 1, ..., D.)
For X = XaT

a and Y = YiT
i, we have:

κ(X,Y ) = κaiXaYi.

Here, κai = fabc f
ic
b . If c ≤ d+ 1, this vanishes by (1). So

κai = fabα f
iα
b . By (2) can replace b by j: κai = fajα f

iα
j .

But fajα = 0 (for a = 1, ..., d, get 0 by (2), and
a = d + 1, ..., D get 0 by (1)). So the Killing form is
degenerate: κ(X,Y ) = 0 for all X ∈ g and Y ∈ j.

The converse is non-examinable.
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6 The Cartan classification

6.1 Cartan subalgebras

Definition: Let g be a Lie algebra. We say X ∈ g is
ad-diagonalisable if adX is diagonalisable.

Definition: A Cartan subalgebra h E g is a maximal
Abelian subalgebra containing only ad-diagonalisable
elements. That is:

(i) H ∈ h implies H is ad-diagonalisable;

(ii) H,H ′ ∈ h implies [H,H ′] = 0;

(iii) If X ∈ g is ad-diagonalisable and [X,H] = 0 for all
H ∈ h, then X ∈ h (this is called maximality ).

Theorem: All possible choices of Cartan subalgebra have
the same dimension.

Proof: Not required.

Definition: The dimension of a Cartan subalgebra
h E g is called the rank of the Lie algebra g.

Example: g = LC(SU(2)) has Cartan subalgebra
h = spanC{H}, where H is the Cartan element as
previously defined. This is because

[H,XHH +X+E+ +X−E−] = 2X+E+ − 2X−E− = 0

if and only if X+ = X− = 0. So nothing outside h
commutes with H. Also recall H is ad-diagonalisable, and
clearly h is Abelian. Hence rank of LC(SU(2)) is 1.

Example: The Lie algebra g = LC(SU(n)) =
{n × n traceless matrices} has a natural basis for its
Cartan subalgebra:

(Hi)αβ = δαiδβi − δαi+1δβi+1,

i.e. +1 at ith position on diagonal, and −1 at (i + 1)th
position on diagonal. This can be shown to be the Cartan
subalgebra, hence the rank is n− 1.

6.2 Step operators

Consider a general Lie algebra g and Cartan subalgebra h.
Introduce a basisHi, i = 1, ..., r for the Cartan subalgebra.

Theorem: The r linear maps adHi are simultane-
ously diagonalisable.

Proof: [Hi, Hj ] = 0 for all i, j, so since ad is a rep-
resentation:

0 = ad[Hi,Hj ] = [adHi , adHj ].

So all commute, so all simultaneously diagonalisable.

Definition: The simultaneous eigenvectors of {adHi} can
be split into two types:

• Let V be an eigenvector with adHi(V ) = 0 for all i.
Then V was in the Cartan subalgebra after all, since
commutes with all elements in subalgebra.

• Otherwise, there exists a Hi for which adHi gives a
non-zero eigenvalue when acting on the eigenvector.
Write the eigenvector as Eα. Then

adHi(Eα) = [Hi, Eα] = αiEα,

where αi is the eigenvalue of Eα when adHi acts. We
know that not all αi are zero.

We call Eα a step operator of the Lie algebra, and the
vector α = (α1, ..., αr) a root of the Lie algebra.

Theorem: The roots are elements of the dual of the
Cartan subalgebra, h∗.

Proof: Consider H = ρiH
i ∈ h. Then adH(Eα) = ρiα

iEα.
So α defines a linear map α(H) = ρiα

i, from h to C, i.e. is
a dual vector.

Theorem: The roots are non-degenerate. That is,
the set of roots Φ consists of d− r distinct element of h∗.

Proof: Too hard for this course.

Since all roots are non-degenerate, the Eα are lin-
early independent. So:

Definition: The Cartan-Weyl basis of g is:

B = {Hi : i = 1, ..., r} ∪ {Eα : α ∈ Φ}.

Example: Consider LC(SO(2n)). This is the set of
2n×2n antisymmetric matrices, which has a natural basis:

(Tij)αβ = δαiδjβ − δiβδαj ,

where j > i to avoid redundancy. Then a basis for the
CSA is: HI = T(2I−1)(2I), for I = 1, ..., n. Let’s prove it.

Being Abelian is obvious. The best way to show maxi-
mality is to commute with a general antisymmetric matrix
X = XijTij , and the best way to show ad-diagonalisability
is to exhibit the step operators, which in this case are:

F±IJ = T(2I−1)(2J−1) − T(2I)(2J) ± i
(
T(2I−1)(2J) + T(2I)(2J−1)

)
,

G±IJ = T(2I−1)(2J) − T(2I)(2J−1) ± i
(
T(2I−1)(2J−1) + T(2I)(2J)

)
,

for I, J = 1, 2...n and I < J . For LC(SO(2n + 1)), every-
thing’s the same, except there’s extra step operators:

E±I = T(2I−1)(2n+1) ± iT(2I)(2n+1),

for I = 1, ..., n. Everything’s given explicitly for n = 2 later
in these notes.
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6.3 Killing form in the Cartan-Weyl basis

Assume now we are working with a simple Lie algebra
g. Then by Cartan’s theorem, the Killing form is non-
degenerate.

Theorem: The Killing form for a simple Lie algebra g
with the Cartan-Weyl basis obeys:

(i) κ(H,Eα) = 0 for all H ∈ h;

(ii) κ(Eα, Eβ) = 0 for α+ β 6= 0;

(iii) For all H ∈ h, there exists H ′ ∈ h with κ(H,H ′) 6= 0;

(iv) If α is a root, then −α is a root, and κ(Eα, E−α) 6= 0.

Proof: (i) Let H ′ ∈ h. Then:

α(H ′)κ(H,Eα) = κ(H, [H ′, Eα])

= −κ([H ′, H], Eα) = −κ(0, Eα) = 0.

But α(H ′) 6≡ 0, so there exists H ′ such that α(H ′) 6= 0.
Thus κ(H,Eα) = 0.

(ii) Let H ′ ∈ h. Then

(α(H ′) + β(H ′))κ(Eα, Eβ)

= κ([H ′, Eα], Eβ) + κ(Eα, [H ′, Eβ ]) = 0,

by invariance. But assumed α+ β 6= 0, so κ(Eα, Eβ) = 0.

(iii) Assume κ(H,H ′) = 0 for all H ′ ∈ h. From (i),
κ(H,Eα) = 0 for all α ∈ Φ. Since {Hi, Eα} form a basis,
get κ(H,X) = 0 for allX ∈ g, which is a contradiction since
κ is non-degenerate. So there exists H ′ with κ(H,H ′) 6= 0.

(iv) From (i), κ(Eα, H) = 0 for all H ∈ h, and from
(ii) κ(Eα, Eβ) = 0 for all α, β ∈ Φ with α 6= −β. If −α is
not a root then, Eα is orthogonal to all other basis vectors
- contradiction, as κ non-degenerate. If κ(Eα, E−α) = 0,
we similarly get κ degenerate, contradiction.

Upshot of above theorem is:

Theorem: For g simple, the Killing form is a non-
degenerate inner product on the Cartan subalgebra.

Proof: Follows from (iii) above.

In particular, the r × r matrix κij of the restricted
Killing form defined by κ(H,H ′) = κijρiρ

′
j is invertible. We

use the inverse to define an inner product on h∗:

Definition: The inner product of roots α, β ∈ Φ is
defined by:

(α, β) = (κ−1)ijα
iβj .

6.4 Algebra in the Cartan-Weyl basis

So far, we have: [Hi, Hj ] = 0, and [Hi, Eα] = αiEα.
Remains to evaluate [Eα, Eβ ].

Theorem: Let Hα solve κ(Hα, H) = α(H) (exists by
(iii) above). Then for undetermined constants Nα,β :

[Eα, Eβ ] =


Nα,βE

α+β , if α+ β ∈ Φ,

κ(Eα, E−α)Hα, if α+ β = 0,

0 otherwise.

Proof: By the Jacobi identity,

[Hi, [Eα, Eβ ]] = −[Eα, [Eβ , Hi]]− [Eβ , [Hi, Eα]]

= (αi + βi)[Eα, Eβ ].

Hence for α+β 6= 0, [Eα, Eβ ] ∝ Eα+β (by non-degeneracy
of roots). If α + β 6∈ Φ, we need the constant of propor-
tionality to be 0, else Eα+β would be an eigenvector.

If α+ β = 0, note that

κ([Eα, E−α], H) = κ(Eα, [E−α, H]) = α(H)κ(Eα, E−α).

Now (iv) above says κ(Eα, E−α) 6= 0. So have:

α(H) = κ

(
[Eα, E−α]

κ(Eα, E−α)
, H

)
.

Define Hα = [Eα, E−α]/κ(Eα, E−α) to get result in
Theorem.

We can also construct Hα explicitly using the matrix
representation. Write Hα = ραi H

i and H = ρjH
j . Then

need κijραi ρj = αjρj . Inverting:

ραi = (κ−1)ijα
j ⇒ Hα = (κ−1)ijα

jHi.

We summarise this result as follows:

Algebra in the Cartan-Weyl basis:

[Hi, Hj ] = 0

[Hi, Eα] = αiEα

[Eα, Eβ ] =


Nα,βE

α+β , if α+ β ∈ Φ,

κ(Eα, E−α)Hα, if α+ β = 0,

0 otherwise,

where the Nα,β are undetermined constants and Hα

solves κ(Hα, H) = α(H), i.e.

Hα = (κ−1)ijα
jHi.
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We can now normalise the basis to make the algebra
more simple. Choose to work with Hα instead. Then want:

Theorem: [Hα, Eβ ] = (α, β)Eβ .

Proof: Note:

[Hα, Eβ ] = (κ−1)ijα
j [Hi, Eβ ] = (κ−1)ijα

jβiEβ = (β, α)Eβ ,

then use symmetry of Killing form: (α, β) = (β, α).

We now normalise the basis:

hα =
2

(α, α)
Hα, eα =

√
2

((α, α)κ(Eα, E−α))1/2
Eα.

Here, we have assumed (α, α) 6= 0 (this is in fact true).
Thus the algebra becomes:

Algebra in the normalised Cartan-Weyl basis:

[hα, hβ ] = 0

[hα, eβ ] =
2(α, β)

(α, α)
eβ

[eα, eβ ] =


nα,βe

α+β , if α+ β ∈ Φ,

hα, if α+ β = 0,

0 otherwise,

where (α, β) = (κ−1)ijα
iβj and nα,β are undeter-

mined constants.

This representation makes clear the relation of the rank
and the dimension of a Lie algebra: dim(g) = |Φ|+rank(g),
where |Φ| is the root set.

6.5 LC(SU(2)) subalgebras

Recall for all α ∈ Φ, we have −α ∈ Φ. Hence:

Theorem: For each pair ±α ∈ Φ, there exists a
LC(SU(2)) subalgebra of g with basis {hα, eα, e−α}, with
commutators: [hα, e±α] = ±2e±α, [eα, e−α] = hα.

Proof: Clear from above.

Definition: The LC(SU(2)) subalgebra correspond-
ing to the roots ±α is called sl(2)α.

Definition: Let α, β ∈ Φ. We define the α root string
passing through β (for α 6= β) to be the set of roots:

Sα,β = {β + ρα ∈ Φ : ρ ∈ Z}.

Define also the vector subspace:

Vα,β = spanC{eβ+ρα : β + ρα ∈ Sα,β}.

Theorem (Quantisation Condition): Let Sα,β be a root
string with parameter ρ. Then for ρ = n− to ρ = n+, all
values of β + ρα are roots (the string is ‘unbroken’), where
n+ and n− must satisfy:

2(α, β)

(α, α)
= −(n+ + n−) ∈ Z.

Proof: Consider the adjoint representation of sl(2)α on
Vα,β . We have:

[hα, eβ+ρα] =
2(α, β + ρα)

(α, α)
eβ+ρα =

(
2(α, β)

(α, α)
+ 2ρ

)
eβ+ρα ∈ Vα,β ,

[e±α, eβ+ρα] ∝

{
eβ+(ρ±1)α ∈ Vα,β , if β + (ρ± 1)α ∈ Φ,

0 ∈ Vα,β , otherwise.

So Vα,β is a valid representation space. We have also cal-
culated the weights above. They are:

SR =

{
2(α, β)

(α, α)
+ 2ρ : β + ρα ∈ Φ

}
.

Each of these weights has multiplicity one, and the
representation space is finite, so the representation R is
irreducible and finite-dimensional.

But we’ve classified these: R = RΛ for some highest
weight Λ ∈ Z≥0. It follows the weight set is also equal to

S′R = {−Λ,−Λ + 2, ...,Λ} = SR.

So for some ρ = n− and ρ = n+ we have:

−Λ =
2(α, β)

(α, α)
+ 2n−, Λ =

2(α, β)

(α, α)
+ 2n+.

Since all weights in the original S′R must occur, and all
differ by 2, and all possible weights in the original SR
differ by 2, all possible roots β + ρα must occur between
n− ≤ ρ ≤ n+ for the weight sets to be equal.

Finally, adding the two conditions on Λ, n±, we get
the quantisation condition.

Two slogans:

1. For any two roots, α, β, we have quantisation:

2(α, β)

(α, α)
∈ Z.

2. The α root string passing through β, Sα,β is equal to
(for some n−, n+ as yet undetermined):

Sα,β = {β + nα : n ∈ Z, n− ≤ n ≤ n+}.

All of its members are roots of the Lie algebra.
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6.6 Real geometry of the roots

In this section, we aim to show that the inner product of
roots is a real Euclidean inner product.

Theorem: The matrix of the Killing form is given
by:

κij =
∑
δ∈Φ

δiδj .

Proof: Work in the un-normalised Cartan-Weyl basis.
Here, we have [Hi, Eδ] = δiEδ for any δ ∈ Φ. Hence:

κij = κ(Hi, Hj) = tr (adHi ◦ adHj ) .

Diagonalise both adHi and adHj , multiply their matrices
together, then take the trace to see the result.

Definition: We define a root αi with lowered indices
by: αi = (κ−1)ijα

j ; that is, we use κ as a metric for raising
and lowering indices.

Theorem: For any two roots, (α, β) ∈ R.

Proof: We have:

(α, β) = αiβj(κ−1)ij = αiβjκ
ij =

∑
δ∈Φ

αiδ
iδjβj

=
∑
δ∈Φ

(α, δ)(β, δ).

Divide by (α, α)(β, β), and multiply through by 4 to get:

2

(β, β)
· 2(α, β)

(α, α)︸ ︷︷ ︸
∈Z

=
∑
δ∈Φ

2(α, δ)

(α, α)

2(β, δ)

(β, β)︸ ︷︷ ︸
∈Z

.

If (α, β) = 0, we’re done. Otherwise, we can deduce
(β, β) ∈ R\{0}. Then by 2(α, β)/(β, β) ∈ Z, we have
(α, β) ∈ R.

Theorem: The roots Φ span h∗, the dual of the Car-
tan subalgebra.

Proof: Suppose not. Then there exists λ ∈ h∗ with
no component in the direction of any of the roots α:

(λ, α) = (κ−1)ijλ
iαj = κijλiαj = 0.

Then for Hλ = λiH
i ∈ h, obeying [Hλ, H] = 0 and

[Hλ, E
α] = (λ, α)Eα = 0. Hence [Hλ, X] = 0 for all X,

so spanC{Hλ} is a non-trivial ideal. Contradiction as g is
simple.

Hence choose r roots {α(i)} which provide a basis for h∗.

Definition: Define the real subspace of the Cartan
subalgebra to be h∗C = spanR{α(i)}.

Theorem: h∗ = h∗R.

Proof: Clearly, h∗R ⊆ h∗. Conversely, let β ∈ h∗.
Then for some βi:

β =

r∑
i=1

βiα(i) ⇒ (β, α(j)) =

r∑
i=1

βi(α(i), α(j)).

Since (α(i), α(j)) essentially defines a matrix, which is
invertible by non-degeneracy of the inner product, we can
invert to get βi ∈ R (since all inner products real).

Theorem: For all roots λ, we have (λ, λ) ≥ 0 with
equality if and only if λ = 0.

Proof: By the expression for the Killing form above,
we have:

(λ, λ) =
∑
δ∈Φ

λiδ
iλjδ

j =
∑
δ∈Φ

(λ, δ)2 ≥ 0,

since (λ, δ) ∈ R. There is equality iff (λ, δ) = 0 for all δ ∈ Φ,
hence λ = 0 since inner product non-degenerate.

Real geometry: The roots α ∈ Φ are in a real vec-
tor space h∗R

∼= Rr, of dimension r, equipped with a
Euclidean inner product (·, ·) obeying:

(a) (α, β) ∈ R;

(b) (α, α) ≥ 0, with equality iff α = 0.

Definition: Since (α, α) > 0 for all roots, can define the
length of a root |α| = (α, α)1/2. We can also define the an-
gle φ between the roots α and β by (α, β) = |α||β| cos(φ).

Theorem: The angle between the roots is one of{
0,
π

2
, π,

π

6
,
π

4
,
π

3
,

2π

3
,

3π

4
,

5π

6

}
.

Proof: The angle is constrained by:

2(α, β)

(α, α)
= 2
|β|
|α|

cos(φ) ∈ Z,
2(β, α)

(β, β)
= 2
|α|
|β|

cos(φ) ∈ Z.

So multiplying these, need 4 cos2(φ) ∈ Z, so 4 cos2(φ) =
0, 1, 2, 3 or 4. Hence cos(φ) = ±

√
n/2, for n ∈ {0, 1, 2, 3, 4}.

This gives the possibilities above.
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6.7 Simple roots

The roots live in h∗R
∼= Rr, and there are only finitely many

of them. So we can pick a hyperplane splitting the roots in
half (since there are only finitely many banned directions
from the roots, and a continuous degree of freedom
associated with the normal to the hyperplane).

Definition: For a choice of hyperplane splitting the
roots Φ into Φ+ and Φ−, we call the roots in Φ+ the
positive roots and the roots in Φ− the negative roots.

Theorem: (i) If α ∈ Φ+, then −α ∈ Φ−; (ii) If α, β
are positive (negative) roots, and α + β is a root, then
α+ β is a positive (negative) root.

Proof: Obvious from hyperplane definition.

Definition: A simple root is a positive root which
cannot be written as a sum of two positive roots. We
denote the set of simple roots by ΦS .

Theorem (Simple root properties): Let α,β be sim-
ple roots throughout. The following hold.

(i) α− β is not a root.

(ii) The α string passing through β has length:

lα,β = 1− 2(α, β)

(α, α)
.

(iii) (α, β) ≤ 0.

(iv) Any positive root γ ∈ Φ+ can be written as a linear
combination of simple roots with positive integer coef-
ficients:

γ =
∑
i

ciα(i).

(v) Simple roots are linearly independent.

(vi) There are exactly r simple roots, |ΦS | = r, where r is
the rank of g.

(vii) The simple roots are a basis for h∗R.

Proof: (i) If α − β is a root, then either α − β is a pos-
itive root, or β − α is a positive root. In the first case,
α = α − β + β, so we have a contradiction. Similarly for
latter case.

(ii) Recall the string is

Sα,β = {β + nα : n ∈ Z, n− ≤ n ≤ n+},

with
(n+ + n−) = −2(α, β)

(α, α)
∈ Z.

Since α, β are simple, β − α 6∈ Φ by (i), so n− = 0. Hence
n+ = −2(α, β)/(α, α), and the length of the string is lα,β =
n+ + 1 = 1− 2(α, β)/(α, α).

(iii) In (ii), note n+ ≥ n− = 0, so n+ ≥ 0. Hence
−2(α, β)/(α, α) ≥ 0. Recall (α, α) ≥ 0, and result follows.

(iv) Trivial if γ ∈ ΦS . If not, γ = β1 + β2, for β1, β2 ∈ Φ.
Iterate until get solely simple roots. Terminates since
all coefficients are positive, and there are finitely many
positive roots.

(v) Consider all vectors λ ∈ h∗R of the form

λ =
∑
i∈J

ciα(i),

where J indexes the simple roots α(i). For linear indepen-
dence, we need λ 6= 0 always. Define:

λ+ =
∑
i∈J+

ciα(i), λ− = −
∑
i∈J−

ciα(i),

where J+ = {i ∈ J : ci > 0} and J− = {i ∈ J : ci < 0}.
Then λ = λ+ − λ−. So we have:

(λ, λ) = (λ+, λ+) + (λ−, λ−)− 2(λ+, λ−)

> −2(λ+, λ−) = 2
∑
i∈J+

∑
j∈J−

cicj(α(i), α(j)) > 0,

since cicj < 0 in the sum and (α(i), α(j)) < 0 as these are
simple roots. Hence (λ, λ) > 0, and thus λ 6= 0.

(v) and (vi). From (iv) the simple roots span Φ+.
Simply taking negative of any root in Φ+ generates all
roots in Φ−, hence simple roots span all of Φ. Simple roots
are LI by (iv). So simple roots are a basis for h∗R and there
are hence exactly r of them (the dimension of h∗ = h∗R).

Definition: We encode all inner products between
the roots in the r × r Cartan matrix :

Aij :=
2(α(i), α(j))

(α(j), α(j))
.

Note all of the entries are integers, but that Aij is not, in
general, symmetric.

6.8 The Chevalley basis

The Cartan matrix allows us to define the Chevalley basis
of the Lie algebra.

Definition: Define hi = hα(i) and ei± = e±α(i) , where α(i)

are the simple roots, and hα, eα are the generators of the
normalised Cartan-Weyl basis. The Chevalley basis is the
basis of the Lie algebra generated by {hi, ei±}.
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Theorem: In the Chevalley basis, the commutators of the
Lie algebra are:

[hi, hj ] = 0, [hi, ej±] = ±Ajiej±, [ei+, e
j
−] = δijh

i,

subject to the Chevalley-Serre relations:

(adei±)1−Ajiej± = 0.

Proof: The first commutator is obvious, since hi, hj are in
the Cartan subalgebra. The second is:

[hi, ej±] = [hα(i) , e±α(j) ] = ±
2(α(i), α(j))

(α(i), α(i))
e±α(j) = ±Ajiej±.

The third is: [ei+, e
j
−]

= [eα(i) , e−α(j) ] =


nα(i),α(j)

eα(i)−α(j) , if α(i) − α(j) ∈ Φ,

hα(i) , if α(i) = α(j),

0 otherwise.

But α(i) − α(j) is not a root. So first case cannot occur. So
find: [ei+, e

j
−] = δijh

i as required.

Finally, need the Chevalley-Serre relations. Consider
for example:

[ei+, e
j
+] ∝

{
eα(i)+α(j) , if α(i) + α(j) ∈ Φ,

0 otherwise.

Similarly:

(adei+)nej+ ∝

{
enα(i)+α(j) , if nα(i) + α(j) ∈ Φ,

0 otherwise,

and so the question comes down to lengths of root strings.
In particular, we know that the α(i) root string passing
through α(j) is

α(j), α(j) + α(i), α(j) + 2α(i), ...

and we know its length is 1 − Aji. Hence the Chevalley-
Serre relations follow.

6.9 The Cartan classification

Theorem (Cartan Classification Version I):
A finite-dimensional, simple, complex Lie algebra g is
uniquely determined by its Cartan matrix.

Proof: From the above commutation relations. It can
be shown that these generate the full Lie algebra by
taking repeated brackets and using the Chevalley-Serre
relations.

6.10 Constraints on the Cartan matrix

Lemma: If α is a root, then kα is a root iff k = ±1.

Proof: Consider Sα,α = spanC{α + lα : l ∈ C},
the generalised α string passing through α. Let
Vα,α = spanC({hα} ∪ {eα+lα : α+ lα ∈ Φ, l ∈ C}).

Clearly Vα,α is a rep space for sl(2)α. Therefore, we
know the weights of sl(2)α acting on Vα,α. Note that

[hα, eα+lα] = (2 + 2l)eα+lα.

Thus for all l, 2 + 2l is a weight of a rep of sl(2)α. But there
are finitely many of these, and they are all integers, so
l ∈ Z.

We know that ±α are roots, so Vα,α already contains
eα, hα, e−α, so already contains an irrep of sl(2)α, namely
the adjoint irrep.

Now suppose kα is a root for k > 1. Then the low-
ering operator implies that ekα is in the same irrep of
sl(2)α as ekα−1, ekα−2, etc. down to eα. So eα appears in
two irreps.

But irreps are linearly independent spaces of Vα,α.
Contradiction. Similarly for kα, where k < −1.

Theorem: The Cartan matrix Aij obeys:

(i) Aii = 2;

(ii) Aij = 0 if and only if Aji = 0;

(iii) Aij ∈ Z≤0 for i 6= j.

(iv) det(A) > 0;

(v) For simple Lie algebras, the Cartan matrix is irre-
ducible.

(vi) AijAji ∈ {0, 1, 2, 3}.

Proof: (i) Obvious by definition; (ii) by symmetry of inner
product; (iii) for simple roots, (α(i), α(j)) ≤ 0.

For (iv), notice that (κ−1)ij = (α(i), α(j)) is a
symmetric matrix, so can be diagonalised. So if
vρ is the eigenvector with eigenvalue ρ, we have
0 < (vρ, vρ) = (κ−1)ijv

i
ρv
j
ρ = ρ

∑
i(v

i
ρ)

2. Thus ρ > 0,
and it follows det(κ−1) > 0.

The Cartan matrix is Aij = (κ−1)ikD j
k , where D j

k =

2δ j
k /(α(j), α(j)). Then det(A) = det(κ−1) det(D) > 0.

(v) is genuinely hard.

(vi) Use Cauchy-Schwarz and the Lemma above.
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6.11 Dynkin diagrams

Definition: The Dynkin diagram of a Lie algebra is a graph
constructed from the Cartan matrix as follows:

1. Draw a node for each simple root α(i) ∈ ΦS .

2. Join the nodes corresponding to the simple roots α(i),
α(j) by some lines. The number of lines we use is:

max{|Aij |, |Aji|} ∈ {0, 1, 2, 3}.

3. If the roots have different lengths, draw an arrow point-
ing from the node corresponding to the longer root to-
wards the shorter root.

All possible Dynkin diagrams were classified by Cartan:

Theorem (Cartan Classification Version II):
A finite-dimensional, simple, complex Lie algebra is
uniquely determined by its Dynkin diagram, which must
be one of the following types:

1. An ∼= LC(SU(n+ 1)).

2. Bn ∼= LC(SO(2n+ 1)).

3. Cn ∼= LC(SP (2n)).

4. Dn
∼= LC(SO(2n)).

5. E6.

6. E7.

7. E8.

8. F4.

9. G2.

6.12 Example Dynkin diagram constraints

Theorem: Dynkin diagrams:

(i) cannot contain any closed loops;

(ii) each vertex meets at at most 3 lines.

Proof: WLOG work with α(i), the normalised simple roots,
i.e. |α(i)| = 1.

(i) Let 1, 2, ..., k be a loop of nodes containing no
subloops. Let the corresponding roots be α(i). Since there
are no subloops, the only non-vanishing inner products
between the α(i)’s are: (α(i), α(i+1)) (with α(k+1) ≡ α(1)).
Also:

|2(α(i), α(i+1))|︸ ︷︷ ︸
Ai,i+1

≥ 1 ⇒ (α(i), α(i+1)) ≤ −
1

2
.

This is because Aij = 0 iff Aji = 0, and since we have
at least one edge between i and i + 1, need |Ai,i+1| ≥ 1.
Also the inner product of simple roots is negative.

Define χ = α(1) + ...+ α(k). Then

(χ, χ) =

k∑
i=1

(α(i), α(i)) + 2

k∑
i=1

(α(i), α(i+1) ≤ k −
2

2
k = 0.

Hence χ = 0. Contradiction since simple roots are linearly
independent.

(ii) Let α be a normalised simple root connected to
the root α(i) by ni edges. If i 6= j, (α(i), α(j)) = 0 as there
are no closed loops. Set

χ = α−
∑
i

(α, α(i))α(i).

Then (χ, α(i)) = 0, and so:

1 = (α, α) = (χ, χ) +
∑
i

(α, α(i))
2 = (χ, χ) +

1

4

∑
i

ni.

But χ cannot vanish by linear independence, so
∑
i ni < 4.

So α can have at most 3 edges emanating from it.

In general, the trick to proving these things is to come
up with a clever χ, somehow consider (χ, χ) (perhaps
indirectly as in (ii)), and use linear independence of the
roots (equivalent to (χ, χ) 6= 0).
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7 Reconstructing Lie algebras

7.1 Example: Root system of A2

Consider the Cartan matrix:

A =

(
2 −1
−1 2

)
.

This tells us g has two simple roots α, β, with

2(α, β)

(α, α)
=

2(α, β)

(β, β)
= −1.

Thus |α| = |β| and the angle between the roots is 2π/3.
To find the remaining roots, we use root strings:

Theorem: All the roots of the Lie algebra are gener-
ated by the following algorithm:

1. Let S = ΦS , the set of simple roots.

2. For each α ∈ ΦS , compute the α string through each
s ∈ S, and add all resulting elements to S.

3. Continue until we get no new elements of S from an
application of Step 2.

4. S then contains all positive roots. Full root set is S ∪
(−S).

So in our case start with S = {α, β}. Start with α strings.
We have lα,β = 1 − 2(α, β)/(α, α) = 2. So β, α + β are
roots; add them to our set: S = {α, β, α+ β}.

Next, lα,α+β = 1 − 2(α, α + β)/(α, α) = 0, so no
new roots here.

Now compute the β strings. We have lβ,α = 2, so
α, α + β are roots. Finally, lβ,α+β = 0, so we’re done.
We’ve found all positive roots: α, β, α+ β.

So the root system of A2 is {±α,±β,±(α+ β)}.

7.2 Example: recovering Lie brackets

We can now recover all Lie brackets of A2. In the Cartan-
Weyl basis, we have:

[hα1 , hα2 ] = 0,

[hα1 , eα2 ] =
2(α1, α2)

(α1, α1)
eα2 ,

[eα1 , eα2 ] =


nα1,α2e

α1+α2 , if α1 + α2 ∈ Φ,

hα1 , if α2 = −α1,

0 otherwise.

How do we figure out the normalisation constants nα1,α2
,

which up to now have been undetermined?

Idea: Let θ = α + β. Fix the normalisation constants by
considering [eθ, e−θ], which is given by:

[eθ, e−θ] = hθ = hα + hβ .

Expand this in three ways:

1. Expand first argument of bracket:

[eθ, e−θ] =
1

nα,β
[[eα, eβ ], e−θ]

= − 1

nα,β

(
[[eβ , e−θ], eα] + [[e−θ, eα], eβ ]

)
=
nβ,−θ
nα,β

hα +
n−θ,α
nα,β

hβ .

So nβ,−θ = nα,β = n−θ,α.

2. Expanding the second argument, we get n−β,θ =
nθ,−α = n−α,−β similarly.

3. Finally, expand both arguments at the same time:

[eθ, e−θ] =
1

nα,βn−α,−β
[[eα, eβ ], [e−α, e−β ]]

Define X = [e−α, e−β ]. Then using Jacobi, we have:

[eθ, e−θ] = − 1

nα,βn−α,−β

(
[[X, eα], eβ ] + [[eβ , X], eα]

)
.

We have: [X, eα] = −[hα, e−β ] (using Jacobi and fact
α − β is not a root), and [eβ , X] = [eα, hβ ]. We’re
free to set all roots lengths to 1; then using our knowl-
edge of the roots system above (in particular (α, β) =
cos(2π/3) = −1/2, we’re left with:

[eθ, e−θ] = − 1

nα,βn−α,−β
(hα + hβ).

It follows nα,β = −n−α,−β .

Hence we’ve fixed all brackets in terms of a single nor-
malisation constant nα,β . Rescaling eθ, we can fix this to a
desired value.

8 More representations

8.1 Definitions

We can generalise our treatment of the reps of LC(SU(2))
to general Lie algebras g.

Let R be an N -dimensional rep of g. Let Hi be the
Cartan generators. Assume R(Hi) is diagonalisable.
Then

Theorem: {R(Hi)} are simultaneously diagonalis-
able.

Proof: R is a rep, so [R(Hi), R(Hj)] = R([Hi, Hj ]) = 0.
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Hence the representation space V ∼= CN is spanned by
simultaneous eigenvectors of {R(Hi)}:

Definition: Let Vλ be the eigenspace defined by

Vλ = {v : R(Hi)v = λiv, λ = (λ1, ..., λN ) ∈ CN}.

We call λ ∈ h∗ the weights of the representation. We call
the set of weights SR = {λ} the weight set. By our previous
work, we can decompose the representation space V as:

V =
⊕
λ∈SR

Vλ.

The multiplicity of the weight λ is the dimension of Vλ.

Example: The roots of the Lie algebra are the weights of
the adjoint representation R(X) = adX .

Theorem: Let v ∈ Vλ. The reps of the step opera-
tors R(Eα) obey:

R(Eα)v

{
∈ Vλ+α if λ+ α ∈ SR;

= 0 otherwise.

Proof: We have

R(Hi)R(Eα)v = R(Eα)R(Hi)v + [R(Hi), R(Eα)]v

= λiR(Eα)v +R([Hi, Eα])v

= (λi + αi)R(Eα)v.

Since both roots and weights are in h∗, we can con-
sider their inner product. We find we can generalise the
quantisation condition as:

Theorem (Quantisation Condition II): For λ ∈ SR,
and α ∈ Φ:

2(α, λ)

(α, α)
∈ Z.

Proof: Consider the action of sl(2)α generators:
{R(hα), R(eα), R(e−α)} on V . Each generators defines a
linear map V → V , so V is a valid representation space.
For any v ∈ Vλ, we have (by normalisation of Cartan-Weyl
basis):

R(hα)v =
2

(α, α)
(κ−1)ijα

iR(Hj)v =
2

(α, α)
(κ−1)ijα

iλjv

=
2(α, λ)

(α, α)
v.

The coefficient is a weight of R, and all weights of
LC(SU(2)) representations are integers, so have result.

8.2 Root and weight lattices

Definition: The root lattice of a Lie algebra is

L[g] =

{
r∑
i=1

miα(i) : mi ∈ Z

}
= spanZ

{
α(i) : i = 1, ..., r

}
,

where the α(i) are the simple roots.

Note that all roots in Φ lie in the root lattice (from
Properties of Simple Roots Theorem), but not all points in
the root lattice correspond to roots.

Definition: Define the simple co-roots by:

α̂(i) =
2α(i)

(α(i), α(i))
,

and the co-root lattice by

L̂[g] = spanZ
{
α̂(i) : i = 1, 2, ..., r

}
.

Definition: The weight lattice LW [g] is the lattice
dual to the co-root lattice:

LW [g] = {λ ∈ h∗R : (λ, µ) ∈ Z, µ ∈ L̂[g]}.

Writing µ = α̂(i)ni for integers ni, the condition for λ to be
in LW [g] becomes:

2(α(i), λ)

(α(i), α(i))
∈ Z.

Note: Quantisation Condition II then exactly says: for any
representation R, all of its weights λ lie in the weight lattice
LW [g]. Note the converse is not true.

Definition: Given a basis for L̂[g], B = {α̂(i)}, de-
fine the dual basis for LW [g] by B∗ = {ω(i)}, where ω(i)

are called the fundamental weights and are determined
by: (α̂(i), ω(j)) = δij , i.e.

2(α(i), ω(j))

(α(i), α(i))
= δij .

Since the simple roots span h∗R, we may write

ω(j) =

r∑
k=1

Bjkα(k).

Substituting into the quantisation condition, we have
BjkA

ki = δ i
j . It follows that B is the inverse of the Car-

tan matrix. So we may write:

α(i) =

r∑
j=1

Aijω(j).
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Example: Consider A2, with Cartan matrix:

A =

(
2 −1
−1 2

)
.

We have:

α(1) = 2ω(1) − ω(2), α(2) = −ω(1) + 2ω(2).

Hence

ω(1) =
1

3

(
2α(1) + α(2)

)
, ω(2) =

1

3

(
α(1) + 2α(2)

)
.

Definition: For any weight λ in SR ⊆ LW [g], we can
write

λ =

r∑
i=1

λiω(i).

We call the integers {λi} the Dynkin labels of λ.

8.3 Highest weight representations

Definition: The highest weight of a finite-dimensional rep-
resentation R of g is a weight

Λ =

r∑
i=1

Λiω(i)

with Λi ∈ Z≥0 such that its corresponding eigenvector vΛ

obeys
R(Hi)vΛ = ΛivΛ, R(Eα)vΛ = 0.

We call the integers Λi the Dynkin labels of the represen-
tation.

We can rephrase the step operator condition using
the result about R(Eα)v. We have that R(Eα)vΛ = 0 for
all α ∈ Φ+ iff Λ + α is not a weight for all α ∈ Φ+.

All weights can be generated from the highest weight
using lowering operators. This is encoded in the result:

Theorem: If

λ =

r∑
i=1

λiω(i)

is a weight, then
λ−m(i)α(i)

is a weight for all m(i) ∈ Z with 0 ≤ m(i) ≤ λi, i = 1, 2, ..., r.

Proof: Encodes fact we get weights from lowering
operators.

8.4 Irreps of A2
∼= LC(SU(3))

Notation: Write R(Λ1,Λ2) for the irrep of A2 with highest
weight Λ = (Λ1,Λ2).

Example: Consider A2
∼= LC(SU(3)) = {3 ×

3 traceless matrices} in the fundamental representa-
tion. Recall that the Cartan subalgebra is generated
by

H1 =

1 0 0
0 −1 0
0 0 0

 , H2 =

0 0 0
0 1 0
0 0 −1

 .

and therefore the simultaneous evectors are v1 = (1, 0, 0)T

(weight (1, 0)T ), v2 = (0, 1, 0)T (weight (−1, 1)T ) and
v3 = (0, 0, 1)T (weight (0,−1)T ).

The step operators are just matrices with a single one on
an off-diagonal. Thus we can very quickly calculate the
roots of the Lie algebra to be

{(2,−1)T , (1, 1)T , (−1, 2)T , (−2, 1)T , (−1,−1)T , (1,−2)T ,0}.

(0 is included by convention.) Splitting these into positive
and negative roots, we choose

Φ+ = {(2,−1)T , (1, 1)T , (1,−2)T }.

Then the simple roots are α(1) = (1, 1)T and
α(2) = (1,−2)T . Using our calculation above, it fol-
lows that ω(1) = (1, 0)T and ω(2) = (1,−1)T .

Examining the weights we calculated above, we see
the only weight which when added to any of the Φ+

elements does not become a weight is (1, 0)T = ω(1).
Hence the Dynkin label of the fundamental representation
is (Λ1,Λ2) = (1, 0).

Example: If we’d have known the Dynkin labels be-
fore, we could have constructed all the weights of A2’s
fundamental representation imemdiately:

(1, 0) →
−α(1)

(−1, 1) →
−α(2)

(0,−1).

So the weights are ω(1),−ω(1) + ω(2) and −ω(2). In
particular, dim(R(1,0)) = 3, as expected.

Example: The adjoint representation of A2 has weights
equal to the roots. Adding all elements of Φ+ to all roots
that we calculated above, we see that the highest weight
is (2,−1)T = ω(1) + ω(2). Hence its Dynkin label is (1, 1).

Again, if we’d known this beforehand, we’d have cal-
culated the roots to be:

S = {0, ω(1) + ω(2),−ω(1) + 2ω(2), ω(1) − 2ω(2),−ω(1) − ω(2),

2ω(1) − ω(2),−2ω(1) + ω(2)}.
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Note there are seven weights, so the dimension of R(1,1)

is at least 7. Could there be degenerate weights?

In this case, there obviously are. The Cartan subal-
gebra contains 2 linearly independent elements, H1 and
H2, so R(Hi)H1 = 0 and R(Hi)H2 = 0. So the root 0 has
multiplicity 2. Thus the dimension of R(1,1) is 8.

In general, we can check dimensions using:

Theorem: The dimension of R(Λ1,Λ2) is:

dim(R(Λ1,Λ2)) =
1

2
(Λ1 + 1)(Λ2 + 1)(Λ1 + Λ2 + 2).

Proof: Requires an understanding of character formulae,
so beyond scope of course.

We note that this is symmetric in Λ1 and Λ2. This is
due to the existence of the conjugate representation:
R(Λ2,Λ1) = R(Λ1,Λ2).

Definition: Physicists use the following notation for
A2 irreps. They denote the irrep by n, where n is the
dimension of the irrep. If the Dynkin label of the irrep is
(Λ1,Λ2), and satisfies Λ2 > Λ1, they put an overline, n, to
be suggestive of the conjugate irrep.

Example: The fundamental representation is written
3. The anti-fundamental representation is written 3.

8.5 Graphical techniques for A2

In the above, we calculated the roots α of A2 with respect
to the Cartan subalgebra span{H1, H2}. It is important to
realise that expressions like α = (2,−1)T are in this basis;
they say that α acts as α(H1) = 2 and α(H2) = −1.

In this basis, the root diagram for A2 looks like:

H1

H2

This is not very symmetric. Perhaps a better choice of
Cartan subalgebra basis would help?

Theorem: With the basis

H ′
1

=
1

2

1 0 0
0 −1 0
0 0 0

 , H ′
2

=
1

2
√

3

1 0 0
0 1 0
0 0 −2

 ,

for the Cartan subalgebra, the root system for the Lie al-
gebra A2 becomes

±

(1, 0)T ,

(
−1

2
,

√
3

2

)T
,

(
1

2
,

√
3

2

)T .

In particular, α(1) = ( 1
2 ,
√

3
2 ) and α(2) = ( 1

2 ,−
√

3
2 ).

Proof: We notice that

α(H ′
1
) =

1

2
α(H1), α(H ′

2
) =

√
3

6
(α(H1) + 2α(H2)).

So the rule for conversion is: the new first component is
half the hold one, and then new second component is the
sum of the old first one and twice the old second one,
multiplied by

√
3/6.

This is much prettier, with root diagram now a nice
neat hexagon:

H ′
1

H ′
2

Why did this work? Well, in our original basis, the inner
product (α1, α2) involved a non-diagonal Killing form,
since the Hi were not orthogonal with respect to the
Killing form. Therefore, (α1, α2) seemed like a ‘stretched
version’ of our Euclidean inner product (in particular, the
‘dot product’ between two roots doesn’t give a cosine - we
need a matrix in the middle).

The new basis is actually orthonormal with respect
to the Killing form, so it looks directly comparable to the
standard Euclidean inner product.

The new basis has provided a lot more symmetry for
our root diagram. This will be particularly helpful in the
following example.
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Example: Consider the rep R(3,0) of A2. In physicist’s no-
tation, this is 10, since it is 10-dimensional by the formula
above. The weights of the representation are given by the
standard algorithm applied to the Dynkin label (3, 0):

{0, 3ω(1), ω(1) + ω(2), 2ω(1) − ω(2),−2ω(1) + ω(2),

−ω(1) − ω(2),−ω(1) + 2ω(2), ω(1) − 2ω(2),

−3ω(1) + 3ω(2),−3ω(2)}

In the new symmetric basis, we have

ω(1) =
1

3
(2α(1) + α(2)) =

(
1

2
,

√
3

6

)

and ω(2) =
(

1
2 ,−

√
3

6

)
. Hence the weight diagram in this

case takes the form:

The roots are drawn as red pluses for comparison.

One question that we’ve come to ask very often about
representations is whether we can decompose them into
irreps. In this case, we can decompose everything into
sl(2)α irreps graphically as follows (here, α is any root - it
doesn’t matter which we pick by their inherent symmetry,
manifest in the diagram and the fact sl(2)α depends on
the pair of roots ±α).

Write RΛ for the sl(2)α irrep of dimension Λ + 1. Now the
only thing we need do is recall that sl(2)α has a represen-
tation on Vα,β = spanC{eβ+ρα : β + ρα ∈ Φ, ρ ∈ Z}, for
each β.

It follows from this fact that we get different repre-
sentations of sl(2)α depending on our choice of β. Picking
any α as our starting point, and looking at lines parallel to
α through the roots, we see that there are 4 roots in one of
the Vα,β , 3 in another, 2 in another and 1 in the last.

So we see immediately that the decomposition must
be of the form:

10 = R3 ⊕R2 ⊕R1 ⊕R0.

We can use similar graphical techniques to evalute tensor
products of A2 representations. We need the following
Theorem:

Theorem: Let R and R̃ be irreps of a Lie algebra g
with rep spaces V , Ṽ and weight space decompositions:

V =
⊕
λ∈S

Vλ, Ṽ =
⊕
λ′∈S̃

Ṽλ,

where S and S̃ are their respective weight sets. Then the
weight set of R⊗ R̃ is

SR⊗R̃ = {λ+ λ′ : λ ∈ S, λ′ ∈ S̃}.

Proof: We have vλ, ṽλ′ such that R(Hi)vλ = λivλ and
R̃(Hi)ṽλ′ = λ′

i
ṽλ′ . Hence (R⊗ R̃)(Hi)(vλ ⊗ ṽλ′) =

R(Hi)vλ ⊗ ṽλ′ + vλ ⊗ R̃(Hi)ṽλ′ = (λ+ λ′)i(vλ ⊗ ṽλ′).

Example: Consider 3 ⊗ 3. By the standard algorithm, we
have that 3 and 3 have respective weight sets:

S(1,0) = {ω(1),−ω(1) + ω(2),−ω(2)},
S(0,1) = {ω(2), ω(1) − ω(2),−ω(1)}.

Inserting the numerical values of ω(1) and ω(2) in our nu-
merical basis, we get the weight diagrams:

On the left is the fundamental rep, on the right is the
anti-fundamental rep. To work out the weight set of the
tensor product, recall that we add the weights of the
factors in all possible ways.

Doing so, we produce the weight diagram for 8 together
with the weight diagram for 1. We deduce that 3⊗3 = 8⊕1.

Example: It’s easy, but not essential, to use graphi-
cal methods. Standard algebraic methods work just as
well. For example, to find 3⊗ 3⊗ 3, we first work out 3⊗ 3.

Summing the elements of the weight sets of 3 and 3
in all possible ways, we find: S3⊗3 = {(2, 0), (0, 1), (1,−1),
(0, 2), (−2, 2), (−1, 0), (1,−1), (−1, 0), (0,−2)}.

Note the highest weight here is (2, 0); computing the
weight set of R(2,0) = 6 and subtracting, we see that
3⊗ 3 = 6⊕ 1. Iterating, we find 3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10.
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8.6 Irreps of B2
∼= LC(SO(5))

Example: The Cartan matrix of B2 is(
2 −2
−1 2

)
.

It’s possible to show that the Dynkin labels of the funda-
mental representation are again (1, 0). Thus using:

α(1) = 2ω(1) − 2ω(2), α(2) = −ω(1) + 2ω(2),

we have that the weights of the fundamental rep are:

{ω(1),−ω(1) + 2ω(2), 0, ω(1) − 2ω(2),−ω(1)}.

Note the dimensions are correct for the fundamental rep.

Example: Let’s consider the adjoint rep of B2. Again, the
weights are just the roots of the Lie algebra. If we set
|α(2)| = 1, then the Cartan matrix implies |α(1)| =

√
2 and

the angle between them is 3π/4.

By considering root strings, we can work out all the
roots to be:

±{α(1), α(1) + α(2), α(1) + 2α(2), α(2)}.

We can therefore sketch the root system as:

α(2)

α(1)

It’s now easy, by considering adding roots together, to
identify that the highest weight is 2ω(2) = α(1) + 2α(2).
Therefore the Dynkin label is (0, 2) for the adjoint repre-
sentation of B2.

Applying our standard algorithm now, we have that
the weights are:

±{0, 2ω(2), ω(1),−2ω(2) + 2ω(1), 2ω(2) − ω(1)}.

Again, 0 has multiplicity 2 because the Cartan subalgebra
has dimension 2 here, since it’s generated by the matrices:

H1 =


0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , H2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

 .

(Recall the general form of the CSA for LC(SO(2n + 1)),
from earlier in these notes.)

ASIDE: While we’re discussing LC(SO(5)), it’s worth men-
tioning the form of its step operators, since these are not
too obvious. There are step operators:

F± =


0 0 1 ±i 0
0 0 ±i −1 0
−1 ∓i 0 0 0
∓i 1 0 0 0
0 0 0 0 0

 , G± =


0 0 ±i 1 0
0 0 −1 ±i 0
∓i 1 0 0 0
−1 ∓i 0 0 0
0 0 0 0 0

 ,

which are generic to both LC(SO(2n)) and LC(SO(2n+1)),
as we saw earlier. However there are additional ones for
the odd matrices, as in LC(SO(5)):

E±1 =


0 0 0 0 1
0 0 0 0 ±i
0 0 0 0 0
0 0 0 0 0
−1 ∓i 0 0 0

 , E±2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 ±i
0 0 −1 ∓i 0

 .

Example: Consider the tensor product of B2 repre-
sentations R(0,1) ⊗ R(0,1). The weight set of R(0,1)

is

S(0,1) = {ω(2), ω(1) − ω(2),−ω(1) + ω(2),−ω(2)}.

Adding this to itself in all possible ways, and comparing to
the weight sets we’ve calculated above, we see that

R(0,1) ⊗R(0,1) = R(0,2) ⊕R(1,0) ⊕R(0,0).

9 Symmetries in quantum theory

9.1 Symmetries and conserved quantities

Definition: A symmetry transformation of a quantum
system is a transformation |ψ〉 7→ U |ψ〉 for U a unitary op-
erator such that UHU† = H, where H is the Hamiltonian.

Theorem: Symmetry transformations (i) preserve the
inner product; (ii) leave the energy levels of the system
invariant.

Proof: (i) 〈ψ1|ψ2〉 7→ 〈ψ1|U†U |ψ2〉 = 〈ψ1|ψ2〉
since unitary. (ii) Suppose H |ψ〉 = E |ψ〉. Then
since UHU† = H ⇒ [H,U ] = 0, we have
HU |ψ〉 = UH |ψ〉 = EU |ψ〉.

Definition: A conserved quantity is an observable θ,
i.e. a Hermitian operator, obeying [θ,H] = 0.

Since U = eisθ is unitary for all s (since iθ is anti-
Hermitian), we have [H,U ] = 0 also, and thus |ψ〉 → U |ψ〉
is a symmetry transformation. This is the quantum form of
Noether’s Theorem.
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Theorem: Let {θa} be a maximal set of conserved quanti-
ties. Then

gR = spanR{iθa}

equipped with the operator commutator is a real Lie
algebra.

Proof: Obvious.

If X ∈ gR, we can exponentiate X to get U = exp(X),
the symmetry transformation. But the exponential of a Lie
algebra is a Lie group, so such symmetry transformations
form a compact Lie group G.

Theorem: Let Hn be the eigenspace of the Hamilto-
nian with eigenvalue En. Then Hn is a representation
space for both gR and G, for some dim(Hn) dimensional
reps.

Proof: Let d be our candidate representation of gR,
and set D(U) = exp(d(X)) where U = eX as our repre-
sentation of G. Let |ψ〉 ∈ Hn.

Now D(U) is a matrix acting on a basis of states
{|ψ〉1 , ..., |ψ〉n} spanning Hn. Thus it lives in a completely
different space to the Hamiltonian H. It follows that
[H,D(U)] = 0 and D(U) thus preserves the energy of the
state. Similarly for d(X).

From the condition UHU† = H, taking D of this, we
have D(U)D(U†)H = H ⇒ D(U)−1 = D(U)†. So
the representation must be unitary. This implies that
d(X)† = −d(X), i.e. the representation of the Lie algebra
is anti-Hermitian (though this is often confusingly referred
to as unitary in the context of a Lie algebra).

10 Non-Abelian gauge theory

10.1 Abelian theory

In relativistic electrodynamics, we use a 4-vector potential,
aµ, which transforms under a gauge transformation as:

aµ 7→ aµ + ∂µα(x).

Definition: The field-strength tensor of the theory is:

fµν = ∂µaν − ∂νaµ.

This is obviously gauge-invariant.

Definition: The Lagrangian of the theory is

L = − 1

4g2
fµνfµν .

In physics, we want to couple this to matter fields. Con-
sider coupling to the complex scalar field φwith Lagrangian

L = ∂µφ
∗∂µφ−W (φ∗φ),

where W is some self-interaction term.

Theorem: The scalar theory is invariant under the
U(1) global internal symmetry φ 7→ gφ, φ∗ 7→ g−1φ∗,
where g ∈ U(1).

Proof: Obvious.

It’s also sometimes useful to consider this transfor-
mation infinitesimally. If g = exp(εX) for X ∈ L(U(1)), we
have g ≈ 1 + εX, and thus

φ 7→ φ+ εXφ, φ∗ 7→ φ∗ − εXφ∗.

We write the changes as δXφ = εXφ and δXφ∗ = −εXφ∗.

How can we retain this symmetry in a gauge-invariant way
when we move to consider interactions with electromag-
netism? The answer is to gauge the theory.

Definition: When we allow g to have an x dependence:

φ 7→ g(x)φ, φ∗ 7→ g−1(x)φ∗,

we say we are gauging the theory.

Does this mean that the matter Lagrangian is now
gauge invariant? No:

Theorem: Under a gauge transformation, δX(∂µφ) =
ε(∂µX)φ+ εX(∂µφ).

Proof: We have δX(∂µφ) = ∂µ(δXφ), whence

∂µ(δXφ) = ∂µ(εXφ).

From this Theorem, it’s evident that ∂µφ∂µφ will pick
up many extra unwanted terms. To restore the gauge
invariance then, we introduce:

Definition: Write Aµ = −iaµ. The covariant deriva-
tive is defined by

Dµ = ∂µ +Aµ.

Since aµ ∈ R, we have Aµ ∈ iR = L(U(1)), so it’s
common in this course for us to prefer working with Aµ (as
we like Lie algebras!).

Recall the transformation law for Aµ from above; un-
der a gauge transformation we have:

Aµ 7→ Aµ − ∂µiα(x).
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We claim that by picking α = −iεX, i.e. a transformation
law

Aµ 7→ Aµ − ε∂µX = Aµ + δXAµ.

the covariant derivative gives rise to a gauge-invariant
kinetic term for the matter fields.

Theorem: DµφD
µφ∗ is gauge invariant.

Proof: Work infinitesimally. We have

δX(Dµφ) = δX(∂µφ+Aµφ) = ∂µ(δXφ)+(δXAµ)φ+Aµ(δXφ).

Substituting all variations in, we find δX(Dµφ) = εXDµφ.
So Dµφ transforms in the same way as φ. Thus

Dµφ
∗ = (Dµφ)∗

transforms in the same way as φ∗, and the result follows
(all order O(ε) terms cancel).

Therefore, the gauge invariant Lagrangian we seek
is:

L =
1

4g2
FµνF

µν + (Dµφ)∗(Dµφ)−W (φ∗φ),

where Fµν = ∂µAν − ∂νAµ = −ifµν .

10.2 Non-abelian generalisation

Suppose a Lagrangian has gauge symmetry generated
by the Lie group G. Let D be a representation of G with
representation space V ∼= CN , equipped with the standard
inner product (u, v) = u† · v, and suppose that the matter
fields φ lie in V .

The Lagrangian of the matter fields is now:

L = (∂µφ, ∂
µφ)−W [(φ, φ)].

Theorem: Provided D is unitary, the Lagrangian is
invariant under the global internal symmetry φ 7→ D(g)φ.

Proof: Simple, using fact (D(g)φ,D(g)φ) =
(D(g)†D(g)φ, φ) = (φ, φ), since D(g)†D(g) = 1 for
unitary transformations.

If g = exp(εX) for X ∈ L(G), define the represen-
tation R by D(g) = exp(εR(X)). We then have the
infinitesimal equivalent of the symmetry transformation:

φ 7→ φ+ εR(X)φ = φ+ δXφ.

Gauge the theory by giving X a spacetime depen-
dence: X ≡ X(x). Again, introduce the covariant
derivative to maintain gauge-invariance:

Definition: The covariant derivative is

Dµφ = ∂µφ+R(Aµ)φ,

where Aµ is the gauge field for G.

The gauge field transformation law is now

δXAµ = −ε∂µX + ε[X,Aµ].

Theorem: We have δX(Dµφ) = εR(X)Dµφ. Since
D is unitary, it follows R(X)† = −R(X), and thus
(Dµφ,D

µφ) is gauge invariant.

Proof: We have

δX(Dµφ) = ∂µ(δXφ) +R(Aµ)δXφ+R(δXAµ)φ.

Inserting the variations, and performing some commuta-
tion moves (also recall R([X,Aµ]) = [R(X), R(Aµ)]) we
have the result.

Therefore, the gauge invariant form of the matter field
Lagrangian is

L = (Dµφ,D
µφ)−W [(φ, φ)].

Can we still use Fµν = ∂µAν − ∂νAµ for the kinetic
terms of the gauge field? No, as the transformation law for
Aµ is different now. Instead we must use:

Definition: The field-strength tensor is

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ].

Theorem: δX(Fµν) = ε[X,Fµν ].

Proof: Another simple calculation. The Jacobi iden-
tity is necessary at one point.

We can now use the Killing form of the Lie algebra
to define the kinetic term of the Lagrangian:

L =
1

g2
κ(Fµν , F

µν).

This is gauge invariant since

δXL =
1

g2
κ(δXFµν , F

µν) +
1

g2
κ(Fµν , δXF

µν) = 0,

by invariance of the Killing form.

Note, however, that this is a sensible kinetic term iff
L(G) is of compact type. That is, there is a basis {T a} in
which κab = −κδab, κ > 0, so that

L = − κ

g2

∑
a

Fµν,aF
µν,a.

We need this to avoid getting negative energy states.
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Summary of infinitesimal gauge theory:

The gauge invariant Lagrangian for a theory with
gauge group G is L =

1

g2
κ(Fµν , F

µν) +
∑
Λ∈S

((DµφΛ, D
µφΛ)−W [(φΛ, φΛ)]) ,

where φΛ is in the rep space VΛ of the irrep RΛ of
L(G), where Λ is the Dynkin label of the irrep. S is
some set of Dynkin labels.

The field-strength tensor is

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]

and the covariant derivative is

DµφΛ = ∂µφΛ +RΛ(Aµ)φΛ

The fields transform under gauge transformations as:

δXAµ = −ε∂µX + ε[X,Aµ],

δXφΛ = εRΛ(X)φΛ.

10.3 Finite analogues

In the above, we’ve worked primarily with infinitesimal
transformations of the fields. It’s possible to work with
finite transformations too.

Under a finite gauge transformation φ 7→ D(g)φ, we
choose for the gauge field Aµ to transform as

Aµ 7→ gAµg
−1 − (∂µg)g−1.

Theorem: gAµg−1 − (∂µg)g−1 is in the Lie algebra.

Proof: Aµ is in the Lie algebra by Definition. The
tangent to the curve getAµg−1 ∈ G at the identity is:

d

dt

(
getAµg−1

) ∣∣∣∣
t=0

= gAµg
−1 ∈ L(G).

Let g(t) ∈ G be an arbitrary curve with g(0) = g0. Then
g(t)g−1

0 passes through the identity at t = 0, with tangent

d

dt

(
g(t)g−1

0

) ∣∣∣∣
t=0

= ġ(0)g−1
0 ∈ L(G).

Strictly, g(t) = g(x(t)), since g depends on spacetime
points through g = eX(x), say. Thus ġ(0) = ẋµ(0)∂µg(0).
We can of course parametrise such that ẋµ(0) = 1 is the
only non-zero component of ẋ(0), and thus (∂µg)g−1 ∈
L(G) (since g(0) was arbitrary).

This result allows us to verify that the covariant derivative
transforms correctly under finite transformations.

Theorem: Under a finite gauge transformation
φ 7→ D(g)φ, we have Dµφ 7→ D(g)Dµφ.

Proof: The only main difficulty is deciding what to do
with:

R(gAµg
−1 − (∂µg)g−1) = R(gAµg

−1)−R((∂µg)g−1).

First, note that R(gAµg
−1) =

d

dt

(
D
(
getAµg−1

)) ∣∣∣∣
t=0

= D(g)
d

dt

(
D
(
etAµ

)) ∣∣∣∣
t=0

D(g)−1

by definition of R and using homomorphism property of D.
The remaining derivative is just R(Aµ) by definition. Hence

R(gAµg
−1) = D(g)R(Aµ)D(g)−1.

Similarly, using the curve we used in the previous proof,
we have R((∂µg)g−1) = (∂µD(g))D(g)−1. The rest of the
proof is just a simple calculation.

Thus, it is also possible to verify gauge-invariance
using finite methods.

We can also examine the transformation of the field-
strength tensor in a finite regime.

Theorem: Under a gauge transformation, we have
that Fµν 7→ gFµνg

−1.

Proof: Recalling the transformation law for Aµ and
the definition of Fµν , this is straightforward but tedious.
Need to use ∂µ(gg−1) = 0.

A quicker way of getting the transformation law is:

Theorem: For any representation R, we have
R(Fµν) = [Dµ, Dν ].

Proof: First of all, we need to ask if this makes sense: is
Fµν in the Lie algebra? Indeed, it is because [Aµ, Aν ] is in
the Lie algebra, and eAµ(x(t)) is a curve in the Lie group,
which WLOG we can set up so that ẋν(0) = 1 is the only
non-zero component of ẋ(0). and Aµ = 0 when t = 0. This
then has tangent ∂νAµ, and so the derivatives are in the
Lie algebra. Now, we have [Dµ, Dν ]φ =

(∂µ +R(Aµ))(∂νφ+R(Aν)φ)− (∂ν +R(Aν))(∂µφ+R(Aµ)φ)

Expanding and simplifying we find this is equal to

(∂µR(Aν)− ∂νR(Aµ) +R([Aµ, Aν ]))φ.

Expand Aν = AaνT
a in the basis of the Lie algebra. Then

∂µR(Aν) = (∂µA
a
ν(x))R(T a) since T a has no x depen-

dence, and thus ∂µR(Aν) = R(∂µAν). So done.
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Now simply pick R to be the fundamental rep. Then under
a gauge transformation, we have

Fµνφ = [Dµ, Dν ]φ 7→ [Dµ, Dν ]gφ = F̃µνgφ,

where F̃µν is the gauge-transformed field strength tensor.
Then

[Dµ, Dν ]gφ = g[Dµ, Dν ]φ

since DµD(g)φ = D(g)Dµφ, for any rep D. Thus it follows
that

[Dµ, Dν ]φ = g−1F̃µνgφ,

and so F̃µν = gFµνg
−1, as we found before!

10.4 Some rep-specific examples

Example: Consider the fundamental rep D(g)φ = gφ. The
infinitesimal rep corresponding to the fundamental rep can
be deduced from the gauge transformation

φ 7→ D(g)φ = gφ = φ+Xφ.

That is, we should use R(X) = X, the fundamental rep of
the Lie algebra (hence both are aptly named!).

The gauge covariant derivative is

Dµφ = ∂µφ+Aµφ,

and so under a finite gauge transformation we have
Dµ(gφ) =

∂µ(gφ) + (gAµg
−1 − (∂µg)g−1)gφ = g(∂µ +Aµ)φ = gDµφ,

as expected by the general theory.

Example: Consider the adjoint rep D(g)φ = gφg−1.
The infinitesimal rep corresponding to the adjoint rep can
be deduced from the gauge transformation

φ 7→ gφg−1 = (1 +X)φ(1−X) = φ+ [X,φ].

Hence we should use R(X) = [X, ·] = adX , the adjoint
rep of the Lie algebra (again, both are aptly named!).

Again, we can check that Dµφ 7→ g(Dµφ)g−1 under
a gauge transformation, as predicted by the general
theory.

Example: In both the above examples, we get gauge-
invariant kinetic terms for the matter fields. In the
fundamental rep, we have (Dµφ,D

µφ) 7→

(gDµφ, gD
µφ) = (g†gDµφ,D

µφ) = (Dµφ,D
µφ),

since g is unitary. In the adjoint rep, we have
(Dµφ,D

µφ) 7→

(gDµφg
−1, gDµφg−1) = (g†gDµφ,D

µφ(g−1)(g−1)†).

Again, this is gauge invariant since g is unitary (and so
g−1 = g† is also unitary).

10.5 The Killing form in gauge theory

From the transformation law for Fµν above (i.e. Fµν 7→
gFµνg

−1), we notice that

1

g2
Tr(FµνFµν)

is gauge invariant. So why are we bothering with the
Killing form at all?

In fact, this kinetic term is proportional to the Killing
form. Indeed, any such gauge invariant inner product
must be, and so we’ve actually treated things in their
greatest generality above. The result is stated below.

Theorem: The Killing form, κ(X,Y ) = Tr(adX ◦ adY )
is, up to scalar multiplication, the unique invariant inner
product on a simple Lie algebra L(G). Recall, a bilinear
form B(X,Y ) is invariant if

B([Z,X], Y ) +B(X, [Z, Y ]) = 0.

Proof: Not required in this course (though it can be proved
by considering B ◦ κ−1 and using Schur’s Lemma).

The ‘invariance’ property is actually equivalent to gauge
invariance here. Recall that Fµν transforms infinitesimally
as

Fµν 7→ gFµνg
−1 = (1 +X)Fµν(1−X) = Fµν + [X,Fµν ].

Therefore, if B(Fµν , F
µν is some kinetic inner product

term, for gauge invariance is equivalent to

B(Fµν , F
µν) = B(Fµν , F

µν)+B([X,Fµν ], Fµν)+B(Fµν , [X,F
µν ]).

That is, gauge invariant is equivalent to gauge invariance!

Therefore, we’ve seen that whatever inner product
term we write down, if it’s gauge invariant it’s proportional
to the Killing form.

Sometimes we’d like to know the constant of proportion-
ality. Clearly this is representation and group-dependent,
since the Killing form depends on both of these. Let’s see
an example of how we’d calculate this:

Example: Consider the gauge invariant Lagrangian
when the gauge group is SU(N):

L =
1

4g2
Tr(FµνFµν).

Since it is gauge-invariant, it is proportional to the Killing
form:

Tr(FµνFµν) = λκ(Fµν , Fµν) = λTr
(
adFµν ◦ adFµν

)
.

To calculate the constant of proportionality, begin by work-
ing in slightly greater generality. Let’s work out κ(X,Y ) for
X,Y ∈ L(GL(N)).
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A convenient basis for L(GL(N)) is (Tij)
α
β = δαiδβj . It’s

a quick exercise to work out the structure constants in this
basis:

[Tij , Tkl] = δjkTil − δliTkj .
Now writing X = XijTij , Y = Y ijTij , we may compute

adX(Tij) = X liTlj −XjlTil,

and so adY adX(Tij) =

(XrkY kiδsj +XksY jkδri −XriY jkδsk −XjsY kiδrk)Trs.

Thus calculating the trace directly, we have Tr(adY ◦
adX) = 2NTr(XY ) − 2Tr(X)Tr(Y ). To restrict to
L(SU(N)), just impose the fact the matrices must be trace-
less. Thus

Tr
(
adFµν ◦ adFµν

)
= 2NTr(FµνFµν),

and it follows λ = 1/2N . Thus

L =
1

4g2
Tr(FµνFµν) =

1

8Ng2
κ(Fµν , Fµν).

11 Applications to hadronic physics

11.1 Isospin and hypercharge

Many years ago, people discovered lots and lots of types
of particles. Each particle carried a quantum number
called hypercharge and another called isospin (it doesn’t
matter what these are in this course). It was found
that the sum of the hypercharges before and after any
interaction were equal, and the same for isospins. Thus
both correspond to conserved charges.

Definition: In hadronic physics, hypercharge and isospin
are conserved charges, denoted Y and I respectively.

Since we know how quantum mechanics works (see
Symmetries in Quantum Theory chapter), we know that
the conserved quantities of a system form a Lie algebra,
which arises as the symmetry of a Lie group. What
algebra and group work for isospin and hypercharge?

Plotting the isospin and hypercharge of the 8 lightest
mesons and the 8 lightest baryons, physicists found the
diagrams:

These diagrams looked suspiciously like the weight dia-
grams of 8, the 8-dimensional irrep of A2 = L(SU(3)).

Theorem: The weight diagram of 8 reproduces the
figures on the left.

Proof: Recall that with the basis of the CSA:

H1 =

1 0 0
0 −1 0
0 0 0

 , H2 =

0 0 0
0 1 0
0 0 −1

 .

the root system of A2 is given by

{(2,−1)T , (1, 1)T , (−1, 2)T , (−2, 1)T , (−1,−1)T , (1,−2)T ,0}.

Recall also from earlier in the course that adjoint rep was
8-dimensional. So just plot the roots of A2.

This gives something similar to the diagram, but a bit
wonky. It suggests we change basis for the Cartan
subalgebra:

I =
1

2
H1, Y =

1

3
(H1 + 2H2).

Indeed, plotting the weight diagram in this new basis, we
get the result.

This suggests that the eight lightest baryons and mesons
live in the representation space of the adjoint rep of A2.

However, physicists kept finding more particles! Contin-
uing to add and add to the weight diagrams, we actually
found that the right representation for all of the baryons
was:

1⊕ 8⊕ 8⊕ 10

and the right representation for the all of the mesons was:

1⊕ 8.

There is an immediate question to ask here: why not other
reps of L(SU(3))? Why not, say 6? Nature seems to have
been very picky...

The Quark Model: The quark model uses the results we
derived earlier in the course:

1⊕ 8 = 3⊗ 3,

1⊕ 8⊕ 8⊕ 10 = 3⊗ 3⊗ 3.

This suggests that the quantum state of a meson lies in
the rep space of 3 ⊗ 3 and the quantum state of a baryon
lives in the rep space of 3⊗ 3⊗ 3.

If we consider a meson to be composed of an anti-
quark and a quark, and a baryon to be composed of three
quarks, where quarks are things living in the rep space of
3, we immediately reproduce all of the hadronic physics
we’ve seen above!

34


