Part lll: The Standard Model - Revision

Lectures by Christopher Thomas, notes by James Moore

1 Revision of spinors

1.1 The Clifford algebra and spinors

Definition: The Clifford algebra is an algebra generated
by the objects +* obeying {v*,~+"} = 2n*¥1.

When we pick a solution to this equation, we say we
are picking a representation of the Clifford algebra.

Definition: The chiral (or Weyl) representation of
the Clifford algebra is the set of matrices:

o (0 1 i (0 o
’y - 1 O 9 ’Y - _o_i 0 )
where o are the Pauli matrices.

Theorem: In the chiral rep, 4! = 40440, So 407 = A0
and ' = —.

Proof: Trivial. O

This is useful, because choosing a rep does not constitute
any loss of generality:

Theorem: If v# and +*' are both reps of the Clifford
algebra, there exists S such that y#' = Sy*S~1.

Proof: Not required. [

Definition: The chirality operator is the ~° matrix, defined
by v° = iv%y'~y2+3, which in the chiral representation is

s (-1 0
7_(0 1)

Theorem: ~° obeys (v°)2 = I and {1°,~#} = 0.

Proof: See QFT. O

Definition: A spinor is a four-component object ¢ € C*
transforming in the spinor representation of the Lorentz
group (see QFT). The Dirac adjoint of a spinor is defined
by:

Definition: The Dirac Lagrangian is £ = 1 (iy"0,, — m)i.

Theorem: The Euler-Lagrange equations of the Dirac
Lagrangian are:

(i —m)y =0,

(_
where A = A, and @ mean the derivative acts to the
left. The first equation is the Dirac equation.

B(id —m) =0,

Proof: Vary directly with respect to v to get first equation.
Vary with respect to ¢ and integrate by parts twice to get
second equation. [

1.2 Chiral spinors

Definition: The projection operators are defined by

PR,L = % (1 :|:’75).

Theorem: The projection operators obey:
Ph . = Pry, PrP;, = P, Pr =0, P+ Pr=1.

Proof: Just substitute definitions to check. [J

Definition: Given a spinor field (), the chiral (Weyl)
spinors are Y, 1.(x) = Pr ¢ (z).

Theorem: ¢}, »(z) = ¢ (z)Pr.L.
Proof: Just direct check. O
Theorem: V¢ r 1(z) = +¢p ().
Proof: Just direct check. O

Because of this final property, v are chiral eigen-
states. We say they are right and left-handed respectively.

Theorem: The Dirac Lagrangian can be written as:

L=, 1, + i g@Vr — M pr, + Y YR).

Proof: Use () = (Pr + Pp)i(z) = vr(x) + ¥r(z) in
original Dirac Lagrangian. O

Hence, in the massless limit the Lagrangian is:

L =i, L, + i gV
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We notice this Lagrangian has a global U(1), x U(1)g
symmetry:

Theorem: For massless spinors, the transformation
Y g — €L Ry pis a symmetry of the Lagrangian.

Proof: Trivial. O

In particular, the transformations are independent.
When m # 0, there is still a global U(1) symmetry
P €'y, equivalent to setting a; = ar. We say the
mass breaks the symmetry (see later).

1.3 Quantising spinors

Quantum spinor fields have a mode expansion: i (x) =

Z/ 2m) dQEp b*(p)u®(p)e ™ + (d°) 1 (p)v®(p)e™ ™)
= 3 (O e P + (@) () ()

s,p

where s € {—3,3} and b, d are mode operators. Note
we've used the notation

L.

to save on writing. Also note that u*(p), v*(p) are positive
and negative frequency plane-wave solutions of the clas-
sical Dirac equation, obeying

(p - m)u = 07
and explicitly given by
uip) — (VP IE o) — [ VP o
(p) = <\/ﬁ§s> (p) <_Wns)

where o* = (1,0%), " = (1,—0"), and &%, n° are two-
component spinors. We take ¢! = (1,0)7 and €2 = (0,1)7
for spin up and spin down respectively; same holds for 7.

(p+m)v=0,

Finally, notice that this course uses relativistic nor-
malisation of the operators, that is,

a(p) = \/2Epap,

where ap are the operators we used in QFT.

In order to deal with the square root of a matrix, i.e.
/P o, we rotate the spatial coordinates so that p lies in
the z-direction, i.e. p = (p°,0,0,p>)”. Then

1/2
— 0
= +/pYcY — p3o3 = P’ —p )
p p < p0+p3

<W 0).
0o VPP

1.4 Helicity vs chirality

Definition: The helicity operator is the projection of
angular momentum onto the linear momentum direc-
ton: h=Jd-p=(rxp+S)-p==S-p, where Sis spin
angular momentum and r x p is orbital angular momentum.

Theorem:
as:

In QFT, the spin operator can be written

i ,
Si = Zeijk')/j’)/k-

Proof: Recall from quantum mechanics that § = 3o,

where ¢ is the vector of Pauli matrices. So the spin op-

erator should act on spinors via:

1 ag; 0 1 .
Si = 5 (O Ui) = ZGijk'V]’yk.

Now notice that in the chiral rep, we have:

44 = 0 ol 0 ok (0 o* 0 o’
TrIE e 0 ) =0k 0 —o 0 )\=07 0

_(—[o7, 0" 0 [ —2ieiikgt 0
- 0 —lo7, 0% ) — 0 —2ielikgt |

Hence €7%S; = %[y7,~%] (recall S; = jdiag(c’,0")). Now
multiply through by ¢*7* to get the result. O

Using the above form of the spin operator, we have:

Theorem: For massless spinors, hu®(p) = 1v°u®(p).
Proof: Let u®(p) be massless, and suppose, by rotat-
ing coordinates, that p points in the positive z-direction,
ie. p! =p%2 =0, p> > 0. Then p° = p* because this is a
massless spinor. Thus we have:

0
Yoy

wle) = (W§>: V2P0
0

VD - o&*

Now recall that h = p'S; = p°S5 = Ss. Hence hu®(p) =

1 0 0 O 0 0
Squt(p) = 1[0 —L 00 f Vet L -/t
W=510 0 1 0| | yvade | T 2| V2o
0o 0 0 -1 0 0
. 5 -1 0
Now simply recall v° = <0 I)’ and we see that

hu®(p) = 37°u(p). This is Lorentz invariant so holds for
all p. O

Slogan: For massless spinors, chirality and helicity
are the same (up to 1). For right-handed massless
spinors, spin points in the direction of motion; for left-
handed massless spinors, spin points opposite the
direction of motion.
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2 Discrete symmetries

2.1 Types of symmetry
Definition: Types of symmetry include:

(i) Intact. The symmetry is present in both the classical
and quantum theory.

(i) Anomalous. The symmetry holds classically but not
quantumly. This is not a true symmetry.

(iiiy Explicitly broken. The symmetry applies to some
terms in the Lagrangian, but not others. This indicates
the symmetry has been broken from a larger group
(see later).

(iv) Hidden. The symmetry is respected by the La-
grangian, but not the vacuum state. There main type
is spontaneous symmetry breaking, where we get
a vacuum excitation value from one or more scalar
fields.

2.2 Wigner’s Theorem

In order to implement symmetries in the quantum theory,
we need the important result:

Wigner’'s Theorem: Let ¢, ¢’ and ¢ be vectors in
Hilbert space. If physics is invariant under the transforma-
tion ¢ — ¢, then there exists an operator W such that
' = W1, where W is either

(i) Linear, W(a¢ + Bi) = aW¢ + W1, and unitary,
(Wo, W) = (¢, 4);

(i) Anti-linear, W(a¢ + ¢) = o*W¢ + 3*W1, and anti-
unitary, (We, W) = (¢,9)*.

2.3 CPT symmetries

In this chapter, we’ll care about three symmetries: charge
conjugation, parity and time-reversal.

Definition: Charge conjugation symmetry maps par-
ticles to their respective antiparticles, and vice-versa.

Definition: Parity inverts space via (¢,X) — (¢, —X).

It is represented in the classical theory by a Lorentz
transformation

Pt =

]
coor
o
I
—

Definition: Time-reversal inverts time via (¢,X) — (—t,X).
It is represented in the classical theory by a Lorentz trans-

formation
0

o~ O
_— o O
= o O

0 0

Note both parity and time-reversal are improper Lorentz
transformations since they have determinant —1 (so they
are not connected to the identity).

Before we start, we should work out whether parity
and time-reversal are unitary or anti-unitary.

Notation: Let W (A, a) denote the quantum operator rep-
resenting the Poincaré transformation z# +— A* a¥ + a*,
where A*  is a Lorentz transformation.

Lemma: W(Al,al)W(Ag, ag) = W(AlAQ,Alag + al).

Proof: W is a group homomorphism. So do calcula-
tion in classical space. We have:

zt = At a¥ + ab
— Al,LLVAQVpxP + Alﬂua; + a’l". ]
Lemma: For w, ¢ infinitesimal, we have

W +we =1+ %WW,J’W — i€, P",

where J*¥ generate Lorentz transformations and P*
generate time and space translations (i.e. P is the
Hamiltonian, P? is the 3-momentum).

Proof: By definition of the infinitesimal operators. [
We can now prove the main result:

Theorem: The operators P = W (P,0) and 7' = W (T,0)
representing parity and time-reversal respectively, are
unitary & linear, and anti-unitary & anti-linear respectively.

Proof: By the composition law above, PW (A,a)P~! =
W (PAP~!,Pa) and same for T. Inserting infinitesimal
expansion of W on both sides, and comparing coefficients
of —eg, we find

PiHP™' =iH TiHT™ = —iH.

)

Let ¢ be an energy eigenstate of H with energy E. Then

(U, iHp) = (P, iEp) = iE.

If 7 is a symmetry, then T is an eigenstate of H (since T’
commutes with H when symmetry).
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We note HTy = ET4), so they have the same energy (E
is real since H Hermitian, so doesn’t matter if linear or
antilinear at this stage).

Suppose 7' is linear. Then
iE = (T, iHT)) = —(Ty, TiHvy) = —iFE,

where in the middle equality, we've used TiHT ! = —iH,
and in the last equality, we've used linearity. Contradiction
(since must hold for all E). So by Wigner's Theorem, 7" is
anti-linear and anti-unitary. Similarly can show P is linear
and unitary. O

In the above Theorem, we only used the coefficient
of —ep in the infinitesimal expansion. Using other coeffi-
cients it's possible to show:

Theorem: Under time-reversal symmetry 7', both an-
gular momentum and linear momentum change sign.

This will be important later when we consider how

the Dirac field (which has spin angular momentum %)

2
transforms under 7'

2.4 Parity symmetry

We want to investigate how quantum fields change under
parity, P. Begin with scalar field:

Theorem: Under parity, the scalar field

¢(z) =Y (alp)e ™ + ! (p)e™™)
p
maps to X .
Po(z) P~ = npo(zp),
where zp = (2%, —X) are the parity-transformed coordi-
nates, and np is a complex phase, called the intrinsic
parity of the field.

Proof: Note z - p is invariant under Lorentz transformations,
sop > pp = (p°, —p) under parity. Hence in the quantum
theory we require Pa’(p)P~" = (1*)*a’(pp). Since P is

unitary, taking the dagger gives Pa(p)P~' = n%a(pp).
Similarly

Pct(p)P~' = (n°)*c(pp), Pe(pp) P~ = 1°c(pp).

Hence
Po(x)P~H =" (n%a(pp)e” ™" + (n°)*cl (pp)e™™) .

Relabel p ++ pp in the sum and use pp -z = p - zp. Also
note integrating over pp is the same as integrating over p
(same range). Hence

]—C’qﬁ(m)]f?*l — Z (7]aa(p)€7ip'wp + (7]6)*CT(p)eip'wP) .

p

Now must constrain n%, n°. Notice

[6(z), PoT (y)P~'] = (27)* (n*)* D(z — yp) + n°D(yp — x)),

where D(x — y) is the propagator. For causality to be
preserved, this must vanish for spacelike separated =z
and y. Recalling D(z —y) = —D(y — z), we see that
(n*)* = n°. The result follows. O

For real ¢, a = ¢, and so n* = (n*)* = np € R.
Hence np is £1.

Definition: If np = 1, we call the field a scalar field.
If np = —1, we call it a pseudoscalar field.

For complex scalar fields, it's possible np ¢ R. But if
there is a conserved charge Q, then @, P, H are all
mutually commuting, allowing us to define P’ = Pe—io@Q,
with  chosen such that 7y is real. We then just take P’
to be the parity operator.

We now want to consider vector fields. Recall that a
vector field in the quantum theory has mode expansion:

Vi) = 3 (O e + e () (e,
P

where A € {-1,0,1} is the helicity. The ¢* are the
polarisation vectors.

Theorem: Under parity, the vector field V#(z) trans-
forms to PVH(2)P~! = —npP* V¥ (xp).

Proof: The proof is essentially the same as for a
scalar field. = However, we must also use the fact
e\, pp) = —P¥ €’(A,p). This result can be shown by
working in a specific frame.

In the particle’s rest frame, p = 0, pick

0 0 0

1 1 0 1 1

6!‘«(,170) = ﬁ —il> 6#(030) = ol €M(170) = ﬁ i
0 1 0

Boost to frames with 3-momentum p = mvZ and pp =
—muvZ respectively, by using the Lorentz boosts L* (p),
L* (pp); explicitly, this Lorentz boost is given by

v 0 0 —wy
0 1 0 O
—vy 0 0 v

where ~ is the standard Lorentz factor, and to get L*,(pp)
we just send v — —v. We find the result holds in this
specific frame; by Lorentz invariance, it holds in all frames.
The proof is then the same as in the bosonic case. O
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Finally, we examine how spinors transform.

Theorem: A Dirac field ¢(z) transforms as
Pyp(z) P~ = npy " (xp)
under parity. The Dirac conjugate transforms as
PY(x) P~ = npd(zp)y’
Proof: Just as for bosons, we have
Py (p)P~t =16 (pp),  Pd*'(p)P™" = (n")"d*  (pp).
Hence going through the same steps as for bosons, we get

=) @ (pe)e T A (p)o" (pp)e
p,s

We need to evaluate u*(pp).
u®(p), we have

o~ () - () -

) = —7%*(p). Thus Pi(z)P~' =

> (nbbs(p)vous(p)e’ip'xp -~ nd*dST(p)vovs(p)eip'xp) :

5P

From the general form of

Similarly, v*(pp

Similar to boson calculation (but using anti-commutator of
Y(x) and ¥ (xp)), we require n° = —(n?)* for preservation
of causality. Defining * = np, we have

]ADw(x)P*1 = np’yow(xp).

Running the whole argument through with ¢ instead, we
get the other result. O

Theorem: For chiral spinors, we have:
pr/L(x)P_l =npy V1 /()

i.e. right and left-handed spinors are swapped.

Proof: Just multiply above result by 1(1 ++%). O

The above result allows us to calculate how fermion
bilinears transform under parity:

e Under parity,
P(a)ip(x) = PP(a)(e) P~ = P(a) P~

Inserting the above formulae, we get 1 (xp)i(x
Y is a scalar.

e Similarly, 1 (z)y°vy(z) — —(zp)y*¥(xp), so this is a
pseudoscalar.

o Y(x)yrp(x) — P )(xzp)y ip(zp), SO this is a vector.

o Y(x)yHy0(x) — —P* )(zp)y’y5(x), so this is an
axial vector.

Lpy(z) Pt
p). So

Theorem: If ¢)(x) solves the Dirac equation, so does
Pi(x)P~!

= 0. Send
0. Then just
Y(zp)) =0.0

Proof: The Dirac equation is (i@ — m)y(x)
z + xp. Then (iv°0y — iv'0; — m)y(xp) =
multiply through by +° to get (i@ — m)(7°

2.5 Charge conjugation of scalars

Theorem: Under charge conjugation, a scalar field trans-
forms as . X

Co(x)C~" =ncel (x),
where 1 is a complex phase called the intrinsic charge
parity of the field.

Proof: Charge conjugation should transform a parti-
cle to its antiparticle. So we must have:

Ca(p)C™' =nce(p), Ceclp)C™' =nga(p).

In principle, the two phases could be unrelated, but in
actuality causality constrains these as we've seen before.
This immediately gives Co(x)C~1 = ncof(x). O

For a real scalar, ¢(z) = ¢'(z), s0 nc = +1.

For a complex scalar, we could have nc = e2¥, say.
But then performing the rotation ¢ — ¢ = e Bp, we
find that C¢’C~' = (¢')T. So we can always redefine a
complex scalar field to have ne = 1.

2.6 Dirac fields: charge conjugation matrix

Let's now deal with Dirac fields; we’ll need some motiva-
tion first. We might hope the spinor v (z) transforms to

something of the form f(z) = ET(:J:) under charge conju-
gation, as this was the ‘antiparticle’ in QFT. We thus hope
the answer is of the form

Cp(x)0~ = el ().
where C is a 4 x 4 matrix.

Why the matrix? To ensure that the Dirac equation
is satisfied. If )(z) satisfies the Dirac equation, we know

¥(z)(—i @ —m) = 0. Taking the transpose, we have

(=i(y* )3 —m)p" (@) = 0,
and so multiplying by C, and inserting CC~* appropriately,
we have
(—iCy*TC™19, — m)CD' () =0,
for any matrix C. Now supposing Cy#*7C~! = —4*,

CET(x) satisfies the Dirac equation (whereas ET(x) onits
own didn’t work)!
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With this in mind, we define:

Definition: The charge conjugation matrix is the matrix
obeying Cy#TC~1 = —~#. Equivalently,

C’y“T = —HC, v“TC'*l =—Cy#, or y*CT = —C’T'WT.

Slogan: Can commute C, C~! or CT past +* at cost of
minus sign, and introduction of transpose on ~+*.

The charge conjugation matrix C has a lot of proper-
ties which make it useful:
Theorem (Properties of C): We have:

(i) C always exists, whatever rep of +* is selected;

(i) C is antisymmetric, CT = —C;

(i) Cv°*T ! = ~47; so above slogan extends to °, but
don’t pick up minus sign when commuting past;

(iv) In the chiral rep, C is unitary, CTC = 1;

(v) A possible choice of C'is

. 10 0
C =—iy? = ( 02 _2.02) .

Proof: (i) Recall that if v*' and v* both satisfy the Clifford
algebra, then v*' = S~#S~! for some matrix S. But —y*7
satisfies the Clifford algebra, so indeed a C exists.

(ii) First we prove CTC~! o 1. Note that [CTC~1,4#] = 0,
and so by Schur's Lemma, CTC~! = 1, for some c. Since

C =T = ()T =20,

we have ¢ = +1.

It remains to decide if C is symmetric or antisymmet-
ric. We use an argument based on linear independence.

Note that CT = cC, (v*C)T = —ey*C, (4°C)T = y°C,
(Y*°C)" = ey*y°C and ([v*,77]0)" = —c[yv*,7"]C.
Also assert that the matrices C, v*C, v°C, v*4°C and
[v*,7]C are linearly independent (this is tedious to
prove). This is a total of 16 matrices.

From the above calculations, if ¢ = 1, we get 6 lin-
early independent symmetric matrices and 10 linearly
independent antisymmetric ones. This is a contradiction.
Soc=-1.

(i) Follows from calculation in (ii).

(iv) First note that Cy+*T = —y1C = (4#1)TCT = —Ctymt,
Considering . = 0,7 separately and using the chiral rep,
we have y#T'Ct = —Cty#. So we have

[y, cCt] =0,

in the same way as (i). Schur's Lemma then implies CCT =
Al. Hence

C=(ChHr=xC™H =xCH™1 =\,
SO\ = +1.

If A = —1, let D = iC. Then D obeys the defining
property Dy#T D=1 = ~#, s0 is a valid charge conjugation
matrix with all the properties above (recall, we didn’t
assume a rep in (i) - (ii)). But CCt = -1 = DD =1, and
we’re saved, by working with D instead, WLOG.

(v) We can easily verify the defining property. By (i),
the defining property is equivalent to (/*C)T = A+C,
which is easy to verify when C = —in%42. O

2.7 Charge conjugation of Dirac spinors

We are now ready to prove the main result:

Theorem: Under charge conjugation, a spinor trans-
forms as

Cip(e)CH = noCY (),
where C'is the charge conjugation matrix.

Proof: Under charge conjugation, we must have
Ch (p)C™! =ned®(p), Cd*T(p)C™" =ncb* (p),

since particles are swapped with antiparticles (in principle,
could get different phases, but in actuality, these are the
same by causality). Thus

O¢($)O_1 =1, Z d° (p)us(p)e—ipx + bsT(p)Us (p)eipqz.

Need to get plane-wave spinors in correct form. Recall
that:
sy — \/0-p55> :(\/U-pns)
o= (Voge) 0= ()
WLOG, can choose a basis where n* = ic?(£%)*, we can

choose C' = —iy"y? and we can rotate space so that p =
(¥°,0,0,p°)". Then u*(p) =

VP — P!

VIO + P3| o
VT | T (
Vi - PP

/pO _’_p3£1*

B oT ox _ /pO_p3§2*
p) =7 u"(p) o e
/p() +p3£2*

and finally
0 1.0 0 N
ot | -1 0 0 0| [vVpO—p| _
=0 00 ) |yt | T
0 0 1

0 /p0 +p3§2*
Similarly we find that u*(p) = C7°% (p).
Cop(z)C' = 5.0 (x), as required. O]

It follows that
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As with parity, the results extend to the Dirac conjugate
¥ (x) and to Weyl spinors:

Theorem: Under charge conjugation we have:
CP(a)Ct = —nep” ()0,
A A —T
and C’wf/R(a:)C'*l =ncCp/ ().

Proof: +) follows similarly to above. For Weyl spinors, use
projection operators and recall 1°C = 075T. O

Note that vC(z) = ncCn(z) is left-handed. This
can be verified as follows:
5T—T

VP CPp(x) = C Pp(a) = C@p(e)y")T = —~Cihp(a),

so we see that the field is indeed left-handed. So left-
handed particles get mapped to left-handed antiparticles.

Theorem: |If ¢(x) satisfies the Dirac equation, then
Cip(2)C' = neCp (x) satisfies the Dirac equation.

Proof: We already saw this in the motivation for the
charge conjugation matrix. [

Definition: A Majorana fermion has b°(p) = d°(p),
i.e. it is its own anti-particle. In this case, we find that
Cip(z)C~1 = () (since we can just terminate the above
proof before we interfere with the plane wave spinors).

We can now deal with fermion bilinears. Note fermion
bilinears are of the form v (x) X (z) for some matrix X
acting on spinors. So we prove the result:

Theorem: Ciy(z)X¢(z)C~' = P(x)Xob(x), where
XC:CXTC_l.

Proof: Insert C' as appropriate (note [C, X] = 0, since X
is a matrix and C' is an operator):

C(x)Xp(z)C' = C(x)C X Cop(x) 1
= T ()07 XCY (2).
It's best to write this in index notation. Then we have
~a(2)(CT X C)aps(x) = Ds(x)((CTXT(CT) )T agtbals

where we lost the minus because fermions anti-commute.
Applying the transpose in the middle swaps the indices,
and we're left with a matrix CTX7(CT)~! in the middle;
recalling CT = —C, we're done. OJ

Let’s apply this to the familiar bilinears:

e Y3y has X = I. So Xc = I. Hence invariant under
charge conjugation.

e 7P has X = 4°. So X¢ = Oy €~ = 45CC~1 =
~®. So invariant under charge conjugation.

o Pyhy5 has X = 415, So X¢ = O yrTC-1 =
—Py#* = ~H~+5. So invariant under charge conjuga-
tion.

e Finally, Yy*¢ has X = v*. So X¢ = Cy#TCc—t =
—~#, so get minus sign under charge conjugation.

2.8 Time-reversal of scalar fields

Theorem: Under time reversal 7', the scalar field ¢(z)
transforms as

To(x)T~ = nro(zr),

where 27 = (—2°,x), and nr is a complex phase.

Proof: ~ Same as all other proofs. Start from
Ta(p)T~" = mnra(lpr) and Tc'(p)T~' = nrct(pr)
where pr = (p°, —p) (for z - p invariant). Only thing we
need to be careful of is anti-linearity of T, so complex
numbers are conjugated when we pass 7" through them.
Also need to use pr - x = —p - z7 at some point. [

2.9 Time-reversal of Dirac fields

As for charge conjugation, we find we need a matrix,
called the time-reversal matrix. The argument runs as
follows.

Under time reversal, we expect ¢ to map to some-
thing like By(xr), where zr = (—2°x). The matrix
is needed to help us satisfy the Dirac equation. Recall
the Dirac equation for ¢ is (i — m)y(x) = 0. Send
¢(x) — Ti(z)T~"; then in order to have invariance of the
Dirac equation, we need

T((—id” —m)(@) T~ =0,

recalling that 7" is anti-linear. Remove 7" and 7! on both
sides, and send z — z. We find that

(i7" 0o — i* 0 — m)(zr) = 0.

Inserting B~! B and multiplying through by B, we arrive at
the Definition:

Definition: The time-reversal matrix is the matrix B
satisfying v** = B(y", —y)B~!. Equivalently, this can be
written as B~14#*B = —T* ~.
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Theorem (Properties of B): We have the following:
(i) B always exists;
(i) B~19°" B =%

(iii) In the chiral rep, a possible choice of Bis B = C~ 145,
where C is the charge conjugation matrix.

Proof: (i) v** certainly satisfies the Clifford algebra, as
does (7%, —y), so they must be related by a similarity
transformation, B.

(i) Write out ~° in full, and insert BB~! in between
all factors.

(iiiy Just verify it satisfies the defining property for
pw=0,7. 0O

We are now ready to prove the main result:

Theorem: Under time-reversal, 1(x) maps to
()T~ = nrBi(ar).

Proof: Recall from the very start of this chapter that time-
reversal reverses the sign of angular momentum. So we
must take

M

6 (p)T~" = nr(-1)
Td* M (p)T~! = nr(-1)

_Sb_s(pT)v
_Sd_ST(pT)-

Nl

The (—1)z* is there for convenience. By using

- 2
o ~=1.5_ [0 0
B=C 7_(0 io_2)7

it can be shown similar to the charge conjuga-
tion proof that (—1)z—*u=**(pr) = —Bu®(p) and
(=1)27%v=*"(pr) = —Buv*(p). The proof now pro-
ceeds through the standard steps (relabelling s — —s at
one point, and = - pr = —zp - p). O

Similarly, we find that T9(z)T~' = nig(zr)B L
The fermion bilinears are then dealt with in the same way
as charge conjugation:

Theorem: We have T (z) X (z)T~! = ¢(zr) Xp¢(27),
where X = B~ X*B.

Proof: Same idea as charge conjugation, but sim-
pler; just remember T' is anti-linear to produce X*. O

Using this Theorem, we can show 7 is invari-
ant under time reversal. Also y*¢ transforms to
—T* h(zr)y"y(zr); this is sensible since u = 0 should
act like charge density (i.e. invariant), whilst ;. = ¢ should

act like current density (i.e. change of sign).

2.10 CPT properties of Maxwell’s equation

In applications, we often want the transformations of
the photon field A,(x) under C, P and T. These can
be obtained by imposing the invariance of Maxwell’s
equations.

Theorem: A, (z) transforms under C, P and T as:
o CA,(2)C~ = —A,(2);
o PA,(x)P~t =PV, A, (2);
o TA,(2)T~" = ~T", A, (x);

Proof: ‘Use invariance of Maxwell's equation
0, F" = eypy*1), which can be derived from the standard
QED Lagrangian, where F,, = 9,4, — 0, A,..

PARITY: Under parity, it's quick to see that ey ey
transforms to eP* ¢ (zp)yy(zp). The derivative trans-
forms as 0, — P*,0,, and therefore Maxwell's equations
transform to

P?,0,F (zp) = eP*, P(xp)y" P(xp).

Here, F* is the parity-transformed field-strength ten-
sor. In particular, consider the F° component. The
equations have become: —9;F% (zp) = edh(zp)y 0 (xp),
so for invariance of the Maxwell equations, we need
FY%(x) — —F%(xp) under parity.

In terms of the photon field, we have:
FO(xp) = O°Al(ap) + 0 A(xp) = —F"(zp),

and so it's clear that A? — —A?, whilst A° — A°. Lowering
indices, we get the result.

CHARGE CONJUGATION: Under charge conjugation,
we see that eyy"y — —ed(z)y"¢(z). The LHS of
Maxwell’s equations transforms as 9, F** — 0, F"¥ since
the derivatives are left unchanged.

Hence for invariance of Maxwell we need F* — —F",
and so F% = 999" — 9°9% = — F%; from this we see that
A, (z) — A,(x) under charge conjugation.

TIME REVERSAL: Time reversal can be treated simi-
lar to parity to get the result. O

2.11 CPT properties of the scattering matrix

Definition: The S-matrix for a potential V(t) =
—/d3x Lint, IS given by

S = Texp (z / dt V(t)) .

— 00
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Consider, for example, L;(z) = —ep(x)y*A,(2)Y(z),
the QED interaction Lagrangian. How does the S-matrix
transform under C, P and T'?

The Lagrangian is invariant under P, ¢ and 7. This
is a consequence of fermion transformation properties,
and the transformation properties of A,(xz) which we
derived above. It's thus clear that V(¢) is invariant under
parity and charge, but goes to V(—t) under time reversal.

Finally, it follows the S matrix must be invariant un-
der charge and parity, but under time-reversal it's not so
clear, since we have the time-ordered exponential.

Theorem: For the QED Lagrangian, 757! = St.

Proof: We have by Dyson’s formula:

tn—1

S = i(—i)” /Oodtl /t dts... / dt,V (t1)V (t2)...V (tn),

n=0

— 00

which implies (since 7' is anti-linear): 75T~ =

tn—1

0o [e’s] t1
Zi"/dtl/dtg... / dt,V(—t)V (—=t2)..V (—tp).
n=0 —o00 —o00

Substitute 7; = —t,,1_; to get:

/dTn / dTn,l.../dTlV(Tn)...V(Tl).

T2

Now use the identity (which can be proved graphically):

o0 o) o0 Tn—1
/dTn/dTn_l = /dTn_l / Ay,
—o0 Tn —o0 —o0

to swap the order of all the integrals, and swap all the
limits at the same time. But notice that the final result is
what we would have got had we initially taken the dagger
instead (since (AB)" = BTAT, and all V are real). (I

Theorem: Let |¢7) = T¢) and |ny) = T'|n). Then
(nr|S|ér) = (£]S|n) (for QED, i.e. TST—! = ST). That is,
taking the time-reversal of the states and computing the
amplitude is the same as watching the process in reverse.

Proof: Since we're working with 7', it's best to ditch
Dirac’s bra-ket notation. We have

(nr|S|ér) = (T, STE) = (Tn, TSTE).

This follows since 7'ST~! = St. Now use anti-unitary to
get:

(r|SIér) = (n,S1€)" = (ST&,n) = (&, Sn) = (¢|Sly). O

This result holds generally if 7L (x)T~" = £;(x7), that is,
the interaction part of the Hamiltonian is invariant under
time reversal. It's clear that the proof that 77! = St
works in this case just as before.

2.12 The CPT Theorem

CPT Theorem: Any Lorentz-invariant Lagrangian £ with
a Hermitian Hamiltonian is invariant under the product
©=CPT.

Proof: There isn’t one! Only conjecture. O

Invoking the CPT Theorem can often speed up proofs,
since we only need to verify two things are invariant, and
invariance of the third follows.

2.13 Baryogenesis

Definition: Baryogenesis is the generation of the matter-
antimatter asymmetry in the Universe.

There are three conditions necessary for baryogene-
sis, which come from violation of the symmetries:

The Sakarhov Conditions:

1. Baryon number violation. There must exist a process
X — Y + B which yields a baryon excess B.

2. Non-equilibrium. The rate T'(Y + B — X) must be
strictly less than the rate I'(X — Y + B) to prevent
the process being undone.

3. Charge violation and charge-parity violation. If the
Universe starts with equal numbers of X particles and
X particles (X anti-particles), then the rate of baryon
production is

dB -
Hence there must be charge violation, else this is
zero.

To see CP violation, assume for simplicity that
X — B only, and that B is composed of n quarks. C
violation implies that I'(X — ngqr) # I'(X — ng,).
Under CP, there is a symmetry ¢q;, — Gy, SO We can
still get:

['(X — ngr)+I'(X — ngr) = (X — ng,)+T(X — ngp)

This would preclude baryogenesis, so we must have
CP violation.
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3 Spontaneous symmetry breaking

3.1 Discrete and continuous examples

Example 1: Consider a Lagrangian

1
£=50,00"6 ~V(9).
where
V(6) = 2m?¢? + 21
2 477
and A > 0. The theory has a hidden discrete symmetry
¢ = —0.

For m? > 0, the minimum of V(¢) is at ¢ = 0. But
for m? < 0, we can complete the square and drop the
constant to get:

2
V((rb) == <¢2 - ’1}2) )
where v = /—m?2/\. There are now two degenerate

minima ¢ = +v. We say that ¢ has acquired a non-zero
vacuum expectation value.

Choose the vacuum ¢ = w.
¢ = v+ f, the Lagrangian becomes:

Perturbing around it

£:;aufa“f—)\<v2f+vf3+if4).

We see f has mass-squared m} = 2X\v>. Note that
f — —fis nolonger a symmetry; the symmetry is broken
by the non-zero vacuum expectation value.

Example 2: The above example generalises to many
fields. Consider ¢ = (¢1, ..., on) T, with Lagrangian

1
L= 50.6-0"~V(9).
Here,
1 242 A 4
V(g) = gm*é® + T4,
and A > 0. The theory has a hidden O(N) symmetry of

the fields. Exactly as before, ¢ = 0 is the vacuum for
m? > 0, but for m? < 0, the minima of the potential are

described by ¢? = v? for v = \/—m2/\.

Choose the vacuum ¢ = (0,0,...,0,v)T and perturb
to ¢ = (mi(x),...,an_1(x),v + o(z))T. The Lagrangian
becomes

1 1
L= 5 Mﬂ'-@“ﬂ'"‘gauaaﬂa_v(ﬂ-va)v
where
1 A
Vir, o) = §m?TaQ + M(o? +12)o + 1(02 +7%)%,

The o field acquires a mass-squared m?2 = 2\v?, but all
the m; fields are massless.

This makes sense since the potential is like the bottom of a
wine-bottle; radial excitations climb the walls and have high
energy cost (manifested as mass), but angular excitations
have no energy cost.

Note that the final Lagrangian has a hidden O(N — 1) from
transformation of the = fields, but the O(N) symmetry has
been broken.

3.2 Classical form of Goldstone’s Theorem

The examples above can be generalised dramatically to
Goldstone’s Theorem.

Definition: A transformation ¢(z) — g¢(x) of fields
is a symmetry of the Lagrangian if V(g¢) = V(¢). The set
of all symmetries is the symmetry group of the Lagrangian.

Definition: Let Vi, be the minimum value of V(¢).
The manifold &y = {¢o : V(do) = Vmin} is called the
vacuum manifold.

Definition: Suppose we fix a vacuum ¢o. The in-
variant subgroup (or stability group) of the vacuum ¢ is
the subgroup H = {h € G : hopg = ¢o} < G.

In general, we assume that A is normal in G, H < G, and
that G acts transitively on ®.

Theorem: The stability groups of all vacua ¢, € @
are isomorphic.

Proof: Let ¢, = g¢o (assumes transitivity!!), and suppose
H' is the stability group of ¢, H is the stability group of
¢o- It's intuitively clear that H' = gHg~*, since h/¢} = ¢},
and ghg='¢}, = ghgo = gpo = ¢}. Since H is normal,
gHg~' =~ H and we're done. [J

Theorem: For any stability group H, we have &, =~ G/H.

Proof: Fix a vacuum ¢o. Let ¢, be any other vac-
uum. Suppose ¢, = gi¢o = g2¢o. Then gy g1 € H, so
g2 and g, are in the same coset. So going from ¢ to
any other point is specified by a particular coset, hence
g = G/H. O

10
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Goldstone’s Theorem: Under spontaneous symmetry
breaking of a continuous symmetry G of the Lagrangian
to a subgroup H, there are at least dim(G) — dim(H)
massless modes.

Proof: Since the symmetry is continuous, write it as
go = ¢+ 3¢, where 6¢ = ia“t*¢p. Here, a® are infinitesimal
parameters and it* generate the Lie algebra of G.

Since g is a symmetry, we have

V(0 +80) - V(o) =i 0, =0 ()
Let ¢o be the broken vacuum. Expanding V' around ¢y,
82
V(¢) = V(o) = (¢ bo)r (¢ — do)s +
’ 06000 | gy,

There is no first derivative term, since ¢, is a minimum of
V. The quadratic term is the mass term, as we saw in the
examples. Write

0*V
Oprgs

to denote the mass-squared matrix. Go back to (x) and
differentiate wrt ¢, and evaluate at ¢ = ¢,:

o0?V
0Pr 05
Note there is no other term in the product rule expansion,

since 0V/d¢, = 0 at ¢ = ¢o. Since this holds for all a*,
this reduces to M2, (t%¢),. = 0.

2 _
Mrs_

=0

ia(t%P), =ia®(t*¢), M2, =0

If the symmetry is unbroken, then g¢o = ¢y for all
choices of vacuum, implying t*¢ = 0 for all a. Else, there
exists g € G such that g¢g # ¢o, S0 that t*¢g # 0 for some
a values. Then t%¢ is an eigenvector of AM? with evalue 0.

Let {it",i0*} be the basis of the Lie algebra, where
t'¢ preserve the symmetry via t'¢y = 0, and #%¢ are
eigenvectors of M? with zero eigenvalue. WLOG, we can
choose the #% to be orthogonal to ¢ wrt the Killing form,
ie.

Tr(£0%) = 0.

Then it* generate the Lie algebra of the stability group
H, and hence there are dim(H) of them. There are
dim(G) generators in total, so it follows there are at least
dim(G) — dim(H) massless modes, as required. [

If M? is N x N, we should generally expect there to
be N — (dim(G) — dim(H)) massive modes, but it is
possible some of these end up massless anomalously.

Definition: The massless modes coming from Gold-
stone’s Theorem are called Goldstone bosons.

3.3 Many examples
Example 1: Let M be an N x N matrix, and consider:
L =Tr(0"M'9,M) — %)\Tr(MT MMTM) — kTe(MTM),

for A > 0. A general symmetry looks like M — AMB™!,
and it’s clear that A, B € U(N) for this to stand a chance
of being a symmetry. Is the symmetry group U(N)xU(N)?

No. Consider the homomorphism ¢ : U(N) x U(N) — G
where G is the symmetry group of £. Assuming this is
surjective, the first isomorphism theorem gives
U(N)x U(N)

Ker(9)
The kernel of ¢ is {(A,B) : ¢(A,B) = id}. Explicitly,
(A, B) is in the kernel iff AM BT = M for all M.

G =

Choose M = I. Then A = B. So AMA" = M =
[A,M] = 0 for all M, and hence A « A by Schur’s
Lemma. But A € U(N), so A must be a phase. Hence
Ker(¢) = {(e"1,¢"I)} 2 U(1). Thus

U(N) x U(N)

“= =

For £k < 0, this theory undergoes SSB. Completing
the square, we find

2 2
V(¢)=—;/\tr<<MTM—|—];\I> )-F;k)\ :

We want the trace’s argument to be zero, since
MM + %1 is a Hermitian matrix so has real evalues, so
(MTM + §1)2 has non-negative evalues. So the vacuum
manifold is MTM = —(k/\)I = v*I, where v = \/—k/\.
This can be rewritten as &g = {vM : M € U(N)|}.

To find the invariant subgroup H, we can pick any
¢g € 9. Select vI, and consider transformations
vl — AvIB~'. For vl € H, we need AvIB~' = 4], i.e.
A= B.So

H = {(A,B) € (U(N) x UN))/U(1) : A = B} UU((JY))
Goldstone’s Theorem then implies there are

dim(G) — dim(H) = 2N? —1 - N? + 1 = N? Gold-

stone bosons.

Example 2: Consider the same Lagrangian with the
additional term

L' = h(det(M) + det(MT).

For (A, B) to give a symmetry, we now need det(M) =

4et) det(M) for all M, ie. det(4) = det(B). Wite

A = ¢e%A" and B = €*B’, where A', B’ € SU(N) (this
is possible since |det(U)| =1 for U € U(N)).

11
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The determinant condition then gives eN? = ¢Ne
which implies § = ¢ + 2mik/N. So our symme-
try transformations are specified by (A’,B’,0,k) €
SU(N)xSU(N)xU(1)xZy. Is this the symmetry group?

Let ¢ : SU(N) x SU(N) x U(1l) x Zy — G. The
kernel is given by (A, B, 6, k) such that

O A Me= B 2™ k/N — M for all M.

Clearly this holds for all 9. We can also absorb e?7/N

into A’ to just get another element of SU(N). So can
immediately quotient out U (1) x Zy.
Left with A’MB'T = M. Choosing M = 1 gives

A" = B'. Then [A,M] = 0 so by Schurs Lemma
A’ = e?™F/NT since A’ € SU(N). Hence the kernel is
{(e2mik/N 2mik/NYY = 7, Hence the symmetry group is

SU(N) x SU(N)

G= Zn

The vacuum manifold remains MM = »2I, so choose
vacuum oI WLOG. Then the invariant subgroup is
(A, B) € G such that

AvIB™' =vl = A= B.
Hence the invariant subgroup is H = SU(N)/Zy. So

there are dim(G) — dim(H) =2N? -2 - N2 +1=N? -1
Goldstone bosons.

Example 3: Consider a theory of five scalars ¢,
a = 1,....5 expressed as a symmetric traceless 3 x 3

matrix ;
¢ = Z ¢ataa
a=1

where t,, are a basis of symmetric traceless matrices obey-
ing Tr(t.ty) = dap. The theory has Lagrangian

r= %Tr (84D, P)—g (iTr(@4) + %bTr(@S) + ;cTr(CI>2)>

where g > 0. It’s trivial to see this has an SO(3) symmetry
®— ADPATL, A€ SO(3).

Let M, be the vacuum manifold. If &4, ®[ € My,
then &) = A®,AT for some A € SO(3), assuming tran-
sitivity. So ®, and @, are similar so have the same evalues.

Also Tr(®) = 0, all evalues of ® sum to zero. Hence all
elements of vacuum manifold have same evalues, which
sum to zero. Let the eigenvalues be A\;, Ay and A3, and
choose to work with vacuum

g = diag{A1, A2, A3}

There are three cases for the invariant symmetry group:

1. All evalues are equal. Then \; = Ay = A3 = 0. So for
all A € SO(3), we have A®yA~! = @, and it follows
that H = SO(3). There is no SSB.

2. Two evalues are equal. We have &, = diag{\', \, \}.
It’s straightforward to see that

1 0

for A € SO(2). So H = SO(2).

3. All evalues are distinct. Then it can be shown that the
only A € SO(3) with APyA~! = ®jis A = I. Hence
H = {e}.

To get further constraints on )\;, we need to calculate
My directly using a Lagrange multiplier p to ensure
Tr(®) = 0. We find

0=®3+b0% + c® — pul
is the vacuum manifold. Taking the trace, we see
3u = Tr(®3) + bTr(®?) + cTr(P).

For example, for H = SO(2), we set & = o, =
diag(A, A, —2X). Inserting this into both equations above,
we can eliminate  to derive 0 = A\(3)\%2 — b\ + ¢). So we
get A =0 (i.e. no SSB) or 3\%2 — b\ +c = 0.

Using the discriminant, this has solutions iff 5> > 12¢. If
this is fulfilled, it's possible to get H = SO(2).

Example 4: Consider b =
the identity

0 in Example 3. We use

TH(M*) = 3 (Te(M?))?

for traceless matrices to rewrite the Lagrangian as
1 1 U 9

Note Tr(®2) = Tr(¢adptats) = Gadsdar = ¢ - b, SO We can
again rewrite the Lagrangian as:

1
L= 5006~ L0 8) — 366

It's then evident that the theory has the larger symmetry
group SO(5).

Minimising the potential, we find the vacuum mani-
fold is a subset of 0 = 1¢|]> + cp. If ¢ > 0, get
¢ = 0, but if ¢ < 0 we get SSB, with vacuum manifold
|#|? = —2¢. So clearly M, is a 4-sphere. It's possible to
show that SO(5)/S0(4) = S%, so H = SO(4). There are
dim(SO(5)) —dim(SO(4)) = 10 —6 = 4 Goldstone bosons.

12
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3.4 Quantum form of Goldstone’s Theorem

Theorem: Let G be the Lie group of symmetries of a La-
grangian £, and suppose it is spontaneously broken to
the Lie group H by the non-zero VEV (0|¢(z)|0) = ¢o #
0. That is, (0|hg(x)|0) = ¢ # 0 for all h € H, but
(0|g¢(x)|0)y = 0 for all g € G\H. Assume also that:

1. we are working with a Lorentz covariant theory;

2. all states in our Hilbert space have non-negative
norm.

Then there are at least dim(G) — dim(H) Goldstone
bosons.

Proof: The Lie algebra of G is generated by it%,
a = 1,...,dim(G), and the Lie algebra of H is generated
by it, i = 1,...,dim(H), where t*,{* are Hermitian.

Since each generator gives a symmetry, by Noether’s
Theorem we have conserved currents and charges:

oL
j* (@) = ia@@ t*o,
Q= | &@®xj%x) =i | d®xw(2)t ¢(x).
o]

Using the relation [¢(X,t), 7(X',t)] = id(x — X’), we can
show that [Q%, #(0)] = t“¢(0) (possible to use equal time
commutation relations since Q® is conserved). We relate
these to the currents via

011Q". 6(0)]]0) = / 0Px C(z),
where C = (0][j" (x), $(0)]|0).

We now try to compute C°*.
of states to get

O = ({01 ()[n) (n|$(0)]0) — (0[¢(0)[n) (n]j** (z)]0)) -

n

Insert a complete set

The sum over n here includes integrals over d3p, etc, de-
pending on the form of |n). Define the spectral density
functions by

ip™ (k) = (2m)* > 6% (k — pa) (0[5 (0)[n) (n|$(0)]0) ,

ip™ (k) = (2m)* > 6*(k — pn) (0]$(0)|n) (n]5**(0)]0) .
Recalling j*#(z) = e'F®j2"(0)e~*F"* (since momentum
generates translations in quantum theory), so that
(0% (2)[n) = (0[5 (0)e ™" |n) = (0]j** (x)|n) e~ """,
where p,, is the momentum of state |n) (assuming |0) has
zero momentum). Thus we can then write C** as

4
Call — Z/ d*k (pau(k>e—ik':c _ ﬁau(k)eikwx).

(2m)?

The spectral densities only depend on k, so if they are
to be Lorentz covariant, they must be proportional to k*.
Also, physical states have k° > 0 (i.e. non-negative en-
ergy), hence we have:

p (k) = KPO(K)p"(K*),  p™ (k) = k"O(K) 5" (k?).
Thus

4
O — _gH / (;iﬂ_];@(kO) (pa(kQ)efik-z + ﬁa(kQ)eik-x) )

Recall the propagator in QFT had the integral expression:

3
D(x — y:0) = (0]6(x)é()]0) = / s

—ip-(z—y)
(2m)3p"

Po=v/Ip?+o
=/(2J;]))39(p0)5(p2 —o)e ),
where ¢ is the mass-squared of the ¢ field. Writing
p07) = [ dop(@)s(* - o),
we can reduce C'** to a propagator:
o = —8“/da(p“(a)D(:c; o)+ p*(o)D(—z;0)).

For all spacelike =z, i.e. 2 < 0, we have
D(z;0) = D(-=z;0). But when 2?2 < 0, C** is a
commutator of spacelike-separated operators, and hence
must vanish. So p®(c) = —p®(o) holds when z is space-
like.

But neither p® or p* depend on z. So this relation
holds everywhere. Hence

cot = —3”/d0 pt(0)iA(z;0),

where iA(x;0) = D(x;0) — D(—x;0) is the Feynman prop-
agator. Conservation of the current implies 9,,j** = 0, so
0,C* = 0. Thus:

—82/610 ()il () = —/da P N

Recall the Feynman propagator satisfies Klein-Gordon, so
(0% + o)A = 0, and we can rewrite the condition as

/da op®(o)iA(z;0) = 0.

This must hold for all z, including timelike = where
A(x;0) # 0. Hence op®(0) = 0 (assuming p(c) > 0, which
is true since the original spectral densities were defined in
terms of norms of states). There are 2 cases:

1. p®(oc) = 0. Then C** = 0, and so (0[t*¢(0)0) =
(0][Q*, #(0)]|0) = 0. So t* is an unbroken generator.

2. p*(oc) = N%(o), for N* # 0. Then C* =
—iN*9"*A(x;0), and so

(01[Q", 6(0)][0) = —iN® / d*x Az 0).

13
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Need to evaluate the RHS. Recall

iA(z;0) = D(z;0)—D(—x;0) = / %

where ¢(k") = +1 for k° > 0 and —1 for k° < 0. Integrating
over d3x, we can convert e~ into a delta function. We
also introduce a limit as a technical trick:

/d3x ZA(;L',O) = hn%)/dkoé((k())Q _ O,)E(kO)e_ikol'o
o—

k 5(k0 - \/E) (ko + f) —ik%zq
I 0< ovel T 2vel )

R
=— ilg%) NG sin(zoy/o) = —x0.

= lim
o—0

Therefore, we have
(0][Q°, (0)][0) = —iN" / dPX " A(;0) = iN® £ 0.

So t* is a broken generator.

We still need to count the Goldstone bosons. We'll
do so by going back to the spectral density functions p@,
p**. Label the states with non-zero contribution to ¢g by
B(p), and let (permitted by Lorentz covariance):

(017“%(0)[B(p)) = iFgp", (B(p)|$(0)|0) =

Note that |B(p)) is spinless, since ¢(0)|0) and Z% are
rotationally invariant. Note also that |B(p)) is massless,
since in the case where we have a ¢, contribution,
we must have p(c) = N%(c), which only contributes
when the ¢ field mass is ¢ = 0 (this carries across to
p (k) = kHO(k%)p*(k?) = k*O(k°)N*5(k?), showing we
only get a contribution to C**, and hence to ¢q, when
k? =0, i.e. the field is massless).

We need to count the |B(p)), which we are now cer-
tain are the Goldstone bosons. Recall that

ip““’(k?) — Z'k“@(kO)Na(S(k’Z) - / 2| p|64(k p)lkﬂNa
and

=% [ 55 - ) 05 1B (B)0))
3

/ ) '°‘54(k )ik Z Fez5,
by definitions. These are equal for arbitrary &, and so
=> Fpz".
B

The unbroken generators span H, so there are dim(H)
unbroken generators, and n = dim(G) — dim(H) broken
generators, i.e. n components of N*. So Fg has rank
n. Since row rank is the same as column rank, and col-
umn rank is the dimension of the space spanned by the
columns, we must have at least n B labels. So there are
at least n Goldstone bosons. [

S(k?—o)e(k)e 2,

3.5 The Abelian Higgs mechanism

Gauge theories can violate the conditions of Goldstone’s
Theorem. For example, they can contain states with
negative norm (ghosts) or can have non-Lorentz invariant
gauge conditions.

Example: Consider scalar electrodynamics, described by
Lagrangian

L= —3Fu P + (Du0)" (D"9) — V(5°9),

where F,, = 0,A, — 0,A, and D,, = 0, + iqA,. This
theory has a U (1) gauge symmetry, given by

$(z) = (),

Take V(¢*¢) = u?|d|* + A|¢[*, with A > 0, and consider
how 12 changes.

1
A, — A, — -0u0(x).
q

e If 2 > 0, then ¢ = 0 is the unique vacuum and p?|¢|?
is the usual mass term for the complex scalar ¢. The
photon is massless (no quadratic 4, term) and ¢ has
mass-squared p2.

o If 42 < 0, then the vacuum manifold is |¢]*> =
—p?/2\ = v?/2, for v = —pu?/A. WLOG, set ¢ =
v/+/2, and expand around the minimum:

b= @/ 1 p(z)) = ——(v + n(z) + i6(z)).

V2 V2
Here, n(x) is real and 6(z) is real. The Lagrangian
becomes:

1

£= 300~ 27N) + 5 0u0)(00) —

1
+quA, 0" + iqzvauA” + Lint,

where Ly denotes interaction terms. We see n has
mass v2v2\, A, has mass gv (i.e. the photon has
become massive!) and 0 is massless.

Now note we can factorise the Lagrangian as:

1 1
L= 5(8H778“77 — 202 — EFWFW

1 1 1
+=¢*? (Au + 8#9) (A“ + 8“9) + Lint,
2 vq vq
Since this is a gauge theory, we're free to first pick a

specific gauge. Choose to transform to unitary gauge,
a = —0/v. Then

1
prr ¢ =e = —(vtn), Ay Al = Alt+quaue.

\/i

This gives the Lagrangian
1 1 1

L= 3 (8,md"n — 2)\1)2772)—1FWFW+ VA A 4 L.

The Goldstone boson, 6, is no longer present!

14
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Definition: If choosing a gauge eliminates a Goldstone
boson, we say the gauge field eats the Goldstone boson.

The above SSB process is called the Abelian Higgs
mechanism. It gives a photon of mass m., = quv. It clearly
doesn’t happen in real life.

3.6 Review of hon-Abelian gauge theory

In the Standard Model, we have a similar SSB process
to the above, but for a non-Abelian gauge theory. Hence,
let’s recap non-Abelian gauge theories.

Definition: In a gauge theory with gauge group G,
fields ¢;(x) transform as ¢;(z) — Ujj(x)y;(x), where
U,;(z) is in some representation of G.

If it* are the generators the Lie algebra of G, this trans-
formation law becomes v;(x) — exp(it®0°(z))i;v;(z).
The conjugate field transforms as ¢, (z) — wj(x)(UT)ji =

B, exp(—it0° (z));:.

Recall the generators it obey [t¢, t’] = i f*°t¢, where fab¢
are called the structure constants of the Lie algebra. The
generators may also be chosen to obey the orthogonality
condition

Tr(t*t") = T(R)6,

where T(R) is a constant dependent on the represen-

tation, called the Dynkin index. For the fundamental

representation, T'(R) = 1.

In order for a theory to be invariant under gauge
transformations, we need to promote the derivatives to
covariant derivatives.

Definition: The covariant derivative of a gauge the-
ory is

(Dp)ij = Oudij +ig(t* A}))sj,
where A, is a set of gauge fields, which transform under
gauge transformations as

(t"A%)55 = Ut AU~ + é(aMU)U—l,
or infinitesimally as
@A a pa L a abc c
(t Al‘«)ij — (t A/_L)ij — 58#9 _ f b ebAu.

The gauge fields require a kinetic term to be included in
the Lagrangian. Define the field-strength tensor by
igt*FS, = [Dy, D)) = Ff, = 0,A% — 0,A% — gf** AL A
The required kinetic term is then

1
Egauge — __Fo popr — _

1
——Tr(F,, F").
4 K 4T (R) (F )

Showing gauge invariance: This is simple, as long as
we use finite gauge transformations, and the results:

Theorem: Under a gauge transformation, D,,¢ — UD,¢.

Proof: We have D,,¢ = 0,¢ + igA,¢
— 0,(Ug)+ig (UA#U_I + ;8#(U)U‘1> Up=UD,¢. O

Theorem: £}, F** is gauge invariant.

Proof: Note igF,,¢ = [Dy,D,]¢.
transformation then, we have

Under a gauge

igFuuU¢ = U[D,U«v Du]¢a

so that F},, — UF,,U~'. Thus Fg, F o Tr(Fy, F*) is
gauge invariant (using cyclicity of the trace). [

3.7 The non-Abelian Higgs mechanism

We are now ready to discuss SSB of non-Abelian gauge
theories. In general, we work with a Lagrangian of the form

L=~ LFaF 4 (D46)!(Dud) — V(9),

with gauge group G, where ¢ is a real multiplet.

Theorem: Assuming:

(i) the generators t* of the Lie algebra of G obey
o(t*¢) = (t*¢)T¢, for all ¢, ¢;

(i) V'(9)Tt?¢ =0;
we have that this Lagrangian is gauge-invariant.

Proof: The kinetic term is gauge invariant by the above.

The given condition is ¢ft?¢ = oftete for all ¢, ¢,
so t* = tf.  This implies the finite transformation
U = exp(it*0“(x)) is unitary. So under a gauge trans-
formation (D*¢)'D,¢ — (UD*¢)'UD,¢ = (D"¢)ID,é,
since U is unitary.

For the potential, it's actually best to work infinitesimally.
Note V(¢) +— V(¢ + it?0%¢) = V(¢) + iV'(4)T(t?0%¢) =
V(¢), by assumption (ii). O

Let's consider SSB of this Lagrangian. Recall that
we can get the gauge bosons to eat some of the Gold-
stone bosons by a clever gauge choice. As before, use:

Definition: Let ¢, # 0 be the vacuum. Then unitary
gauge is defined by (t%¢¢)¢ = 0.
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What is the point of this gauge choice? Note #'¢y = 0
automatically holds for any unbroken generators, so this
condition says nothing about those.

For broken generators 6%, we recall some differential
geometry. The vectors t%¢, span the tangent space
to ¢, SO H%p, span a subspace of the tangent space,
corresponding to directions associated with the broken
generators.

Therefore, the gauge choice tells us that perturba-
tions to ¢ have no component in the broken generators’
direction (compare with the Abelian Higgs, when the
gauge choice causes 6(z) to vanish).

This is formalised in the following Theorem:

Theorem: Let ¢y # 0 minimise V(¢), and let ¢ = ¢o+ f be
a perturbation to ¢,. Then in unitary gauge, (t*¢o)"f = 0.

Proof: We automatically have (t%¢¢)T(¢o + f) = 0.
So just need (t%¢o) do = ¢ty = 0.

Recall that ¢ is a real multiplet. So under any gauge
transformation ¢ — ¢’ = ¢ + ia®*(x)t*¢, the field must
remain real. So ¢’ — ¢ is real, so ia®(z)t* is real. Since
we work the real Lie algebra, a%(z) € R, and it* is real.
Hence (it*)* = it®, which implies t** = —t®.

The hermiticity condition t*T = t* implies t*7 = —t,
i.e. the generators are antisymmetric. So write
dot*Po = (¢0)i(¢o);ts: = 0, and we're done. [J

)

Theorem: Suppose V(¢) is minimised at ¢ = ¢, # 0.
In unitary gauge, SSB of the above Lagrangian via the
expansion ¢ = ¢g + f gives a mass to the gauge bosons
corresponding to the broken generators, and gives no
Goldstone bosons (they are all eaten).

Proof: As usual, expand ¢ = ¢g + f. In unitary
gauge, we have (t%¢,)'f = 0 from above. Since this
condition is meaningless for unbroken generators, split
everything up into broken/unbroken.

Split t* = (1*,6%), where ' are unbroken and 6% are
broken. Also split the gauge fields:
Ay = AT+ ALGY,

so that Aj, are the ‘unbroken gauge fields’ and /1” are the

‘broken gauge fields’. The covariant derivative splits as:
Dy = 0uf +igA5t*(¢o + ) = D), f + igAj6% (g0 + f),

where D/, = 8, + igAl,'" (note i'¢y = 0 by definition).
Hence (D, ¢)! Dt =

(D) = ig(A2) (@ + £)16°T) (D" f +igAP6% (g0 + f)) .

Simplifying, and keeping only the quadratic terms, we have
(D, f)ID" f +ig(D), )T Aty — igpf Al D' f + g* ¢ Al Ak .

The middle two terms combine to zero, which we show as
follows:

(D, 1) Aty — gfALD™ 1
= (0T —igfTA,) At g0 — $f AL (9" f + igA¥f)
=0, f1Al gy — ¢} A, 0" .
Hmm we still need something to save us. But we
haven’t used the gauge condition! Recall ¢$6‘1f =0, SO
¢y A, f = 0, by multiplying through by A?(z). Taking the
derivative, we have ¢{d, A" f = —¢} Ard, f.

But recall that the x= dependence is entirely in the
coefficients of the generators, i.e. Az (z). So we've shown
that o B i

(ZS(T)Auauf: _(auAa#) g)eaf =0,
by the gauge condition. Similarly, the other term is zero.
Thus we're left with:

(DL NTD™ f+ g2 o Al A gy,

We also expand V' (¢) to get V(¢p) (a constant, which we
forget about) and 1 fT M f, where M is the mass matrix.

Hence the kinetic part of the Lagrangian is:

1 1 1 A A 1
o a pauv T y/H 2t +
Lyin = _ZF*”’F . +§(D;Jf) D' f+§9 ¢0A/J«AM¢O_§JC M.
In principle, components of f could acquire mass, and
components of A# could acquire mass. It depends on the

matrices M and M_; = ¢2(6%¢o)T6% ¢

o A" MASSES: All of the broken gauge fields acquire
a mass from eating the Goldstone bosons. This is
because the matrix g*(0%¢,)"0°¢, has no zero eigen-
values; if it did, say v, they would have to obey
vP0%¢y = 0. But then v°6® would be an unbroken gen-
erator, contradiction.

e f MASSES: Recall that near any ¢, we can expand:

ov
V(6+60) = V(9) = ia" (t"9)r 5o~ + O(a?).
Differentiate to obtain:
v . ov .
5605, O T g, s

Evaluating at ¢ = ¢y gives M, (t%y), = 0. This
shows that each broken generator, i.e. #%¢, # 0, gives
a zero eigenvector of M,,.. But the unitary gauge con-
dition implies that f is orthogonal to such evectors,
and thus there are no necessary Goldstone bosons in
this case. O
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The final technique of the proof above also allows us to
prove the following useful result:

Theorem: The mass eigenstates form multiplets of
the gauge group H (i.e. they are eigenvectors of the
generators of the Lie algebra of H).

Proof: Recall we have:
oV
¢y

V(¢ +89) = V(¢) = ia"(t"¢),— + O(a?)

and so differentiating, we get:
2
008, O+ 5
Differentiating a second time and evaluating at ¢ = ¢o, we
obtain:
3V
06106.00r | 4y

For unbroken generators, we have t%¢, = 0, so the first
term vanishes. We're left with:

() rs-

(ta(bo)'r' + Msr(ta)rt + Mtr(ta)rs = 0.

ME 1 (BT M = 0.

(Notice M™ = M by definition). Recall that i were anti-
symmetric and {it*} generates H. Therefore:

[M,it?] = 0.

It follows that the mass matrix and the generators of H are
simultaneously diagonalisable; thus the result follows. O

3.8 Examples of the Higgs mechanism

Example 1: Consider an SU(2) gauge theory coupled to
a complex 2-component scalar field ¢ via the Lagrangian:

1 1 1
L=— F"-Fu+ (D*¢)TD,¢ — 5/\(¢T¢ - §v2)2.
Here, the generators of SU(2) are it = }io, where o are
the Pauli matrices. The structure constants are quickly
computed to be [7%, 7°] = je@bere = fabe = eabe,

Notice that in this example we've used vector nota-
tion. We can discern its meaning as follows; recall
that
a a a abc Ab pc
Fy, = 0,A, — 0, A, — g™ A} Ay,
S0 in vector notation, we have

F..=0.A, —0,A, —gA, xA,.

VACUUM AND UNITARY GAUGE: It's clear that for v? > 0,
we get spontaneous symmetry breaking, with the vacuum
manifold ¢'¢ = 1v?. As usual, we can WLOG pick a vac-
0 Y .
_ 1
uum, say ¢g = 7 (v> , and as usual it will be desirable to
impose unitary gauge.

Let's see another example of how to construct it explicitly.
In general, a perturbation to ¢, is of the form:

1 0! + i6?
¢:\/§(v+h+103)
32t (2405
_ 503 1 -N2
N \% <v3h> +%ﬁ <—912—|9—i92 ’ 25329 ) (v—?—h)'

where 61, 62, 92 and h are real fields. Notice that

—if3 bh+i02\ .02 1 001 2 o.p3 3
(—91+i92 i05 )—2297’ + 210" 77 — 2i6°7°.

and hence we may write
b= RN ACEERTS
T V2 \v+h+if?
= L exp (i + 20612 — 2i6%7) 0
V2 v+h v+h)’
Since the exponential is an element of SU(2), we can

safely gauge transform ¢ such that the perturbation is
(WLOG) of the form:

o= (o)

which is unitary gauge, as required.

UNBROKEN SYMMETRY: Notice that the vacuum man-
ifold can be written a? + b? + ¢* + d* = v, where
¢ = (a +ib,c +id)T, and hence it follows the vacuum
manifold is of dimension 3. Now by Goldstone’s Theorem,
we have dim(H) = dim(SU(2)) — dim(®y) =3 — 3 =0, so
the symmetry is completely destroyed.

PARTICLE MASSES: Expanding ¢ near the vacuum
as above, and keeping only terms that are quadratic in i
or quadratic in A, (and ignoring any couplings between
fields), we see that i acquires a mass v/\v? and the A%
fields all acquire a mass 3 gv.

Example 2: Now consider an SU(2) gauge theory

1 1 1
L= —ZFW F + §(D“¢) (D.¢) — gA(¢2 —v?)2,
where ¢ is a real triplet (i.e. transforms in the adjoint rep,
so that the generators are (t*) i, = —ie,;i). Notice that the
covariant derivative of this theory is:

Du¢ = 0,6 — A, X ¢.

When v? > 0, the vacuum manifold is ¢> = v2, this
is clearly the 2-sphere, S%2. Now use the isomorphism
S$? = SU(2)/U(1) to conclude that the unbroken symmetry
group is U(1).
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WLOG choose the vacuum ¢y, = (0,0,v)” and choose
a perturbation ¢ = (0,0,v + h)T by moving to unitary
gauge (here, we can remove the two degrees of free-
dom in the first two components because there are
dim(SU(2)) — dim(U (1)) = 3 — 1 = 2 broken generators).

Inserting into the Lagrangian, we find that the mass
of the h field becomes v/ \v2, and the masses of AL, A%
becomes ev. However, A remains massless (it was
protected by the U (1) invariant subgroup).

We also see there are h*, h3 self-interactions, and
gauge boson-h interactions via (A%)*h and (A%)*h>.

Example 3: Finally, consider an SU(2) gauge theory
coupled to a complex triplet field ¢ with Lagrangian:

L= —iF“” ‘Fuu + (D"¢) - (Dug) + %92(45* x ¢)*.

Notice that if we write ¢ = 6 + ix, then the potential term
becomes:

V(g) =~ 5078 % 8 =20°(0 x x)* > 0.

So we can minimise the potential by choosing
¢o = ves//2 to be our ground state.

To find the invariant subgroup, recall that we’re in the
adjoint rep, so we want to relate SU(2) to 3 x 3 matrices.
Recall SU(2) is a double cover of SO(3), so we can
immediately do this. Then it's clear that matrices of the

form:
A 0
0 1

preserve the vacuum, with A € SO(2). So the unbroken
symmetry group is SO(2).

It follows that by Goldstone’s Theorem that there are
dim(SU(2)) — dim(SO(2)) = 2 massless modes; these
can be eaten by the gauge bosons by imposing unitary
gauge. Since there are two massless modes, we can
remove two degrees of freedom from the perturbation in
unitary gauge, e.g. choose the conditions:

Re(v*¢-e1) = Re(v'g-e2) = 0.

In this gauge choice, perturbations are of the form
¢ = %(f1 — ik f1, fs = 2 fz,v + g1 +iga)”. Substituting

into the Lagrangian then gives the mass terms in the usual
way.

However... the above shows that the masses will de-
pend on |v|, which means that changing |v| will change
the theory itself. In particular, theories with different v are
inequivalent - the choice of vacuum mattered here!

This is because for this theory, the gauge transformations
do not act transitively on the vacuum manifold.

4 The electroweak theory

4.1 Gauge boson-¢ coupling

Definition: The electroweak theory is an SU(2) x U(1)
gauge theory, together with a complex scalar field ¢,
called the Higgs field in the fundamental representation
of SU(2). Later, we’ll also include both quarks and leptons.

The gauge boson-Higgs coupling is of the standard
non-Abelian Higgs form:

1 1
Loauge.p = =5 Tr(Fuy FVM) = L F P +(D,) (D"6) =V (9),

where the covariant derivative is given by
. a,_a 1 :
D¢ = 0, +igWim¢ + izg’BHqﬁ.

Here, it® = Jioc® are the generators of SU(2), and W,

B, are the gauge boson fields. The factor of § next to B,
means that we say the Higgs has hypercharge % From the
covariant derivative, we can read off the transformation law
for the Higgs under SU(2) x U(1) transformations as:

o) explia® (a)e(a)) exp (Bl ) )
The potential of the theory is

V(g) = 126> + Alol*,
where p? < 0, so that SSB occurs.

The vacuum state of ¢ obeys |¢|> = —u?/2\ = v2/2,
so WLOG choose the vacuum
1 /0
=75 0):

The unbroken subgroup H is U(1), since the only transfor-
mations preserving ¢, are those with a!(z) = a?(z) = 0
and o?(z) = B(x):

Po — exp <;iﬁ(:6) <(1) _01)> exp (;W(@) bo

55 )0~

As we will see, this is the familiar gauge group U(1) of
electromagnetism, mediated by the photon.

We now wish to perturb around this vacuum. Let

o= (v+%<x>) /

where h(x) is a real scalar field. We're allowed to do this
because we've imposed unitary gauge.

As in the Abelian Higgs mechanism (where we used
a complex ¢), this amounts to removing the U(1) phase,
and any matrix U € SU(2) which would rotate our field.
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After spontaneous symmetry breaking, it turns out that
some combinations of the gauge bosons W, B, play an
important role.

Definition: Define the following linear combinations
of the gauge bosons:

1

1
Z29= ————(gW?—¢'B), W*=_—"—(W!'FiWw?),
92+g,2(9 9'B) ﬁ( FiW?)
1
A= \/ﬁ(g/W3 +gB).
9> +g

These are called the Z-boson, the W=*-bosons and the
photon respectively. It's convenient also to define the
Weinberg angle 6y, given by

/

9 9

with which we can rephrase the Z and photon definitions

(%) = (cotomy ~mion ) (7).

Definition: Define the field-strength tensors:

cos(fw) = sin(fw ) =

FA = 8,A, - 0,A,, FZ =0,2°-0,7",

w* 1 w W
F. = NG (Fuw — zFQW) .
Theorem: In unitary gauge, expanding ¢ =

¢o + (0,h/+/2)T, the Lagrangian becomes: Lgayge s =

1 1 1 1
77FW:ETFW:EMV _ 7FA FAp,y - ZF;/.ZVFZHV + §|8h|2

1224 nv
2 4

kinetic terms

—igW W (sin(Ow ) F, + cos(Ow)FZ,)

W boson-photon and W boson-Z boson interactions

1
+ §g2 (WH2W=2 — (WHW,)?)

W boson self-interactions

1 1
+ 192(1) + h)? (WJW" +5 SeCZ(aw)ZSZO”)

gauge boson masses and gauge boson-Higgs interactions

1 1
+ §u2(v +h)* + 1A(v +h)t .

Higgs mass and Higgs self-interactions

Proof: Expanding the covariant derivative of the Higgs, we
have: D¢ = 0,0 + igW,¢ + 3ig' B.¢

_ L ( 3ig(Wi —iW2)(v + h) )
V2 \Ouh + 3i(g'By — gW2)(v + h)

Therefore, (D,,¢)"(D*$) has expansion:

1 1 1 .
39 (0 R W — W22 4 S|OR| + 2 (v + h)?|g'B — g,

Tidying, we get the gauge boson-Higgs interactions, and
the Higgs kinetic term.

Now consider expanding V(¢); this clearly gives the
Higgs self-interactions and mass term as in the final result.

Finally, we deal with the kinetic terms F(IVZVFW‘”‘”
and FIEJFBW. Notice that

w Wapv _ W pWlpv w W2pv W pW3uv
Fa/wF - Fl/LVF + FQ/J,I/F + Fg/l.l/F

+7T E 3
=2F) FWmw oy pyy PV
so we immediately get the W= kinetic term. Now, using

the structure constants of the fundamental rep of SU(2)
given by f¢ = ¢t we have

Fyy, = 0,W, — 0,W — g* W)Wy

= 0, (cos(Ow ) Z0 + sin(Ow) A,) — 8,,(cos(t9W)Zg + sin(fw)A,)

—g (W W7 —Wiw})

= cos(Ow)F7, + sin(0w ) Fp, + ig (W,FW, — W, W) .
Squaring this, we have
Fyh FYV3 = cos® (0w ) F2,F7M + sin® (0w ) Fj F4*
—g° (wWiw, — W;WJ)Q + 2sin(6w) cos(@w)nyFA“”+
2ig (W,FW, = W, W) cos(Ow ) F7H +
2ig (W, W, — W, W,5) sin(fy ) F 4.
By antisymmetry of F4#* and FZ#¥ the last two terms can
be simplified completely to:
4igW,F W, (cos(fw ) FZH + sin(fy ) F4H#) .

giving the expected W boson-photon and W boson-Z
boson interactions. Simplifying the W+, W~ squared term
immediately gives the W-boson self-interactions.

Finally, we also need to consider contributions from
Fl. We have
Fh =0,B, — 0,B, = —sin(0w)F, + cos(6w)F,.

Squaring gives: F) FPH =

sin® (0w ) F 2, FZ" +cos® (Ow ) Fa F 4" =2 sin(0w ) cos(Ow ) F 2, FA4

Nz nv

This combines exactly with FJ7/, FV31 to give the required
Lagrangian. [

4.2 Analysis of Lgauge s

Let’s analyse the parts of the Lagrangian above:

e MASSES: We find the photon is massless, the W bo-
son has mass my = 2gv (note W complex), the Z
boson has mass myz = ;gvsec(fw ) (note Z real), and

the Higgs has mass my = /3 2 + p2 = V2.
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e RELATION OF Z AND W MASSES: We see that the Z
and W masses are related by the formula:

my = my cos(fw ).

e INTERACTIONS: Everything interacts with everything
else, except the Z boson and Higgs do not interact
with the photon. This reflects the fact that the Z boson
and Higgs have zero electric charge.

4.3 Gauge boson-lepton coupling

Leptons are a type of fermion. Leptons are again given
mass by the Higgs mechanism, so there are two forms of
coupling we need to consider:

e Gauge boson-lepton coupling through terms like

¢ily. Call the full coupling L.

e Higgs-lepton coupling, through a part of the La-
grangian which we’ll call Ligpt, -

Begin with coupling to the gauge bosons. The action
of the covariant derivative D,, on a fermion is given by

Dty = (0, +igWiT* +ig'Y B, )

1
= (au 5% (wirt+w,T")

92 (T° — sin®(Ow ) (T + Y))

cos(Ow )

+igsin(Ow ) A, (T + Y)) P,

where we've expanded in terms of the physical W, Z and
photon fields. Note also that i7'* are the generators for
the SU(2) rep of ¢, and that Y is the hypercharge of the
lepton field ). We define T+ = T + T2,

We note immediately that:

e gsin(fy) is the coupling of A, to the lepton field .
Hence e = gsin(6w ) is the familiar electric charge.

e Depending on the rep, Q = T? + Y is a matrix which
when applied to eigenvectors ¢y, returns Ay, so that
1 has an actual charge e\. Thus Q is called the
charge matrix.

We now input the experimental observation:

Observation: The two lightest lepton fields in Na-
ture are the electron field e(x) and the electron neutrino
field v.(z). The left-handed fields form an SU(2) doublet:

_ (Ver(@)
L(.T) = (6[,(-13)) )
where er(z) = Pre(x) and v, (z) = Prv.(z). Thus, the
left-handed particles couple to the W boson.

The right-handed neutrino does not couple to any bosons,
so we omit further discussion of it. The right-handed elec-
tron forms an SU(2) singlet:

R(x) = er(x),
and hence does not couple to the W boson.
We also have from experiment that electrons have
charge —e and neutrinos are neutral. There-
fore, for the right-handed electron field, we have

-1=Q =T3+Y =0+Y =Y, and hence egr(x)
has hypercharge —1.

For the left-handed fields, we have

0 0\ _ - 3 _(3+Y 0

Hence v., (z) and e, (x) have hypercharge —3.

Using the above experimental observations, we have

L = LiDL + RiPR.
Note the covariant derivatives are different! The first has
T = Jic®, while the second has T = 0.

From this Lagrangian, we can identify the interactions
between gauge bosons and leptons in the electroweak
theory. Writing out the Lagrangian in full, we have

£|Ee\g{ = veLiaVeL +epider +egifer + eepder + eepder

kinetic terms electron-photon interactions
g (- + _ -
- \/é VEL W eL + eLW VeL

electron-neutrino-W boson interactions

_ g _ 0 . 9  1\= 0
72005(9“/) <I/6LZ Ve, + (28in®(Ow) — e Z er

+2 sin? (ew)eRZOBR>

electron-neutrino-Z boson interactions

We can tidy this up a little by noticing that
Py = (b + Yp)V (YL + ¥r)
= YL+ VY YR + YV R + YRV UL

Now note that ¢;v*¢Yr = Y Pry"Pribr = 0 (since Pg
changes into a P;, when it passes through the +#). Simi-
larly ¢ gy#pr, = 0.

So the whole Lagrangian can be simplified to:

_ . _. _ g [(_ + _ -
[,EWZVEZ Ve, +€lde+ eefe ——(z/e er, +e I/e)
lept L a L a A \/5 LW L LW L

kinetic terms e-photon ints

electron-neutrino-W boson interactions

(7es 202 = 21 =97 = 45 Gur e )

electron-neutrino-Z boson interactions

-9
2 cos(Ow)
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To tidy this up even further, we make the following defini-
tions:

Definition: The lepfonic electromagnetic current is:
Jieptem = —€7"e.
The leptonic charged weak current is:
‘]Igpt = Ve, V' (1= ’75)6-
The leptonic neutral weak current is:
" 1. _ .
‘]Ilept,n =3 (VeLfy“(l — e —eyH (1 —~° — 4sm2(9W))e) .

With this notation (omitting the lept’s), the Lagrangian re-
duces to:

EW _ — _.
Ligpt = Ve, idve, +eide —eA,JEy

~ 9 (W;J“ + W;JHT) S

— 7 Jrz0
21/2 2cos(fy) " H

4.4 Higgs boson-lepton coupling

A useful result for this section is:
Theorem: Let ¢ be a spinor. Then yn) = ¥, Yg + ¥ YL

Proof: We have

Yrbr + Y ptr = YPrPrY + Y PL P = (Pg + Pp)y. O

We now want to give the leptons masses. We can’t
do this directly, because fermion mass terms such as

meee = me (€rer + €rey)

explicitly break gauge invariance. Thus to give the leptons
masses, we must couple them to the Higgs boson and
use SSB.

Definition: The Higgs boson-lepton coupling before
SSB is B -
Liept,p = —V2Ac (LoR + R'L),

where A, is called the Yukawa coupling.

Theorem: Lig 4 is gauge invariant.

Proof: Under a gauge transformation, L — ez L,
¢ — e2i°Ugp and R — e “R. It's then straightforward to
substitute these formulae in and check. [

Theorem: In unitary gauge, expanding the Higgs field
as ¢ = (0,(v+ h)/vV2)T gives: Liepty = —mcee — A hee,

where m, = \.v is the electron’s acquired mass.

Proof: Very simple calculation. O

4.5 Generations

The electron has some heavier cousins, called the muon,
u, and tau, 7. The electron neutrino also has heavier
muon neutrino and tau neutrino counterparts. These are
included in the Standard Model in exactly the sam way as
the electron and electron neutrino, now with three L and R
fields:

le Ve, L2: Vpr, L3: Vrp,
er )’ pnr )’ T )’

Rl = €R, R2 = KR, RS = TR-

and

Each of the three sets is referred to as a generation.

We can generalise the couplings to the gauge bosons and
the Higgs as follows.

LEh just gets three copies of itself, with ¢ — u — 7

for each generation, so remains simple.

Liept, becomes more complicated.  It's possible we

get something of the form
Lo = —V2 (NT'0R + \)IR'GT L),
where \¥ is a matrix responsible for mixing generations.

Theorem: X\ may be diagonalised, so that there is
no mixing between lepton generations.

Proof: Note A\' is Hermitian, so there exists unitary
K such that A\t = KA2KT, where A is diagonal with real
entries (note we can write A2, since if v is an evector of
AT, we have 0 < ||[ATv||?2 = vATAv = ||v]|?a, where « is
the evalue, i.e. all evalues are non-negative).

Let S = ATKA~'. Then S is unitary, since
ST =ATTKIAMTKA = A~ TA2A T =1,
Therefore, A\ = KAST.

Let L' — K¥YLJ and R — SYRJ. This diagonalises
Liept, 4, but leaves

3 . o _
e =>" (TinL + RipRY)
1=1
invariant. So we can assume WLOG no mixing between

lepton generations (by taking the lepton generations to be
the vectors K L7, S RJ, i.e. after diagonalisation). [

21



J. M. Moore, 2021

4.6 Coupling to quarks

Observation: Quark fields are fermion fields. There are
six flavours of quark in Nature: up, down, charm, strange,
top and bottom. Their behaviour depends on whether they
are left-handed or right-handed:

e Right-handed quarks are in SU(2) singlets:
ullé = (UR’ CR; tR)a dé% = (dR7 SR bR)

Here, i labels the generation of quark. Experiment
says that up, charm and top quarks have charge +2/3,
so they have hypercharge +2/3 too. Down, strange
and bottom quarks have charge —1/3, so they have
hypercharge —1/3 also.

e Left-handed quarks are in SU(2) doublets:

o= (i) - () (2)- (1))

To get the charges right, we need a charge matrix:

2/3 0\ _ _(34Y 0
(0 1/3)_Q_T3+Y_<20 —;+Y)'

So left-handed quarks have hypercharge ¥ = 1/6.

Quarks have the usual coupling to the gauge bosons, via
3 _ B ,
‘Cquark Z (GLLZEQLL + E%leuZR + dRilDd%) .
=1

Just as for leptons, we can expand the covariant deriva-
tives to find all the interactions:

Theorem: The above Lagrangian can be written as:
3 y .

L'qua,k E Wt du’ + id Pd' —
N—————

=1

eﬂZAu + ed Adl

kinetic terms
quark-photon couplings

~ 5 (@ wa)

quark-W boson couplings
g 17‘ 0 5 8 ) :
. J | Z 1— _ 2] 7
ooy (277 (1777~ §onow) )

+2dZ <s1n (9w)1+’y)di>.

quark-Z boson coupling

Proof: By a similar calculation to ‘Clept

We can tidy this up by defining currents.

Definition: For quarks, the hadronic electromagnetic
current is defined by

2_, i 1= i
Hadem = 3@ yHut — gd a8

The hadronic charged weak current is
Jfﬁad - ’y ( )dl
The hadronic neutral weak current is Jiy , where 2.Jl =

i (1 — 281112(014/)) ui—i—Ei'y“ <;1 Sin2(0W) -1+ 75) d’
The Lagrangian then reduces to (omitting the had’s):
3 .
Lo =Y (iuiaui +id §d' — eA, T,

i=1
L (whrw,aet) - L ez0).
( T 7 ) 2cos(0W)Jn "

2f

For convenience, we define the full currents as the
sum of the leptonic and hadronic pieces:

Definition: The full electromagnetic current is:
T =>_ar A f,
f
where the sum is over all fermion species f (both quarks

and leptons), and gy is the charge of the species f. The
full charged weak current is

3 3
=3 T (1= 7")e; + > _u'y"(1—+")d
=1 i=1

where e; = e, e = p and e3 = 7 are the lepton genera-
tions. Finally, the full neutral weak current is

=15 s
f

—°)f = 4sin®(Ow)as A £,
where I; is the fermion fs weak isospin (equal to % for
Ve, U, ¢, t, and equal to —3 for e, d, s, b).

With this Definition, we can completely characterise

the gauge boson-fermion interactions in the electroweak
theory using the Lagrang|an LEW

Z fidf—eA, Tty

ferm —

g 0
J“Z#.

(W+J“+W J’”) o)

\f

As for leptons, we give the quarks mass by coupling
them to the Higgs boson. The interaction Lagrangian is:

Lauark,s = —V2 (A?qusdg +ATQr ool
)T Q) + <A:>”‘u2<¢c>*%) ,
where (¢°)* = €*?(¢1)?, where *# is the Levi-Civita sym-
bol. We need this odd field in the second term to make

the hypercharges sum to 0. The ), 4 matrices are called
Yukawa matrices.
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Theorem: Lyuark,4 is gauge invariant.

Proof: First and third terms are trivial. For second
and fourth terms, just need to work out transformation of
¢°. Under U(1), we have ¢¢ = e¢* — e(e2iPg)* = e~ 28 ¢c,
So ¢¢ has hyperchage —1/2, and thus the second term
transforms correctly under U(1).

Now under SU(2), we have
¢c _ 6(;5* - Ee*i(alrlfa272+a373)¢*
=ep* —ie (a'r! — 1% + a’77) ¢

where we’ve expanded infinitesimally. Now recall that 7 =

20, and
€= (_01 (1)) = io2.

Now using properties of the Pauli matrices, we can com-
mute things to find

11, 2 2, 33
¢c:ez(ar+a7+a7)¢c.

So ¢° transforms in the fundamental rep of SU(2), and
hence we’re done. [

(0, (v +h)/V2)T:
Lauark,p = — )\djde] — U)\”ULUR - h)\”deJ — h)\”uLuR
—v()\d)”de7 —o(\5) T, —h()\d)“deJ — h(\E) Tk .

Proof: Trivial exercise. [

Theorem: Under SSB, expanding ¢ =

4.7 The CKM matrix

Naturally, we wish to diagonalise the mass terms as in the
case of leptons. Using exactly the same proof as we did
for leptons, we can diagonalise:

Mo = KuAySE, Ag = KaAgS,

where K, /4 and S, are unitary matrices. Transform the
quark fields as

ur, HKuuL, URHSHUR, dLHKddL, dR'_)deR-

Then the mass terms become completely diagonal and
we're left with:
3 ‘ o
ﬁquark,cp = - Z (mzﬂldi -+ m;ﬂzu] + hAZ’d di—
=1

AT,

i g Ad
where m;/d = UAu/d'

Unlike leptons, Lg%, is not invariant under diagonal-
isation. The charged quark current transforms as

JH =Ty (1 = A%)d s Ty (1 — %)
= 2upydy = 20y (K Ka) Y dy, = aiyt (1 —

YWKIKy)Ydi.

Definition: The matrix Voxm = KJK, is called the
Cabibbo-Kobyashi-Maskawa (CKM) matrix.

A non-diagonal Vckw leads to the W+ boson mediat-
ing intergenerational quark couplings.

4.8 Cabibbo mixing

Theorem: If there are only two generations, WLOG the
CKM matrix can have the form:

~{ cos(6¢)
Vekm = (— Sin(gc)

where 6 is called the Cabibbo angle. Mixing between
generations in this case is called Cabibbo mixing.

sin(90)>

cos(0¢)

Proof: Note Vgkm is unitary. A general unitary matrix
may be expressed in the form

cos(fc)e'™

Voers — sin(¢)e”
CKM = | Sin(ec)ei(aJr'y)

cos(f¢ )e!(P+)
where ¢ is some angle, and e'®, ¢'#, ¢ are phases.

We now perform an operation called quark rephas-
ing. Using U (1) transformations of the form ¢* — ¢¢¢’, we
can eliminate the phases e'®, ¢, ¢7. This is possible,
since there are four quark fields, and we are allowed to
remove as many relative phases as we like (there are 3 rel-
ative phases for 4 fields). This leaves the desired matrix. [

Example: Consider a two-generation model where
the quark mass Lagrangian is off the form:

1, _
L =3 (@mi(1++")gs +T_m_(1++°)g_ +h.c.),

where h.c. denotes Hermitian conjugate, and

[ _(d (0 a (0 ¢
q+ = b y §— = s y My = a*b y M— = c d)

where b and d are assume real. Define the matrix R(6) by

e,

~( cos(0)
R(6) = <—sin(9)

and define the angle 6, and the masses m,,, m. by

ron) (o) 1) reo = ().

This is possible because the matrix we are trying to di-
agonalise is real symmetric. Similarly define 6_ for m,, myq.

Note that if we write a = |a|e’® for some ¢, then

(e 0\ [0 Ja|\ (e 0
"=V o 1)\ b 0o 1)
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Hence we see that rephasing the quark fields as

e 0
q+ 0o 1)%

and then applying the rotation ¢, — R(6;) 'q,, we can
diagonalise the + mass terms. Similarly for — terms.

Recall the Vg matrix is obtained from the charged
weak current:

7" (1= 7")g- = L R(O4)R(O-) "y (1 = 7°)q—.

So Vekm = R(0c) = R(6,)R(P-)~! and hence the
Cabibbo angle is given by 6 = 6, — 6_. By expanding
the definitions of 6, and #_, we find that

m zn
f_ = arctan ( d> , 0, =arctan < - > ,
ms me

so we have found 6 explicitly in this case.

For a three-generation model, we can repeat the proof of
the Theorem. This time, 9 parameters describe Vo, split
as 3 angles and 6 phases. There are 6 quark fields, so
5 relative phases, so we can remove 5 phases by quark
rephasing.

Therefore, Vokm is parametrised by 3 angles and 1
phase, hence is not real. It follows that the Yukawa matri-
ces are not real; from here, it is clear that CP symmetry
must be violated in the Standard Model by intergenera-
tional quark coupling. In particular, by the CPT Theorem,
T symmetry must also be violated by intergenerational
quark coupling.

4.9 Neutrino oscillations and mass

In some solar neutrino experiments in the 2000s, the
number of electron neutrinos detected was smaller than
predicted. It was theorised that electron neutrinos oscil-
lated into muon and tau neutrinos.

This phenomenon can be explained by two possible
models:

1. Neutrinos are Dirac fermions. If neutrinos are Dirac,
then there must be right-handed neutrinos. We write

N' = Vﬁ% = (Vem VHR?’/TR)'

The lepton-Higgs coupling then takes the same form
as the quark version:

Liept,p = —V/2 (A”ftij + )\f,jfiqchj + h.c.)

We diagonalise this matrix in exactly the same way as
the quark version, and get the same mixing termin the
charged weak current. This time the mixing matrix is
called the Pontecorvo-Maki-Nakagawa-Sakata matrix,
and is denoted Upuns.

2. Neutrinos are Majorana fermions. Since neutrinos

are neutral, they could be their own antiparticles, i.e.
they are Majorana fermions. The mode expansion of
a Majorana fermion is of the form:

v(@) = b P (p)e T b ()t (e

Indeed, under charge conjugation, this field trans-
forms as Cv(z)C~1 = Cv"'(x) = v(x), showing it is
its own antiparticle.

Furthermore, for Majorana fermions, the left and
right-handed fields are not independent. Indeed, we
have

vr(z) = Cvp(x)C~' = O7 (2).

Therefore Majorana mass terms look like:
1 i (4.C. i | —i iC
Emu,Majorana = -3 Zmu viTvp +vpvp )
%

where 4¢ = CywC~!. What terms in the unbroken
Lagrangian generate such mass terms?

It turns out the right operator (which is SU(2) x U(1)
invariant) to introduce is
V&
M

Eucﬁ,Majorana = - (LiTé)C(gZBTLj) + h.c.,

where ¢ = ¢*B P,
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5 Weak decays

5.1 Fermi effective theory

We’ll mainly consider processes where energies and
momenta are lower than the masses of the W and Z
boson, my and mz. We then use Fermi effective theory.

To derive the effective theory, we need the facts:

Theorem: The W and Z propagators, given by,

(OIT{W,, ()W} () }{0) ,
(01T{Z () Zy (=) }]0)

have the Fourier transform:

i Pubv
S 5 _np,l/ + g .
p —mZ/W—He mZ/W

Proof: Recall from QFT the propagator is ¢ times the
Green’s function of the EL equation for the free field.

DW( /) _

ng

Z —
D,u,z/( —(E/) -

D" (p) =

The kinetic part of the electroweak Lagrangian for
the Z boson is

1
Z)(0"Z" — 0" Z") + EmZZZ“Z".

1
Ekin = *Z(ap‘Zu - al/
Hence the Euler-Lagrange equations are
0*Z,—0,0-Z +m%Z, = 0.

If we add a source j*(x), the Lagrangian is appended by
Z,j* and the equation of motion becomes:

0?Z,— 0,0 Z +myZ, = —j,.

Note that taking the divergence of the above equation, we
have m%0 - Z = —0 - j; substituting this back in, we have

0,0,
(0> +m%)Z, = — (nw + ) j

Z

Take the Fourier transform of this equation to obtain:

20 = = (e~ 25 ) 0

p? —my my,

By the definition of a Green’s function, we have
Zo(w) =i / d'z’ D%, (x — 2')j"(z').

Taking the Fourier transform (recall convolution becomes
product): B 3 .

Zu(p) =Dy, (p)j" (p),
then just compare to get result. Exactly the same for the
W boson (just replace Z — W and mz — myy). O

Theorem: When a process has energies and momenta
much less than my, and mz, we may replace the weak
interaction part of the Lagranian, Ly, with the Fermi effec-
tive Lagrangian:

G
eff F nt nt
£ = =5 (71 @) + e @) ()
where
Gr g° miy

V2 8m3,’ P= m?% cos?(Ow )

Proof: The weak part of the Lagrangian in the electroweak
theory is:

9 0
JNZ,.

_ 27 Vian nt A
Lw = (J W 5 W, ) 2cos(Ow) "

Vi

The scattering matrix is

S = Texp (—i/d‘*:p cW(x)> .

Since ¢ is a small coupling constant at low energies, we
can expand the matrix element using Dyson’s formula:

1) = (411~ £ 1 [ ataaa’ T{ 7Dl 0 - a0

——— I (@)DZ (x — )TV (') b |i) + O(gh).
g @D = )3 i)+ 0l
where we’'ve assume the W and Z bosons are not in the
initial or final states, so that there’s no O(g) term, and no
O(g?) cross term. We've also used Wick's Theorem to
obtain the W and Z propagators, D,", and D7,.

From the propagator proof above, we know that for
m% > p°, we have
DZIZW(p) ~ M DZl{W(.I _ l‘/) _ me 54( /).
. mZ/W g mZ/W

Substituting into the matrix element, this immediately
gives the result. (i can be removed, since this is only an
overall phase.) O

Definition: G is called the Fermi coupling and p is
called the rho-parameter.

Recall that in the classical electroweak theory, we
showed that m%, = m%cos®(0w). Therefore, in the
quantum theory we may write p = 1 + Ap, where Ap
comes from quantum loop effects.

Finally, note that [Gr] = -2, to compensate for
[J#TJ,] = 6. Thus this theory is non-renormalisable;
it does not hold to arbitirarily high energies. However, we
were expecting this, since we assumed that we working
well below the energy scale O(m#,, m?%).
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5.2 Cross sections and decay rates review

Decay rates

Definition: The decay rate I'x is:

number of decays of X observed
time taken x number of X in sample’

X =

Definition: The lifetime Tx is defined by 1/T'x.

Theorem: For a process where X can decay into
any of a set of final states f, the decay rate is given by

1
7Z/|fo|2 dpy,
mx 7

where mx is the mass of X, M;x is the invariant ampli-
tude, defined in QFT by

(f1S — 11X) = (2m)*s* <px - Zpr> iMyx,

and dpy is the invariant integration measure, given by

3
dps = (2m)*6* (px - ZpT) I1 <(27rd)3pr2p0> 7

where r ranges across the particles in one of the final
states f, which have momenta p,.

Proof: We use (f|S — I|X), since we want to exclude the
possibility that no decay occurs. Then the probability of
the decay X — fis

| (fIS = 11X) |2
(F11) (X1X)

In QFT, we used wavepackets to deal with the possibil-
ity that (f|f), (X|X) could be infinite. Here, we’ll instead
work in finite spatial volume V' and temporal extent 7. In
particular, the delta functions become

P(X = f) =

(27)383%(0) =V, (2m)*6%(0) = VT.
Recall that with relativistic normalisation, we have

(X|X) = (2m)32p% 87 (0) = 20%V,  (f1f) =[] (200V).

r

In the rest frame, p% =x. Hence

[Mx|?(2m)s" <pi - Zm) VT

2mxV - [(2p0V

P(X — f) =

Note the VT in the numerator comes from the ¢ function
squared in | (f|S — I|X) |?.

We now convert this to the decay rate I'(X — f), then sum
over final states f to get the answer. The decay rate is, by

definition: T'(X — f) =
(pz Zpr) H <2p0V>

We can’t ever measure the momenta p, with exact pre-
cision, though. So we have to integrate over all possible
1-particle states in a box V' with momentum p,., for each r,

which is given by
H Vdgpr
L\ (2m)3 '

So we're left with the final expression, as required. (J

PX = f) _ [MyxP@em)t
T 2mx

Cross-sections

Definition: Suppose we fire a beam of particle at a
target. Let n be the number of scattering events per unit
time, divided by the number of target particles. Let the
incident flux be F, i.e. the number of incoming particles
per unit area per unit time. Then the cross-section is
definedby o =n/F.

Theorem: The cross section for the process ¢ — f
(with two initial particles in 4) is given by

| Myi]?

JT.'
where F is the flux factor, given by F = 4E; Es|V, — V).
Here, |v, — V;| is the relative velocity of the incident beam
to the target, and E;, E5 are the energies of the two initial
particles.

do =

dpfa

Proof: The total number of scattering events per unit
time is N = np,V, where p, is the density of the target,
and V is the finite spatial volume. The incident flux is
F = |v, — Vu|ps, Where p, is the density of the incident
beam, and v, — v, is the relative velocity of the incident
beam to the target. Hence

N =npV =Fop,V = Vg — Vp|papsVo.

The normalisation (i|i) = 2p?V corresponds to having one
particle per unit volume; similarly for (f|f). Hence p, =
Py = 1/V So

v, — blo Vo — V|
N=——— = dN=—"—"—
14 14
Now use decay rate derivation to find dV, except since we

do. (%)

have two incoming particles, we get (i|i) = (2E1V)(2E,;V)
in the denominator. This gives
AN = — M2
= 2By 2BV P

Substituting (x) and rearranging, we get the result. [
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5.3 Higgs decay

Example: Consider Higgs to lepton decay i — flz where
I* is a specific lepton (either e, i or 7). The coupling of the
Higgs to leptons is given in the electroweak Lagrangian by

L= NI,

where )\; is a Yukawa coupling. Thus at tree-level the only
contributing Feynman diagram is:

li

So by the Feynman rules, the tree-level amplitude for
h — Il decay is iM = —i T’ (q)v" (k).

To get the probability, we need to sum over final spins and
average over initial spins. The Higgs boson is spinless, so
the probability of decay is

DM =AY [ (k)ud ()] () svp (k)]

s, s,r

= A Te((d + ma) (K — my)).

Here, we've used results about the plane wave spinors
from QFT. Now use results on traces of v matrices from
QFT to simplify to

Y IMP = (k- g —md).

It's now quickest to recognise that there is a 4-momentum
conserving ¢ function in the decay rate formula; hence we
can impose 4-momentum conservation now. Squaring the
conservation law p = k + ¢, the probability simplifies to
20%(m2 — 4m?), where my, is the mass of the Higgs.

To get the decay rate, the only non-trivial integral we
need to do is the integral over dp;, which we perform in
the rest frame, so that p = (my,,0)”. Calculating, we have:

1 Pk dq
o) @@5 (p—k—q)

LAk e
0

It's now simple to use a standard ¢ function identity to do
the integral. The answer we obtain is

A7 2 213/2
I'= —5(mj —4m3)°>’~.
8rm3

We can write this in terms of G r, the Fermi coupling, using
the fact that the Yukawa couplings are given by

o Mgty e GF
- - [ )
V2

©4m3,
where we've also used the fact that m%, = v%¢?/4, from
a long time ago when we studied the electroweak theory.
Therefore, the final answer may be written as

GF 1 m?
=5 I g (7 Y
h

5.4 7 boson decay

Example: Consider Z boson decay into two specific lep-
tons: Z — 1. We can't use Fermi effective theory, as this
wipes away the existence of the Z and W bosons. So we
return back to the coupling the electroweak Lagrangian,

given by:
9
2 cos(Ow)

where J# is the leptonic neutral weak current. Recall that
this can be written as:

JLz,,

s = ST 10 2 O o £ = S e
f f

where v = Iy — 2sin®(0w)gy and a = Iy; here v and a

depend on the species of lepton in question (whether it is
an electron, neutrino, etc).

The only contributing Feynman diagram is:

l

l

which by the Feynman rules has amplitude:

ig

M= 2 cos(fw )

[ (k)" (v — av®)vi(q)]eu(p, A).

Here, €,(p, \) is a polarisation vector. Now’s a good time
to review what this means.

Recall that the quantum Z field has mode expansion:
Zu = 3 (az(p. Newlp. Ne™ + aly . Vel (. Ve
P

where ) is the polarisation, running over A\ = —1,0,1. The
operators az and a, obey

[az(p, \), (0, N)] = 6(p — p')ox -
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Similarly, the quantum W field has mode expansion:

W,u = Z <aW(p7 )\)Gﬂ(p, )\)e_ip~w + CTw(p7 )\)Gz(p’ )\)eip-a?) ,

Py

where al;, creates a W particle and ¢}, creates a W~
particle.

The polarisation vectors satisfy the identities:

Theorem: We have the following:
(i) e(p,A)-p=0.
(i) e*(p,A) - e(p, ') = —dan-

% PuPv
(”I) Z E/A(pa /\)ey(pv )\) = —Nuv + g .
A Mz w

Proof: (i) and (ii) can be arranged by Definition of polarisa-
tion vectors (see QED in QFT). To prove (iii), simply note
that {¢*(p, \), p}, when taken over A = —1,0,1, forms a
basis. So we can contract both sides with each basis ele-
ment to check the identity holds. Contracting with €*(p, \),
On the LHS, we have:

Z EH*(pa /\/)e,u(p7 )\)G;(P, )‘) = 76;(1)7 )‘/)
A

and on the RHS, we have
—6:;(])7 )‘1)7

since €*(p, \) - p = 0 (since p is real, this follows from (i)).
Just by looking at the equation, it’s trivial the contraction
with p also works. So we’re done. [

BACK TO Z BOSON DECAY...

To calculate the probability, we sum |M]? over the fi-
nal spins, and average over the initial polarisations. There
are three polarisations of the Z boson, so we want to find:

1
5 2. MP
spins
polarisations
2
—97 S o _ 5\,,T * .
= Traa(ay) 207 0 = N ) .

[y (k)" (v — ay°)v} (@)]ew (p, )

e (v — ar ) (o — ar®)) (e + DB
12 cos2 (0w ) M m

where we've used the identity for the polarisation vectors.
We've also neglected fermion masses, which are small
compared to the mass of the Z boson.

Now use some trace identities from QFT:

Tr(,ym m,y#zn+1) =0,
Tr(y*9"7"77) = 400" = n"Pn" +n*n"?),
Tr(yPy#y" yPy7) = —4ietP?,

These reduce the probability to

2

g 2, 2 2(k - p)(q - p)
730082(91/[/)(1} +Cl)<k‘q—|—m2z )

Pre-emptively use conservation of 4-momentum, p = q+k,
to obtain:
1 2

k == 7mz.

P=¢F+2-k+k*=2¢-k = q- 5

Similarly, by considering (p — k)2 and (p — ¢)?, we obtain
p-k=$m%and p-q = £m%. So the probability reduces to
g*(v* + a®)m
3 cos?(Ow)

I's now simple to insert into the decay rate formula, per-
form the standard integrals (in the rest frame of the Z bo-

son) and get the answer:
Pmz(v? +a?) Gr m%(v? + a?)
© 48mcos(fw) V2 67 ’

using Gr/v2 = ¢g/8m?, = g*/8m% cos?(Ow ).

5.5 Muon decay

Example: Consider muon decay p (p) —
e (k)e(q)vu(q'). Since my, ~ 106 MeV < my ~ 80 GeV,
we can use Fermi effective theory.

Since this is a flavour-changing interaction (a muon
turns into an electron), it is mediated by the W boson, and
hence we only need to consider

G
Lint = —TQJN*JM,

where the relevant part of the charged weak current is
J* =741 —95)e + 7,y (1 — 7).

Instead of using Feynman diagrams to calculate the
amplitude, we’ll use a different technique:

Theorem: To tree-level, and up to some phase, for
any process i — f with Lagrangian £(x), we have

Myi = (FI£(0)]3) -

Here, £(0) is the Lagrangian evaluated at zero.
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Proof: Recall:
gw—ﬂ@:u%fﬁ@rﬁmMﬁzi/fxUM@W%

Writing £ in momentum space, we have

i(2m)*0* (py — pi) My :i/ d'p (/d% eim) (fIL(p)|i) .

(2m)*

We know from QFT that commuting operators in (f|£(p)|i)
will eventually enforce global momentum conservation, at
least up to a phase and up to tree level, so that p = py —p;
in the exponent. Thus integrating out z, we have:

i(2m)* 6% (py — pi)Myi = i(2m)* 6% (py — pi) (FIL(0)]3)

up to a phase. The result follows. (I

Thus in our case, we want to compute:

Gr
V2
f% (&= (R)Ze(@)[E(0)7* (1 — 4} (0)]0)
(@) POl — (O (0))

To get the final line, we've inserted J* and J*T, and con-
sidered mode expansions of the fields. To proceed, we
insert the full mode expansions; this gives, for example:

1(0) [~ (p)) = Z (u*(D)b(B) + d' ()v*(P)) v/2Epb (p) |0)
= u;(p) + (d' term which cancels to the left)

M === (e (k)Pe(@)vu(a)] T Ta (0) [~ ()

Carrying out the whole computation, we find

M= —%[ue(/ﬂh“(l =)0 ()], (@' )2 (1 =7 )up(p)],

where we've suppressed the spin indices, but there is a
different one for each spinor. Since the initial state has two
spin states, we must average and sum to get:

1 2 G%‘ fo" 5 B 5
3 Z IM[* = TTY((% +me)y* (1 =)y (1 = 7))
spins

(701 =)+ m) sl =77).

We used some trace identities from above, and we also
needed to use the identity:

€*PoPeppre = —2(5562 — 676%).

The result is:

5 3 IMP? = 646 (- @)k - o)

spins

INTERLUDE: Consider the case when e, v, go out along
the +z axis, and 7, goes out along the —z direction. Then

k-q =+/m2+k2q¢. — k.q..

We see that if m. = 0, the above probability is zero - this
process never occurs!

The reason is because angular momentum conser-
vation is violated by this process. For massless spinors,
recall that helicity (spin in the direction of travel) is the
same as chirality. Since the weak interaction only couples
to left-handed particles, we must have spins as shown:

Ve Yy e

— — —

Spins are in direction of travel for particles, and opposite
direction of travel for anti-particles, since they are all
left-handed. This gives total spin |S.| = 2 after the
interaction. But the total spin of the muon is % so we have

a contradiction.

When m. # 0, the process can occur, since there is
no longer a one to one correspondence between spin and
helicity. Left and right handed spinors are coupled through
a mass term so that this (valid) setup is possible instead:

Ve Vu e

— —  —

We say that the process that does occur has its helicity
suppressed.

BACK TO MUON DECAY...

The decay rate is now given by:

I =

WMG%/“d?’Qd?’qm___, ,
2u - (2m)9 2k0 2¢0 2q/05 (p—k—q—4")(p-q)(k-q).

There is a clever trick for the evaluation of this integral.
We do it in two pieces.

PIECE 1: First, define

_ [ Padd
lal o’

Lu(p— k) 3 (p—k —q— 4.4,
Note ¢° = |q| ¢° = |q’|, since neutrinos are assumed
massless here. Since this is Lorentz covariant, and sym-
metric on , v, it must be of the form:

Liw=a (p—k)ulp—k)y +bnu(p—Fk) (p—k)
—_——— N———

RHS is Lorentz covariant, for convenience

and only depends on p — k
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To find @ and b, we contract I,,,, with various things. Firstly,
d3q d3q/
— 8 (p—k—g—q')g-q
al @l

The ¢ function allow us to compute:

(p—k)*(a+4b) = " I, =

p—k?=¢+2¢-¢ +¢*=2¢-¢,
since neutrinos are massless. So we find
1 [ d*qdq
a-+4b=— a9 f‘
2/ lal |q']

Now simply do the integral on the RHS. Choose a frame
where p — k = 0 (possible since RHS is a Lorentz scalar).
Then q = —q’ from the § function, and we’re left with

Sp—k—q—4q)

lq|? 2

Hence a + 4b = 7. To get another equation, contract I,,,,
with (p — k)*(p — k)”. Then

dS d3 / , ,
ﬁ |q?‘ §*(p—k—q—q')q-(p—k)q"-(p—k).

Again, use the § function to write

(p—k)*(a+b) =

(p—k)y=2(p—Fk)-q,

and similarly (p — k)2 = 2(p — k) - ¢’. Thena +b = %W
using the integral we worked out earlier.

p—-k-q?=d"=0 =

Solving our two equation simultaneously, we find that

a=—, b=-—
3 6
PIECE 2: Substitute I,, back into the decay rate to
find:
G? d3k
P=——— [ 55 @0-0—kk-(p—k) + (- k)p—k)?)

(2m)43m,, J KO

Now work in the rest frame of . So p = (m,,,0)T, implying
that p - £ = m,E, where E is the energy of the electron.
Note also that p - p = mi, k-k=m?2

We make one final approximation: since m./m, ~ 0.0048,
we neglect the mass of the electron: k- £k = 0. Then the
whole thing reduces to I' =

1
57”“

2
_ drm,,

m, G% Gk / 2
EE —4E).
32 d (3m, )
0

3(2m)? / Pk @Bmy = 4E) =

Why the limits? We need to consider maximum and min-
imum electron energies. Since E = |k|, the energy is a
minimum when the electron is at rest, £ = 0.

pE T
k=2l =2r 5 (560~ 1)~ 1al) da =2
0

The maximum energy occurs when v, 7. are in the same
direction, opposite to the electron; by conservation of mo-
mentum, the electron then has its largest possible momen-
tum, and hence largest energy. In this scenario, by energy
conservation:

E+ (E’/e + Em) = My,
and by momentum conservation, £ — (Ey, + E,,) = 0.
Hence E = m,, /2 at its maximum.
Performing the final, simple integral, we have
_ G
19273

From our earlier discussion, we know the final state when
everything is aligned in the z-direction looks like:

Ve Vu e

— —

But under a parity transformation, the particles change di-
rection, but the spins do not (spin is an axial vector). Thus
we get:

— — —

Since neutrinos are massless, helicity is the same as
chirality for them. So they must be right-handed! Con-
tradiction, as weak interaction only couples left-handed
particles. Thus muon decay violates parity symmetry.

5.6 Polarised muon decay

Example: It's possible to repeat the above calculation with
a polarised muon. We can represent the polarisation with a
spin 4-vector, s# = (0, s) (in the muon rest frame), obeying

S p=0, w(p)Tu(p) = (p my) - 5(1+7H).

Following a very similar calculation to muon decay above,
we arrive at the formula

> IMP? = 64GE[q - Kllg - (p — mys)].

spins

Note, it is useful to define r = p — m,,s throughout this ex-
ample. Using very similar steps to the above (i.e. defining
a suitable I,,, and using Lorentz covariance to determine
its form, then contracting to find unknown constants), we
find that the differential decay rate is given by

G%mf’t

dl = ———P4%(3 -

21(2n)1 2z — (22 — 1)k - 8) dz dQ(K),

where z = 2E/m,,, E is the energy of the electron, and «
may range from 0 to 1.
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5.7 Pion decay

Definition: A pion is one of a family of three composite
particles made of a valence quark and valence anti-quark.
The possibilities are:

7~ =ud, 7w =du, 7°= asuperposition of wu and dd.

Pions are bound together by gluons (see QCD later). We
use the term valence quarks to distinguish from the virtual
quark-anti quark pairs popping in and out of existence in
the sea of hadrons (again, see QCD).

Consider the process 7~ (p) — e (k)U.(q), i.e. a
pion decaying into an electron and an anti-neutrino.

This time, the interactions are governed by both the
leptonic part of the charged weak current

Jigot = Tey™(1 — 7°)e + (irrelevant stuff)
and the hadronic (quark) part of the charged weak current:

Jg =y (1 = 4°) (Viuad + Viuss + Vapb) + (irrelevant stuff)
= y*(1 — 7°)Vyad + (irrelevant stuff)

Here, V.4 comes from the Vokm matrix which governs the
coupling of different generations of quarks. We normally
write Jiby = Vigg — Afag» Where

Vhad = WY Vuad,  Apag = H'YO"Y5Vudd-

The first piece is called the vector-like hadronic current
and the second part is called the axial hadronic current for
obvious reasons.

In Fermi effective theory then, the amplitude for the
process is

M = (e (k)7e(q)| L3 (0) 7~ (p))
= ——= (™ (F)7e(q)[e(0)7a(1 = ”)re(0)]0) (0] Ja(0) 7~ ()

= ——=(@e(k)7a(1 = ")z () (01 Viaa(0) — ARa(0) |7~ () -

V2
Note that we cannot expand the second matrix element.
This is because the pion is a bound QCD state, and
cannot be expanded perturbatively, since QCD is a
strongly-coupled theory.

To skirt round the issue, we define:

Definition: The pion decay constant, F,, is defined
by (0] Afeg(0)lm~(p)) = (O[Vagmy™y>dlz(p)) = iv/2Fxp".
This definition is allowed by Lorentz covariance.

Do we need another constant for the vector-like piece?
No, it is excluded on the grounds of parity. By Lorentz
covariance, the only thing we can have on the RHS for the
vector-like piece is

(O[uy“d|m~ (p)) = Ap®.

Experimentally, we know that the pion is a pseudoscalar,
i.e. it has intrinsic parity —1 and spin zero. Under a parity
transformation then, we then have:

Ap® = (0[ay*d|n~(p)) = (0|P~ ' Puy*dP~ P|n~ (p))
= — <O\Pa5ﬂ7’8d|7r_(pp)> = —P;Ap® = — App.

We get a contradiction unless A = 0, so we can just ignore
the vector-like piece. Thus the amplitude is

M = iGpFru.(k)p(1 — 75)1);& (q)
We’re ready to calculate now. Begin by pre-emptively ap-
plying 4-momentum conservation p = k+q. Thenp = %Jrg,
and recalling the Dirac equation for plane wave spinors:

e (k)F = melic(k), gus.(q) = 0 (since neutrino massless),
the amplitude simplifies to:

M =iGpFym.u.(k)(1 — 75)1);8 (9)
Since the pion has spin zero, after some calculation we
find the probability of decay is

> M| = 8|GpFrmeVual* (k - q).

spins

The best thing to do now is impose momentum conserva-
tion early, via m2 = p? = (k+q)? = k*+2k-q = m?+2k-q.
Then we can write k - ¢ in terms of constant quantities, and
pull it out of any integrals.

Doing the remaining integrals in the decay rate cal-
culation in the standard way, we find

|GrFrmeVial? <m3r —mi)Q

T, 2m,

r

An identical calculation for = — u7,, decay gives

2
I = ‘GFFTFmHVUd|2 (mimi> .

Ty 2my

Dividing the two results, we find

_ __ 2
r = M — me (mi—mi) ~1.28 x 1074

D(r= = v,) mZ \m2 —m?

This is very small. This shows that helicity is much less
suppressed for the muon because of its greater mass.

5.8 Kaon decay

Definition: A kaon is a composite particle containing
a strange valence quark or strange valence antiquark,
together with one other valence quark. The lightest kaons

are: K® =3d, K =ds, K*=3u, K =Tus.

Like pions, kaons are pseudoscalar particles, i.e. they
have intrinsic parity —1 and are spinless.

32



J. M. Moore, 2021

Example: Consider the decay K~ (p) — p~ (k)7,.(q). This
time, the relevant parts of the currents are
igpt = 7y (1 =77,
Tied = Vst * (1 =7°)s = Viag — AR,
where V2 = Vs, Afyq = Vusty®y°s. In exactly
the same way as n~ decay, we have that K~ is a pseu-

doscalar, so only AP, is relevant to the decay. As per
usual, the amplitude is given by:

M= (1= ()7 (@) LF0) [ K (p))

= O D)D) ™ (1= 7)) (0] A (0) K~ (9)

V2

Again, to skirt round the issue of QCD, we define:

Definition: The kaon decay constant Fy is defined
by
(0140 (0)| K~ (p)) = iVus V2Fkpa-

Thus we're left with
M = iG Vs Fct,, (k)p(1 — 75)1);“ (q).

Again, pre-emptively using p = k£ + ¢, we can reduce this
to:
M = ZGFVusFKm;LE#(k)(l - 75)'UUM (q)

Now calculating as usual, we find the decay rate:

2
. 2
r_ G%|FK\251D2(HC)mimK (1 B mu> 7

A7 m3
where Vs = sin(6¢), and 0¢ is the Cabibbo angle (as-
suming we are working at sufficiently low energies such
that top and bottom quarks may be neglected).

5.9 Neutral kaon mixing

The neutral kaons are K° and K°. Neutral kaon mixing
is important because it gives empirical evidence of CP
violation in the Standard Model.

Since K° and K° are a particle-antiparticle pair, they
are C conjugates. They are also pseudoscalars so both
have intrinsic parity —1. Thus we can arrange for the
phases to be such that

CPIK% = —|K%, CP|K® =—|K").
From these equations, it's clear we can construct CP
eigenstates:

1 _ 1 _
E(IK°>—\KO>)7 IK2) = Z= (1K) + 1K),

where CP|K?) = |K9) and CP |K°) = — |K?).

KY) =

Consider the weak decays K° — 7%7° and K* — 7tn~
given by the Feynman diagrams:

A - n__
K| | d [
V. - - Y]
7 u
=
d
[ \ f a0

| d
KU‘ “ (\,%U
‘ | N T\[’\

Starting in the kaon’s rest frame, there is zero angular
momentum before the decay, so by conservation of
angular momentum, both 7°7° and =+7~ must have zero
angular momentum. In particular, their relative orbital
angular momentum L must be zero: L = 0.

Therefore:

CPlntn )y =C (1)} (=) |ntn™)y = |n~at) = |nta7).

N——

intrinjsic

parity
Similarly, C P |79 = |x°7°). So the final states are both
CP-even. Thus if CP is conserved in this interaction, we
expect |K?) to be able to decay into 2 pions, but |[K?)
should not be able to do this. However, |K°) could decay
into 3, or more, pions.

Thus we expect |K?) to be short-lived (since there is
a larger phase space to decay into), and |K°) to be
long-lived (smaller decay phase space available).

Experimentally, we find there are two species of neu-
tral kaon: K2, which is short-lived, and K9, which is
long-lived. We find that

et HIED | OO HIKY) |
T Mt HEY ] T (@O H KD
have experimental values 1, = 79 ~ 2.2 x 1073 # 0,

and so we conclude that the weak interaction violates CP

symmetry. In particular, K¢ decays to both 7™~ and

mOr0.

There are two ways in which this can occur here:

1. Direct CP violation. There is a complex phase in
Vekw, violating CP symmetry of the s, w interactions
(see way earlier in the course).
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2. Indirect CP violation. There is CP violation due to
K°, K° mixing (this ultimately comes from a complex
phase in Vekm 100). It turns out this effect is mainly
responsible for the violation we see experimentally.

There is no tree-level mixing of K°, K°. The mixing comes
primarily from the loop diagrams:

Therefore, we get small quantum loop corrections to the
short/long-lived states, which to a first approximation were
CP eigenstates:

1
K§) = ——— (IK}) + e [K2)) ~ |KY),

V1+lal
N————
for normalisation

1

V14 [eaf?

In general it is hard to compute €1, €5 (see AQFT). Instead,
here we make:

K1) = (1K) +e2|KD)) ~ |K2).

Definition: The Wigner-Weisskopf approximation as-
sumes that

(i) |K2) and |K?}) are linear combinations of |K?) and
|K?) alone (and not of any excited states);

(ii) we can ignore details of the strong interaction in con-
sidering the mixing.

Then, we can assume that as they propagate the states
have the form:

|K$/) = asyL(t) |K®) +bs/(t) |K°) .

Making this assumption, the Schrédinger equation
gives us:

A (ai(t)\ _ ((EOHKO) (KRN (ai(t)
i (biu)) - <<K0|H'|K0> <K°|H'|K0>) (bi(t))'
R

Here, i = S,L and H’ is the next-to-leading order weak
Hamiltonian. The off-diagonal elements in R are responsi-
ble for the mixing.

Since the kaons are decaying, the amplitudes a;(t), b;(t)
are not conserved, and hence R is not Hermitian. Write

i
R=M--T
2 b)

where M is the mass matrix and T" is the decay matrix,
both of which are Hermitian.

We can use the CPT Theorem to find relationships
between the matrix elements, and to find €1, €5 in terms of
the R matrix:

Theorem: Ri; = Rao.

Proof: Let ®© = CPT. Since CPT is a good symme-
try, ©H'6~! = H'T (since time-reversal acts to change
direction of time in U(t) = ¢'#*; this is achieved by taking
the 7).

In the rest frame of the kaons, we must have 7' |[K°) = |K°)
and T'|K°) = |K”), and so recalling their CP transforma-
tions, we have © |[K%) = — |K?) and © |K?) = — |K").

Therefore, we can write Ry; as:
Ry = (K°, H'K®) = (67'6K°, H'6'OK")
= (6'K°, H'6 'K = (K°,0H'6 ' K%)* = (K°, H''K?),

where in the last step, we used the fact that © is anti-
unitary (since it contains two unitary operators and one
anti-unitary operator). Now use conjugate symmetry of the
inner product:

Ry = (H'K°, K% = (K°, H'K°) = Ry,

and we’re done. [

Theorem: If CP symmetry is respected, then R15 = Ro;.

Proof: By CPT, T must be a good symmetry if CP is.
Hence TH'T-! = H'T.

Now do exactly the same calculation as above Theo-
rem:

Rip = (K°, H'K®) = (T7'K°, H'T'K")
— (KO’H/TKO)* — (H/TKO7KO) — (KO,H/KO) — R21. O

Theorem: ¢; = ¢; = ¢, where
. VRi2 — v Rop
VRi2 + VR

Proof: The independent solutions of the Wigner-Weisskopf
approximation equation are of the form e=** |v), where |v)
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is an eigenvector of R. By construction though, at time ¢ =
0, the solution of the S equation is |K2) and the solution of
the L equation is |[K?). Hence these must be eigenvectors
of R.

Writing |K2) and |K?) inthe | K°) and | K°) basis, we have:

w o (1) (1),
Hence these are eigenvectors of R.
Using this fact, we have
Ry1 Rio 1+e \ 14+¢e
(Rz1 Ru) (—1 + 61) s <—1 + 61> ’
where p is some evalue. Separating this into two equa-

tions, and dividing to get rid of n, we have an equation for
€1. Recalling €; < 1, we can solve this equation to get

o = VRi2 — VERa
VRi2 +VRar'

as desired. In exactly the same way, we find e;, which is
equal to ¢;. O

In particular, the final two Theorems show that if CP
is respected, then ¢ = e2 = 0, i.e. there is no mixing.
This contradicts the experimental observations we noted
earlier.

6 Quantum chromodynamics

6.1 The QCD Lagrangian

Definition: Quantum chromodynamics (QCD) is an SU(3)
gauge theory, where SU(3) is the called colour symmetry.
The gauge bosons of the theory are called gluons. The
Lagrangian is given by:

1 =,
EOCD = _ZFGMVFa,uV + Z f(Zﬂ - WLf)fv
f
where f denotes all possible quark flavours: wu, d, s, ¢, t

and b, and my denotes their mass. The quarks here are in
the fundamental representation of SU(3), i.e.

fred
f= fgreen .
fblue

The covariant derivative here is D,, = 9,, +igA{,T*, where
the T are the generators of the Lie algebra of SU(3). We
may choose

1
T = _\°,
2

where the \* are called the Gell-Mann matrices (of which
there are 8, and hence there are 8 gluon fields).

Note that SU(3) is not spontaneously broken in the
Standard Model by the Higgs mechanism. Gluons are
therefore massless particles, just like photons.

Also note that the mass term for the quarks here
comes from their coupling to the Higgs boson; we saw this
in the electroweak theory.

6.2 Renormalisation of QCD

The parameters in the Lagrangian are not the physical
parameters we observe in experiments.

Definition: We relate the Lagrangian’s couplings
to physical couplings by renormalisation conditions:
¥ = G%{g:(p)}, 1), where p is an energy scale.

The renormalised couplings depend on p via a beta
function: p
Bi{gi(w} p) = u@(gi(u))-

Theorem: It can be shown that the beta function for the
coupling in a non-Abelian gauge theory is:

where

Here, c§® = focdfbed where the f**°’s are the struc-
ture constants of the rep (note ¢ = N for SU(N)) and
Ty = Tr(t4t}), where the it} are the generators of
the Lie algebra rep for the particle f (for a fermion in the
fundamental rep, Ty = 1, and for a scalar particle in the
trivial rep, Ty = 0).

Proof: Beyond scope of course. [J

In our case, this expression gives us:
2
3
where Ny is the number of active quark flavours. We note
Bo > 0 for Ny < 16 (depending on energy scale, more

quarks become activated, so Ny can vary between 1 and
6 depending on the problem we are solving).

50:11_ Nf7

Definition: The standard coupling used in QCD is
the strong coupling, given by o, = g¢*/4r in terms of the
coupling g above for a generic non-Abelian gauge theory.

Theorem: We have:
2

~ Bolog(u/Aaco)’
where Aqcp is the energy scale at which «¢ diverges.

as ()
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Proof: Using the beta function, we have

dafiS: das :_@QZ“F"'
K du  dlog(p) o ° '

Therefore, integrating this equation we get:

2 1
Bo log(p/po) + 2w/ Boces(po)

This diverges at Aqcp, hence:

as(p) =

21

log(Aqcp) = log(po) — L

and the result follows. O

Notice that for [y, the strong coupling decreases for
increasing p. This property is called asymptotic freedom.
That is, the quarks are less strongly bound at higher
energies, but are more strongly bound at lower energies.
This means that we can’t use perturbation theory at the
lower energies we are interested in.

Free quarks are never seen at low energies, a prop-
erty called confinement.

6.3 cfe

Example: Consider annihilation of an electron and
positron to give quarks. We know that quarks can never
be seen alone (at low energies), and hence they must turn
into hadrons, a process called hadronisation.

— hadrons

The Feynman diagram for the process is:

Here, we get some non-perturbative mess after the
electrons interact.

The first vertex is just a QED vertex so has an easy
contribution. The second vertex is a coupling of quarks to
a photon, so we must use the hadronic electromagnetic
current from the electroweak theory, which recall has the

form: B
TE=>"ar ",
f

where f sums over all quark flavours. If the final state is
X, the amplitude is then (where g = p; + p):

. —ie)%i
m=(q2<XW%WMMW%@ﬂ

The cross-section (inclusive of all possible hadrons X) is
then:

+

o(eTe” — hadrons)

ZZ%&qu

X spins

where the sum over X means:

EEDY [,

possible
hadrons X

where px is the momentum of the hadron species X.

In order to deal with |A|? non-perturbatively, we intro-
duce the hadronic spectral density function:

Definition: The hadronic spectral density is defined
by

(@) = (2m)* Y 6% (g — px) (O]} X) (X[ J}]0) -

Theorem: We can write p},”(g) in the form:

v (@) = (=" ¢* + ¢"¢")0(¢°) pn(d?),

where pp(q¢?) is a scalar function and ¢ is the Heaviside
step function.
Proof: Note p}” is symmetric on p, v, so must be a
linear function of n*¥ and ¢¢” be Lorentz covariance.
Furthermore, we can use the Ward identity (proved in
AQFT) which gives q,p,," = q.p),” = 0. Finally, since
states labelled by X have positive energy, p}" should
vanish for ¢° < 0. The result follows. [

Using this in the cross-section formula, we find that

3Ol2

o(ete” — hadrons) = pr((p1 + p2)?),

where « is the fine structure constant, 2 /4r.

Is it possible to actually calculate this function? No.
However, we can come up with models that allow us to
approximate it.

For example, we might consider X to actually be a
quark, anti-quark or gluon (these are called partons in this
context). Then we assume:

2= 2

X=ff9

This allows us to actually compute p)” and in turn py.
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6.4 7 decay into hadrons

Example: Consider 7 decay into hadrons and a 7 neutrino

via the weak hadronic current term:

_Gr
V2

Again, we can define spectral density functions via:

o
Ly = JE DAL= ys)T.

3 (@m)*s(Px — k) (01721X) (X] T4 [0)
X

= kakﬁpO(k2) + (_naﬂkQ + kakﬁ)pl(k2)~

We need two spectral density functions because we don’t
necessarily have the Ward identity for this current (it
applies only to electromagnetic currents, coupled to the
photon).

Computing the decay rate, we get (after a lengthy
calculation):

GZim3 " o\’ 20
0

If we somehow knew that the final hadron would be a pion,
we could find the spectral density functions. Recalling that
(0J"|7) = Viaiv/2F,pa, Where F is the pion decay con-
stant, we can find that

po(o) = 22 cos(80)5(c — m2),  pi(o) = 0,

where 6¢ is the Cabibbo angle. Thus the final decay rate
for 7 to a pion is:

GZm3 2\ 2
I'= FmTF,?COSQ(Qc) (1—m”> .

2
8T m2

6.5 Deep inelastic scattering

Consider electron-proton scattering via exchange of a
photon in the deep inelastic scattering regime.

Definition: Deep refers to a high energy process.
Inelastic means that the electron’s energy can change
during the scattering process.

In general, a Feynman diagram for the process looks
like:

KINEMATICS: First deal with kinematics of problem. We
have:

Definition: Define the scattering angle by p - p’ =
Ip||p’| cos(#). Write also the electron energies as £ = p°
and E/ = p'°.

Since the electrons have mass negligible to the pro-
ton, treat them as massless.

Definition: Define Q?> = —¢2, where ¢ is the photon
momentum. Define v = py - ¢, where py is the proton
momentum. Finally, define the dimensionless Bjorken
quantities by

Q° v
:77 Y= .
v PH P

xT

Theorem (Kinematics): We have (i) Q2 > 0; (ii) Q? < 2v;
(i) 0 <z < 1land (iv) 0 <y < L.

Proof: (i) Note that ¢ = p — p’ so that ¢> = 2p - p' =
2EE'(cos() — 1) < 0, and therefore Q2 > 0.

(i) In the rest frame of the proton, v = M(E — E') > 0,
where M is the proton’s mass. Now by conservation of
momentum, the momentum of the final state X is:

pX:pH+q=>M)2(:M2+21/—Q2. (%)

Now note that by 3-momentum conservation,
q = Py, and also by energy conservation, we have

VM% +1px]? = |q| + M, which on squaring gives:
M% — M? =|q)? — |px|* +2M|q| = 2M|q| > 0. Therefore
M#% > M? and (ii) then follows from ().

(iii) follows immediately by (i) and (ii).

(iv) In the proton’s rest frame,

14

Y= ME

which is clearly greater than 0. Also, recall v = M(E—E'),
S0

and we’re done. [

Definition: The deep inelastic limit of the problem is
to take Q? — oo, v — oo (i.e. high energies) but keep =
and y finite.

37



J. M. Moore, 2021

Let us now go ahead and calculate the cross section. The
amplitude is easily seen to be (by the Feynman rules):

iM = (—ie)*ue(p" )y ue(p) ( _Z;“” ) (X|JY|H (pg)) -

Working in the rest frame of the proton, the flux factor is
[ve — v | = 1, since electrons are massless in this regime
and the proton is stationary. The differential cross section
is then:

1 d3p/

do=—— 52
7~ IME (2n)%2E

S (n)5 (g +pm—px) 5 O IMP

X spins
Write
1 2 64 IHL v
3 Z IM[* = @LW (H|J | X) (X[ [H)
spins
where L, is the contribution from the electrons, given by
L;w = Tr(p’}’up/'%/) = 4(1%?;, +p;pu — NuvP - p/)-

Notice that L, is symmetric under p < v.

Also write:
v 1 v
Wi = = > (2m)*6" (q + pr — px) (HIIL1X) (X| T} )
X
Then 4
1 1
do C LW

d3p' 8(21)2 mEE ¢*
As is now standard, we use an argument based on Lorentz
invariance for the form of W};”. Notice it is contracted with
L,., so we may as well assume it is symmetric (any anti-
symmetric part will vanish). We also have the Ward iden-
tity ¢, W5 = 0 since it comes from an EM vertex. These
restrictions are enough to force:

M AV
Wi = (= L) mon @)
. v .q v
+ (p‘ﬁ - ng q(J“) (pH - ng q > Wa (v, Q7).

for some scalar functions W, and Ws.

Notice that ¢**L,,, = 0 by the Ward identity too. Thus we’re
left with:

LW =4Q*W, + 2M*(4EE’ — Q*)Wo.
It follows that

do et

_ 2 2 2
Bp ~ s@npaEEg @ W AMAEE = QW)

Writing this in terms of the Bjorken = and y, and taking the
DIS limit Q? — co and v — oo, we see that

1—
L, WE = 8EM <xyW1 += yuwg)

The measure also becomes:
d3p’ = 2n(E')*d cos(0)dE' = nE'dQ?*dy = 2w E'vdxdy.
Therefore the final differential cross section is:

do 8ra’ME
dedy Q4

(z’Fi+(1—y)F),

where the functions F; = W; and F, = vW, are the
dimensionless structure functions of the proton.

6.6 The parton model

The parton model assumes that the photon interacts with
a single constituent of the proton. The leading order ap-
proximation in the parton model is then:

We assume we can write:

> = ;; ﬁ JEEEISNDS

parton spins

Here, the Heaviside function forces the parton to have pos-
itive energy, and the delta function forces it to be massless.

Inserting this expression in W4”, we have
Wy = Z/d4/€Tr(W§L”FH,f(pH, k) + W Tug(pu, k),
7

where

Los(0m k)ga = Y 0" (pr—k—px:) (H|fal X") (X'|f5|H),
%

and T is the same but with antiquarks, f. We can compute
the proton structure functions as:

Fi(,@) = 3 Y (@) + 7@), B, @) = 2R,
f

where ¢y are the charges of the partons (assumed to be
quarks here) and f(z) and f(z) are dimensionless func-
tions called parton distribution functions.
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