
Part III: The Standard Model - Revision

Lectures by Christopher Thomas, notes by James Moore

1 Revision of spinors

1.1 The Clifford algebra and spinors

Definition: The Clifford algebra is an algebra generated
by the objects γµ obeying {γµ, γν} = 2ηµν1.

When we pick a solution to this equation, we say we
are picking a representation of the Clifford algebra.

Definition: The chiral (or Weyl) representation of
the Clifford algebra is the set of matrices:

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
,

where σi are the Pauli matrices.

Theorem: In the chiral rep, γµ† = γ0γµγ0. So γ0
†

= γ0

and γi† = −γi.

Proof: Trivial.

This is useful, because choosing a rep does not constitute
any loss of generality:

Theorem: If γµ and γµ′ are both reps of the Clifford
algebra, there exists S such that γµ′ = SγµS−1.

Proof: Not required.

Definition: The chirality operator is the γ5 matrix, defined
by γ5 = iγ0γ1γ2γ3, which in the chiral representation is

γ5 =

(
−1 0
0 1

)
.

Theorem: γ5 obeys (γ5)2 = I and {γ5, γµ} = 0.

Proof: See QFT.

Definition: A spinor is a four-component object ψ ∈ C4

transforming in the spinor representation of the Lorentz
group (see QFT). The Dirac adjoint of a spinor is defined
by:

ψ = ψ†γ0.

Definition: The Dirac Lagrangian is L = ψ(iγµ∂µ −m)ψ.

Theorem: The Euler-Lagrange equations of the Dirac
Lagrangian are:

(i/∂ −m)ψ = 0, ψ(−i
←−
/∂ −m) = 0,

where /A = γµAµ, and
←−
/∂ mean the derivative acts to the

left. The first equation is the Dirac equation.

Proof: Vary directly with respect to ψ to get first equation.
Vary with respect to ψ and integrate by parts twice to get
second equation.

1.2 Chiral spinors

Definition: The projection operators are defined by
PR,L = 1

2

(
1± γ5

)
.

Theorem: The projection operators obey:

P 2
R,L = PR,L, PRPL = PLPR = 0, PL + PR = 1.

Proof: Just substitute definitions to check.

Definition: Given a spinor field ψ(x), the chiral (Weyl)
spinors are ψR,L(x) = PR,Lψ(x).

Theorem: ψL,R(x) = ψ(x)PR,L.

Proof: Just direct check.

Theorem: γ5ψR,L(x) = ±ψR,L(x).

Proof: Just direct check.

Because of this final property, ψR,L are chiral eigen-
states. We say they are right and left-handed respectively.

Theorem: The Dirac Lagrangian can be written as:

L = iψL /∂ψL + iψR /∂ψR −m(ψRψL + ψLψR).

Proof: Use ψ(x) = (PR + PL)ψ(x) = ψL(x) + ψR(x) in
original Dirac Lagrangian.

Hence, in the massless limit the Lagrangian is:

L = iψL /∂ψL + iψR /∂ψR.
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We notice this Lagrangian has a global U(1)L × U(1)R
symmetry:

Theorem: For massless spinors, the transformation
ψL,R 7→ eiαL,RψL,R is a symmetry of the Lagrangian.

Proof: Trivial.

In particular, the transformations are independent.
When m 6= 0, there is still a global U(1) symmetry
ψ 7→ eiαψ, equivalent to setting αL = αR. We say the
mass breaks the symmetry (see later).

1.3 Quantising spinors

Quantum spinor fields have a mode expansion: ψ(x) =∑
s

∫
d3p

(2π)32Ep

(
bs(p)us(p)e−ip·x + (ds)†(p)vs(p)eip·x

)
=:
∑
s,p

(
bs(p)us(p)e−ip·x + (ds)†(p)vs(p)eip·x

)
.

where s ∈ {− 1
2 ,

1
2} and b, d are mode operators. Note

we’ve used the notation∑
p

=
d3p

(2π)32Ep

to save on writing. Also note that us(p), vs(p) are positive
and negative frequency plane-wave solutions of the clas-
sical Dirac equation, obeying

(/p−m)u = 0, (/p+m)v = 0,

and explicitly given by

us(p) =

(√
p · σξs√
p · σξs

)
, vs(p) =

( √
p · σηs

−
√
p · σηs

)
,

where σµ = (1, σi), σµ = (1,−σi), and ξs, ηs are two-
component spinors. We take ξ1 = (1, 0)T and ξ2 = (0, 1)T

for spin up and spin down respectively; same holds for η.

Finally, notice that this course uses relativistic nor-
malisation of the operators, that is,

a(p) =
√

2Epap,

where ap are the operators we used in QFT.

In order to deal with the square root of a matrix, i.e.√
p · σ, we rotate the spatial coordinates so that p lies in

the z-direction, i.e. p = (p0, 0, 0, p3)T . Then

√
p · σ =

√
p0σ0 − p3σ3 =

(
p0 − p3 0

0 p0 + p3

)1/2

=

(√
p0 − p3 0

0
√
p0 + p3

)
.

1.4 Helicity vs chirality

Definition: The helicity operator is the projection of
angular momentum onto the linear momentum direc-
tion: h = J · p̂ = (r × p + S) · p̂ = S · p̂, where S is spin
angular momentum and r×p is orbital angular momentum.

Theorem: In QFT, the spin operator can be written
as:

Si =
i

4
εijkγ

jγk.

Proof: Recall from quantum mechanics that S = 1
2σσσ,

where σσσ is the vector of Pauli matrices. So the spin op-
erator should act on spinors via:

Si =
1

2

(
σi 0
0 σi

)
=
i

4
εijkγ

jγk.

Now notice that in the chiral rep, we have:

[γj , γk] =

(
0 σj

−σj 0

)(
0 σk

−σk 0

)
−
(

0 σk

−σk 0

)(
0 σj

−σj 0

)

=

(
−[σj , σk] 0

0 −[σj , σk]

)
=

(
−2iεijkσi 0

0 −2iεijkσi

)
.

Hence εijkSi = i
4 [γj , γk] (recall Si = 1

2diag(σi, σi)). Now
multiply through by εijk to get the result.

Using the above form of the spin operator, we have:

Theorem: For massless spinors, hus(p) = 1
2γ

5us(p).

Proof: Let us(p) be massless, and suppose, by rotat-
ing coordinates, that p points in the positive z-direction,
i.e. p1 = p2 = 0, p3 > 0. Then p0 = p3 because this is a
massless spinor. Thus we have:

us(p) =

(√
p · σξs√
p · σξs

)
=


0√

2p0ξs√
2p0ξs

0

 .

Now recall that h = p̂iSi = p̂3S3 = S3. Hence hus(p) =

S3u
s(p) =

1

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




0√
2p0ξs√
2p0ξs

0

 =
1

2


0

−
√

2p0ξs√
2p0ξs

0

 .

Now simply recall γ5 =

(
−I 0
0 I

)
, and we see that

hus(p) = 1
2γ

5us(p). This is Lorentz invariant so holds for
all p.

Slogan: For massless spinors, chirality and helicity
are the same (up to 1

2 ). For right-handed massless
spinors, spin points in the direction of motion; for left-
handed massless spinors, spin points opposite the
direction of motion.

2
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2 Discrete symmetries

2.1 Types of symmetry

Definition: Types of symmetry include:

(i) Intact. The symmetry is present in both the classical
and quantum theory.

(ii) Anomalous. The symmetry holds classically but not
quantumly. This is not a true symmetry.

(iii) Explicitly broken. The symmetry applies to some
terms in the Lagrangian, but not others. This indicates
the symmetry has been broken from a larger group
(see later).

(iv) Hidden. The symmetry is respected by the La-
grangian, but not the vacuum state. There main type
is spontaneous symmetry breaking, where we get
a vacuum excitation value from one or more scalar
fields.

2.2 Wigner’s Theorem

In order to implement symmetries in the quantum theory,
we need the important result:

Wigner’s Theorem: Let ψ, ψ′ and φ be vectors in
Hilbert space. If physics is invariant under the transforma-
tion ψ 7→ ψ′, then there exists an operator W such that
ψ′ = Wψ, where W is either

(i) Linear, W (αφ + βψ) = αWφ + βWψ, and unitary,
(Wφ,Wψ) = (φ, ψ);

(ii) Anti-linear, W (αφ + βψ) = α∗Wφ + β∗Wψ, and anti-
unitary, (Wφ,Wψ) = (φ, ψ)∗.

2.3 CPT symmetries

In this chapter, we’ll care about three symmetries: charge
conjugation, parity and time-reversal.

Definition: Charge conjugation symmetry maps par-
ticles to their respective antiparticles, and vice-versa.

Definition: Parity inverts space via (t,x) 7→ (t,−x).
It is represented in the classical theory by a Lorentz
transformation

Pµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Definition: Time-reversal inverts time via (t,x) 7→ (−t,x).
It is represented in the classical theory by a Lorentz trans-
formation

Tµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Note both parity and time-reversal are improper Lorentz
transformations since they have determinant −1 (so they
are not connected to the identity).

Before we start, we should work out whether parity
and time-reversal are unitary or anti-unitary.

Notation: Let W (Λ, a) denote the quantum operator rep-
resenting the Poincaré transformation xµ 7→ Λµνx

ν + aµ,
where Λµν is a Lorentz transformation.

Lemma: W (Λ1, a1)W (Λ2, a2) = W (Λ1Λ2,Λ1a2 + a1).

Proof: W is a group homomorphism. So do calcula-
tion in classical space. We have:

xµ 7→ Λ2
µ
νx

ν + aµ2
7→ Λ1

µ
νΛ2

ν
ρx
ρ + Λ1

µ
νa
ν
2 + aµ1 .

Lemma: For ω, ε infinitesimal, we have

W (1 + ω, ε) = 1 +
i

2
ωµνJ

µν − iεµPµ,

where Jµν generate Lorentz transformations and Pµ

generate time and space translations (i.e. P 0 is the
Hamiltonian, P i is the 3-momentum).

Proof: By definition of the infinitesimal operators.

We can now prove the main result:

Theorem: The operators P̂ = W (P, 0) and T̂ = W (T, 0)
representing parity and time-reversal respectively, are
unitary & linear, and anti-unitary & anti-linear respectively.

Proof: By the composition law above, P̂W (Λ, a)P̂−1 =
W (PΛP−1,Pa) and same for T. Inserting infinitesimal
expansion of W on both sides, and comparing coefficients
of −ε0, we find

P̂ iHP̂−1 = iH, T̂ iHT̂−1 = −iH.

Let ψ be an energy eigenstate of H with energy E. Then

(ψ, iHψ) = (ψ, iEψ) = iE.

If T̂ is a symmetry, then T̂ψ is an eigenstate of H (since T̂
commutes with H when symmetry).

3
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We note HT̂ψ = ET̂ψ, so they have the same energy (E
is real since H Hermitian, so doesn’t matter if linear or
antilinear at this stage).

Suppose T̂ is linear. Then

iE = (T̂ψ, iHT̂ψ) = −(T̂ψ, T̂ iHψ) = −iE,

where in the middle equality, we’ve used T̂ iHT̂−1 = −iH,
and in the last equality, we’ve used linearity. Contradiction
(since must hold for all E). So by Wigner’s Theorem, T̂ is
anti-linear and anti-unitary. Similarly can show P̂ is linear
and unitary.

In the above Theorem, we only used the coefficient
of −ε0 in the infinitesimal expansion. Using other coeffi-
cients it’s possible to show:

Theorem: Under time-reversal symmetry T̂ , both an-
gular momentum and linear momentum change sign.

This will be important later when we consider how
the Dirac field (which has spin angular momentum 1

2 )
transforms under T̂ .

2.4 Parity symmetry

We want to investigate how quantum fields change under
parity, P̂ . Begin with scalar field:

Theorem: Under parity, the scalar field

φ(x) =
∑
p

(
a(p)e−ip·x + c†(p)eip·x

)
maps to

P̂ φ(x)P̂−1 = ηPφ(xP ),

where xP = (x0,−x) are the parity-transformed coordi-
nates, and ηP is a complex phase, called the intrinsic
parity of the field.

Proof: Note x ·p is invariant under Lorentz transformations,
so p 7→ pP = (p0,−p) under parity. Hence in the quantum
theory we require P̂ a†(p)P̂−1 = (ηa)∗a†(pP ). Since P̂ is
unitary, taking the dagger gives P̂ a(p)P̂−1 = ηaa(pP ).
Similarly

P̂ c†(p)P̂−1 = (ηc)∗c†(pP ), P̂ c(pP )P̂−1 = ηcc(pP ).

Hence

P̂ φ(x)P̂−1 =
∑
p

(
ηaa(pP )e−ip·x + (ηc)∗c†(pP )eip·x

)
.

Relabel p ↔ pP in the sum and use pP · x = p · xP . Also
note integrating over pP is the same as integrating over p
(same range). Hence

P̂ φ(x)P̂−1 =
∑
p

(
ηaa(p)e−ip·xP + (ηc)∗c†(p)eip·xP

)
.

Now must constrain ηa, ηc. Notice

[φ(x), P̂ φ†(y)P̂−1] = (2π)3 ((ηa)∗D(x− yP ) + ηcD(yP − x)) ,

where D(x − y) is the propagator. For causality to be
preserved, this must vanish for spacelike separated x
and y. Recalling D(x − y) = −D(y − x), we see that
(ηa)∗ = ηc. The result follows.

For real φ, a = c, and so ηa = (ηa)∗ = ηP ∈ R.
Hence ηP is ±1.

Definition: If ηP = 1, we call the field a scalar field.
If ηP = −1, we call it a pseudoscalar field.

For complex scalar fields, it’s possible ηP 6∈ R. But if
there is a conserved charge Q, then Q̂, P̂ , Ĥ are all
mutually commuting, allowing us to define P̂ ′ = P̂ e−iαQ̂,
with α chosen such that ηP ′ is real. We then just take P̂ ′

to be the parity operator.

We now want to consider vector fields. Recall that a
vector field in the quantum theory has mode expansion:

V µ(x) =
∑
p,λ

(
εµ(λ, p)aλ(p)e−ip·x + εµ∗(λ, p)cλ

†
(p)eip·x

)
,

where λ ∈ {−1, 0, 1} is the helicity. The εµ are the
polarisation vectors.

Theorem: Under parity, the vector field V µ(x) trans-
forms to P̂ V µ(x)P̂−1 = −ηPPµνV ν(xP ).

Proof: The proof is essentially the same as for a
scalar field. However, we must also use the fact
εµ(λ, pP ) = −Pµνεν(λ, p). This result can be shown by
working in a specific frame.

In the particle’s rest frame, p = 0, pick

εµ(−1, 0) =
1√
2


0
1
−i
0

 , εµ(0, 0) =


0
0
0
1

 , εµ(1, 0) =
1√
2


0
1
i
0

 .

Boost to frames with 3-momentum p = mvẑ and pP =
−mvẑ respectively, by using the Lorentz boosts Lµν(p),
Lµν(pP ); explicitly, this Lorentz boost is given by

Lµν(p) =


γ 0 0 −vγ
0 1 0 0
0 0 1 0
−vγ 0 0 γ

 ,

where γ is the standard Lorentz factor, and to get Lµν(pP )
we just send v 7→ −v. We find the result holds in this
specific frame; by Lorentz invariance, it holds in all frames.
The proof is then the same as in the bosonic case.

4
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Finally, we examine how spinors transform.

Theorem: A Dirac field ψ(x) transforms as

P̂ψ(x)P̂−1 = ηP γ
0ψ(xP )

under parity. The Dirac conjugate transforms as

P̂ψ(x)P̂−1 = η∗Pψ(xP )γ0.

Proof: Just as for bosons, we have

P̂ bs(p)P̂−1 = ηbbs(pP ), P̂ ds†(p)P̂−1 = (ηd)∗ds†(pP ).

Hence going through the same steps as for bosons, we get

P̂ψ(x)P̂−1 =
∑
p,s

ηbbs(p)us(pP )e−ip·xP +ηd
∗
ds†(p)vs(pP )eip·xP .

We need to evaluate us(pP ). From the general form of
us(p), we have

us(pP ) =

(√
σ · pP ξs√
σ · pP ξs

)
=

(√
σ · pξs√
σ · pξs

)
= γ0us(p).

Similarly, vs(pP ) = −γ0vs(p). Thus P̂ψ(x)P̂−1 =∑
s,p

(
ηbbs(p)γ0us(p)e−ip·xP − ηd∗ds†(p)γ0vs(p)eip·xP

)
.

Similar to boson calculation (but using anti-commutator of
ψ(x) and ψ(xP )), we require ηb = −(ηd)∗ for preservation
of causality. Defining ηb = ηP , we have

P̂ψ(x)P̂−1 = ηP γ
0ψ(xP ).

Running the whole argument through with ψ instead, we
get the other result.

Theorem: For chiral spinors, we have:

P̂ψR/L(x)P̂−1 = ηP γ
0ψL/R(x),

i.e. right and left-handed spinors are swapped.

Proof: Just multiply above result by 1
2 (1± γ5).

The above result allows us to calculate how fermion
bilinears transform under parity:

• Under parity,

ψ(x)ψ(x) 7→ P̂ψ(x)ψ(x)P̂−1 = P̂ψ(x)P̂−1P̂ψ(x)P̂−1.

Inserting the above formulae, we get ψ(xP )ψ(xP ). So
ψψ is a scalar.

• Similarly, ψ(x)γ5ψ(x) 7→ −ψ(xP )γ5ψ(xP ), so this is a
pseudoscalar.

• ψ(x)γµψ(x) 7→ Pµνψ(xP )γνψ(xP ), so this is a vector.

• ψ(x)γµγ5ψ(x) 7→ −Pµνψ(xP )γνγ5ψ(x), so this is an
axial vector.

Theorem: If ψ(x) solves the Dirac equation, so does
P̂ψ(x)P̂−1.

Proof: The Dirac equation is (i/∂ − m)ψ(x) = 0. Send
x 7→ xP . Then (iγ0∂0 − iγi∂i − m)ψ(xP ) = 0. Then just
multiply through by γ0 to get (i/∂ −m)(γ0ψ(xP )) = 0.

2.5 Charge conjugation of scalars

Theorem: Under charge conjugation, a scalar field trans-
forms as

Ĉφ(x)Ĉ−1 = ηCφ
†(x),

where ηC is a complex phase called the intrinsic charge
parity of the field.

Proof: Charge conjugation should transform a parti-
cle to its antiparticle. So we must have:

Ĉa(p)Ĉ−1 = ηCc(p), Ĉc(p)Ĉ−1 = η∗Ca(p).

In principle, the two phases could be unrelated, but in
actuality causality constrains these as we’ve seen before.
This immediately gives Ĉφ(x)Ĉ−1 = ηCφ

†(x).

For a real scalar, φ(x) = φ†(x), so ηC = ±1.

For a complex scalar, we could have ηC = e2iβ , say.
But then performing the rotation φ 7→ φ′ = e−iβφ, we
find that Ĉφ′Ĉ−1 = (φ′)†. So we can always redefine a
complex scalar field to have ηC = 1.

2.6 Dirac fields: charge conjugation matrix

Let’s now deal with Dirac fields; we’ll need some motiva-
tion first. We might hope the spinor ψ(x) transforms to
something of the form ψ†(x) = ψ

T
(x) under charge conju-

gation, as this was the ‘antiparticle’ in QFT. We thus hope
the answer is of the form

Ĉψ(x)Ĉ−1 = ηCCψ
T

(x).

where C is a 4× 4 matrix.

Why the matrix? To ensure that the Dirac equation
is satisfied. If ψ(x) satisfies the Dirac equation, we know

ψ(x)(−i
←−
/∂ −m) = 0. Taking the transpose, we have

(−i(γµT )∂µ −m)ψ
T

(x) = 0,

and so multiplying by C, and inserting CC−1 appropriately,
we have

(−iCγµTC−1∂µ −m)Cψ
T

(x) = 0,

for any matrix C. Now supposing CγµTC−1 = −γµ,
Cψ

T
(x) satisfies the Dirac equation (whereas ψ

T
(x) on its

own didn’t work)!

5
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With this in mind, we define:

Definition: The charge conjugation matrix is the matrix
obeying CγµTC−1 = −γµ. Equivalently,

CγµT = −γµC, γµTC−1 = −C−1γµ, or γµCT = −CT γµT .

Slogan: Can commute C, C−1 or CT past γµ at cost of
minus sign, and introduction of transpose on γµ.

The charge conjugation matrix C has a lot of proper-
ties which make it useful:

Theorem (Properties of C): We have:

(i) C always exists, whatever rep of γµ is selected;

(ii) C is antisymmetric, CT = −C;

(iii) Cγ5TC−1 = γ5; so above slogan extends to γ5, but
don’t pick up minus sign when commuting past;

(iv) In the chiral rep, C is unitary, C†C = 1;

(v) A possible choice of C is

C = −iγ0γ2 =

(
iσ2 0
0 −iσ2

)
.

Proof: (i) Recall that if γµ′ and γµ both satisfy the Clifford
algebra, then γµ′ = SγµS−1 for some matrix S. But −γµT
satisfies the Clifford algebra, so indeed a C exists.

(ii) First we prove CTC−1 ∝ 1. Note that [CTC−1, γµ] = 0,
and so by Schur’s Lemma, CTC−1 = c1, for some c. Since

C = (CT )T = (cC)T = c2C,

we have c = ±1.

It remains to decide if C is symmetric or antisymmet-
ric. We use an argument based on linear independence.

Note that CT = cC, (γµC)T = −cγµC, (γ5C)T = cγ5C,
(γµγ5C)T = cγµγ5C and ([γµ, γν ]C)T = −c[γµ, γν ]C.
Also assert that the matrices C, γµC, γ5C, γµγ5C and
[γµ, γν ]C are linearly independent (this is tedious to
prove). This is a total of 16 matrices.

From the above calculations, if c = 1, we get 6 lin-
early independent symmetric matrices and 10 linearly
independent antisymmetric ones. This is a contradiction.
So c = −1.

(iii) Follows from calculation in (ii).

(iv) First note that CγµT = −γµC ⇒ (γµ†)TC† = −C†γµ†.
Considering µ = 0, i separately and using the chiral rep,
we have γµTC† = −C†γµ. So we have

[γµ, CC†] = 0,

in the same way as (i). Schur’s Lemma then implies CC† =
λ1. Hence

C = (C†)† = λ(C−1)† = λ(C†)−1 = λ2C,

so λ = ±1.

If λ = −1, let D = iC. Then D obeys the defining
property DγµTD−1 = γµ, so is a valid charge conjugation
matrix with all the properties above (recall, we didn’t
assume a rep in (i) - (iii)). But CC† = −1⇒ DD† = 1, and
we’re saved, by working with D instead, WLOG.

(v) We can easily verify the defining property. By (i),
the defining property is equivalent to (γµC)T = γµC,
which is easy to verify when C = −iγ0γ2.

2.7 Charge conjugation of Dirac spinors

We are now ready to prove the main result:

Theorem: Under charge conjugation, a spinor trans-
forms as

Ĉψ(x)Ĉ−1 = ηCCψ
T

(x),

where C is the charge conjugation matrix.

Proof: Under charge conjugation, we must have

Ĉbs(p)Ĉ−1 = ηCd
s(p), Ĉds†(p)Ĉ−1 = ηCb

s†(p),

since particles are swapped with antiparticles (in principle,
could get different phases, but in actuality, these are the
same by causality). Thus

Ĉψ(x)Ĉ−1 = ηc
∑
p,s

ds(p)us(p)e−ip·x + bs†(p)vs(p)eip·x.

Need to get plane-wave spinors in correct form. Recall
that:

us(p) =

(√
σ · pξs√
σ · pξs

)
, vs(p) =

( √
σ · pηs

−
√
σ · pηs

)
.

WLOG, can choose a basis where ηs = iσ2(ξs)∗, we can
choose C = −iγ0γ2 and we can rotate space so that p =
(p0, 0, 0, p3)T . Then us(p) =
√
p0 − p3ξ1√
p0 + p3ξ2√
p0 + p3ξ1√
p0 − p3ξ2

⇒ usT (p) = γ0
T
us∗(p) =


√
p0 + p3ξ1

∗√
p0 − p3ξ2∗√
p0 − p3ξ1∗√
p0 + p3ξ2

∗

 ,

and finally

CusT (p) =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0



√
p0 + p3ξ1

∗√
p0 − p3ξ2∗√
p0 − p3ξ1∗√
p0 + p3ξ2

∗

 = vs(p).

Similarly we find that us(p) = CvsT (p). It follows that
Ĉψ(x)Ĉ−1 = ηcCψ

T
(x), as required.
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As with parity, the results extend to the Dirac conjugate
ψ(x) and to Weyl spinors:

Theorem: Under charge conjugation we have:

Ĉψ(x)Ĉ−1 = −η∗CψT (x)C−1,

and ĈψTL/R(x)Ĉ−1 = ηCCψ
T

R/L(x).

Proof: ψ follows similarly to above. For Weyl spinors, use
projection operators and recall γ5C = Cγ5

T .

Note that ψCL (x) := ηCCψ
T

R(x) is left-handed. This
can be verified as follows:

γ5Cψ
T

R(x) = Cγ5
T
ψ
T

R(x) = C(ψR(x)γ5)T = −CψTR(x),

so we see that the field is indeed left-handed. So left-
handed particles get mapped to left-handed antiparticles.

Theorem: If ψ(x) satisfies the Dirac equation, then
Ĉψ(x)Ĉ−1 = ηCCψ

T
(x) satisfies the Dirac equation.

Proof: We already saw this in the motivation for the
charge conjugation matrix.

Definition: A Majorana fermion has bs(p) = ds(p),
i.e. it is its own anti-particle. In this case, we find that
Ĉψ(x)Ĉ−1 = ψ(x) (since we can just terminate the above
proof before we interfere with the plane wave spinors).

We can now deal with fermion bilinears. Note fermion
bilinears are of the form ψ(x)Xψ(x) for some matrix X
acting on spinors. So we prove the result:

Theorem: Ĉψ(x)Xψ(x)Ĉ−1 = ψ(x)XCψ(x), where
XC = CXTC−1.

Proof: Insert Ĉ as appropriate (note [Ĉ,X] = 0, since X
is a matrix and Ĉ is an operator):

Ĉψ(x)Xψ(x)Ĉ−1 = Ĉψ(x)Ĉ−1XĈψ(x)Ĉ−1

= −ψT (x)C−1XCψ
T

(x).

It’s best to write this in index notation. Then we have

−ψα(x)(C−1XC)αβψβ(x) = ψβ(x)((CTXT (CT )−1)T )αβψα(x)

where we lost the minus because fermions anti-commute.
Applying the transpose in the middle swaps the indices,
and we’re left with a matrix CTXT (CT )−1 in the middle;
recalling CT = −C, we’re done.

Let’s apply this to the familiar bilinears:

• ψψ has X = I. So XC = I. Hence invariant under
charge conjugation.

• ψγ5ψ has X = γ5. So XC = Cγ5
T
C−1 = γ5CC−1 =

γ5. So invariant under charge conjugation.

• ψγµγ5ψ has X = γµγ5. So XC = Cγ5
T
γµTC−1 =

−γ5γµ = γµγ5. So invariant under charge conjuga-
tion.

• Finally, ψγµψ has X = γµ. So XC = CγµTC−1 =
−γµ, so get minus sign under charge conjugation.

2.8 Time-reversal of scalar fields

Theorem: Under time reversal T̂ , the scalar field φ(x)
transforms as

T̂ φ(x)T̂−1 = ηTφ(xT ),

where xT = (−x0,x), and ηT is a complex phase.

Proof: Same as all other proofs. Start from
T̂ a(p)T̂−1 = ηTa(pT ) and T̂ c†(p)T̂−1 = ηT c

†(pT )
where pT = (p0,−p) (for x · p invariant). Only thing we
need to be careful of is anti-linearity of T̂ , so complex
numbers are conjugated when we pass T̂ through them.
Also need to use pT · x = −p · xT at some point.

2.9 Time-reversal of Dirac fields

As for charge conjugation, we find we need a matrix,
called the time-reversal matrix. The argument runs as
follows.

Under time reversal, we expect ψ to map to some-
thing like Bψ(xT ), where xT = (−x0,x). The matrix
is needed to help us satisfy the Dirac equation. Recall
the Dirac equation for ψ is (i/∂ − m)ψ(x) = 0. Send
ψ(x) 7→ T̂ψ(x)T̂−1; then in order to have invariance of the
Dirac equation, we need

T̂
(
(−i/∂∗ −m)ψ(x)

)
T̂−1 = 0,

recalling that T̂ is anti-linear. Remove T̂ and T̂−1 on both
sides, and send x 7→ xT . We find that

(iγ0
∗
∂0 − iγi

∗
∂i −m)ψ(xT ) = 0.

Inserting B−1B and multiplying through by B, we arrive at
the Definition:

Definition: The time-reversal matrix is the matrix B
satisfying γµ∗ = B(γ0,−γγγ)B−1. Equivalently, this can be
written as B−1γµ∗B = −Tµνγν .

7
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Theorem (Properties of B): We have the following:

(i) B always exists;

(ii) B−1γ5∗B = γ5;

(iii) In the chiral rep, a possible choice of B is B = C−1γ5,
where C is the charge conjugation matrix.

Proof: (i) γµ∗ certainly satisfies the Clifford algebra, as
does (γ0,−γγγ), so they must be related by a similarity
transformation, B.

(ii) Write out γ5 in full, and insert BB−1 in between
all factors.

(iii) Just verify it satisfies the defining property for
µ = 0, i.

We are now ready to prove the main result:

Theorem: Under time-reversal, ψ(x) maps to

T̂ψ(x)T̂−1 = ηTBψ(xT ).

Proof: Recall from the very start of this chapter that time-
reversal reverses the sign of angular momentum. So we
must take

T̂ bs(p)T̂−1 = ηT (−1)
1
2−sb−s(pT ),

T̂ ds†(p)T̂−1 = ηT (−1)
1
2−sd−s

†
(pT ).

The (−1)
1
2−s is there for convenience. By using

B = C−1γ5 =

(
iσ2 0
0 iσ2

)
,

it can be shown similar to the charge conjuga-
tion proof that (−1)

1
2−su−s

∗
(pT ) = −Bus(p) and

(−1)
1
2−sv−s

∗
(pT ) = −Bvs(p). The proof now pro-

ceeds through the standard steps (relabelling s 7→ −s at
one point, and x · pT = −xT · p).

Similarly, we find that T̂ψ(x)T̂−1 = η∗Tψ(xT )B−1.
The fermion bilinears are then dealt with in the same way
as charge conjugation:

Theorem: We have T̂ψ(x)Xψ(x)T̂−1 = ψ(xT )XTψ(xT ),
where XT = B−1X∗B.

Proof: Same idea as charge conjugation, but sim-
pler; just remember T̂ is anti-linear to produce X∗.

Using this Theorem, we can show ψψ is invari-
ant under time reversal. Also ψγµψ transforms to
−Tµνψ(xT )γνψ(xT ); this is sensible since µ = 0 should
act like charge density (i.e. invariant), whilst µ = i should
act like current density (i.e. change of sign).

2.10 CPT properties of Maxwell’s equation

In applications, we often want the transformations of
the photon field Aµ(x) under Ĉ, P̂ and T̂ . These can
be obtained by imposing the invariance of Maxwell’s
equations.

Theorem: Aµ(x) transforms under Ĉ, P̂ and T̂ as:

• ĈAµ(x)Ĉ−1 = −Aµ(x);

• P̂Aµ(x)P̂−1 = PνµAν(x);

• T̂Aµ(x)T̂−1 = −TνµAν(x);

Proof: Use invariance of Maxwell’s equation
∂νF

µν = eψγµψ, which can be derived from the standard
QED Lagrangian, where Fµν = ∂µAν − ∂νAµ.

PARITY: Under parity, it’s quick to see that eψγµψ
transforms to ePµνψ(xP )γνψ(xP ). The derivative trans-
forms as ∂ν 7→ Pµν∂µ, and therefore Maxwell’s equations
transform to

Pρν∂ρF̃µν(xP ) = ePµνψ(xP )γνψ(xP ).

Here, F̃µν is the parity-transformed field-strength ten-
sor. In particular, consider the F̃ 0i component. The
equations have become: −∂iF̃ 0i(xP ) = eψ(xP )γ0ψ(xP ),
so for invariance of the Maxwell equations, we need
F 0i(x) 7→ −F 0i(xP ) under parity.

In terms of the photon field, we have:

F̃ 0i(xP ) = ∂0Ãi(xP ) + ∂iÃ0(xP ) = −F 0i(xP ),

and so it’s clear that Ai 7→ −Ai, whilst A0 7→ A0. Lowering
indices, we get the result.

CHARGE CONJUGATION: Under charge conjugation,
we see that eψγµψ 7→ −eψ(x)γµψ(x). The LHS of
Maxwell’s equations transforms as ∂νFµν 7→ ∂ν F̃

µν since
the derivatives are left unchanged.

Hence for invariance of Maxwell we need F 0i 7→ −F 0i,
and so F̃ 0i = ∂0∂i − ∂i∂0 = −F 0i; from this we see that
Aµ(x) 7→ Aµ(x) under charge conjugation.

TIME REVERSAL: Time reversal can be treated simi-
lar to parity to get the result.

2.11 CPT properties of the scattering matrix

Definition: The S-matrix for a potential V (t) =

−
∫
d3x Lint, is given by

S = Texp

−i ∞∫
−∞

dt V (t)

 .

8
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Consider, for example, LI(x) = −eψ(x)γµAµ(x)ψ(x),
the QED interaction Lagrangian. How does the S-matrix
transform under Ĉ, P̂ and T̂?

The Lagrangian is invariant under P̂ , Ĉ and T̂ . This
is a consequence of fermion transformation properties,
and the transformation properties of Aµ(x) which we
derived above. It’s thus clear that V (t) is invariant under
parity and charge, but goes to V (−t) under time reversal.

Finally, it follows the S matrix must be invariant un-
der charge and parity, but under time-reversal it’s not so
clear, since we have the time-ordered exponential.

Theorem: For the QED Lagrangian, T̂ ST̂−1 = S†.

Proof: We have by Dyson’s formula:

S =

∞∑
n=0

(−i)n
∞∫
−∞

dt1

t1∫
−∞

dt2...

tn−1∫
−∞

dtnV (t1)V (t2)...V (tn),

which implies (since T̂ is anti-linear): T̂ ST̂−1 =

∞∑
n=0

in
∞∫
−∞

dt1

t1∫
−∞

dt2...

tn−1∫
−∞

dtnV (−t1)V (−t2)...V (−tn).

Substitute τi = −tn+1−i to get:
∞∫
−∞

dτn

∞∫
−τn

dτn−1...

∞∫
τ2

dτ1V (τn)...V (τ1).

Now use the identity (which can be proved graphically):

∞∫
−∞

dτn

∞∫
τn

dτn−1 =

∞∫
−∞

dτn−1

τn−1∫
−∞

dτn,

to swap the order of all the integrals, and swap all the
limits at the same time. But notice that the final result is
what we would have got had we initially taken the dagger
instead (since (AB)† = B†A†, and all V are real).

Theorem: Let |ξT 〉 = T̂ |ξ〉 and |ηT 〉 = T̂ |η〉. Then
〈ηT |S|ξT 〉 = 〈ξ|S|η〉 (for QED, i.e. T̂ ST̂−1 = S†). That is,
taking the time-reversal of the states and computing the
amplitude is the same as watching the process in reverse.

Proof: Since we’re working with T̂ , it’s best to ditch
Dirac’s bra-ket notation. We have

〈ηT |S|ξT 〉 = (T̂ η, ST̂ ξ) = (T̂ η, T̂S†ξ).

This follows since T̂ ST̂−1 = S†. Now use anti-unitary to
get:

〈ηT |S|ξT 〉 = (η, S†ξ)∗ = (S†ξ, η) = (ξ, Sη) = 〈ξ|S|η〉 .

This result holds generally if T̂LI(x)T̂−1 = LI(xT ), that is,
the interaction part of the Hamiltonian is invariant under
time reversal. It’s clear that the proof that T̂ ST̂−1 = S†

works in this case just as before.

2.12 The CPT Theorem

CPT Theorem: Any Lorentz-invariant Lagrangian L with
a Hermitian Hamiltonian is invariant under the product
Θ̂ = ĈP̂ T̂ .

Proof: There isn’t one! Only conjecture.

Invoking the CPT Theorem can often speed up proofs,
since we only need to verify two things are invariant, and
invariance of the third follows.

2.13 Baryogenesis

Definition: Baryogenesis is the generation of the matter-
antimatter asymmetry in the Universe.

There are three conditions necessary for baryogene-
sis, which come from violation of the symmetries:

The Sakarhov Conditions:

1. Baryon number violation. There must exist a process
X → Y +B which yields a baryon excess B.

2. Non-equilibrium. The rate Γ(Y + B → X) must be
strictly less than the rate Γ(X → Y + B) to prevent
the process being undone.

3. Charge violation and charge-parity violation. If the
Universe starts with equal numbers of X particles and
X particles (X anti-particles), then the rate of baryon
production is

dB

dt
∝ Γ(X → Y +B)− Γ(X → Y +B).

Hence there must be charge violation, else this is
zero.

To see CP violation, assume for simplicity that
X → B only, and that B is composed of n quarks. C
violation implies that Γ(X → nqL) 6= Γ(X → nqL).
Under CP, there is a symmetry qL 7→ qR, so we can
still get:

Γ(X → nqL)+Γ(X → nqR) = Γ(X → nqL)+Γ(X → nqR)

This would preclude baryogenesis, so we must have
CP violation.

9
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3 Spontaneous symmetry breaking

3.1 Discrete and continuous examples

Example 1: Consider a Lagrangian

L =
1

2
∂µφ∂

µφ− V (φ),

where
V (φ) =

1

2
m2φ2 +

λ

4
φ4,

and λ > 0. The theory has a hidden discrete symmetry
φ 7→ −φ.

For m2 > 0, the minimum of V (φ) is at φ = 0. But
for m2 < 0, we can complete the square and drop the
constant to get:

V (φ) =
λ

4

(
φ2 − v2

)2
,

where v =
√
−m2/λ. There are now two degenerate

minima φ = ±v. We say that φ has acquired a non-zero
vacuum expectation value.

Choose the vacuum φ = v. Perturbing around it
φ = v + f , the Lagrangian becomes:

L =
1

2
∂µf∂

µf − λ
(
v2f + vf3 +

1

4
f4
)
.

We see f has mass-squared m2
f = 2λv2. Note that

f 7→ −f is no longer a symmetry; the symmetry is broken
by the non-zero vacuum expectation value.

Example 2: The above example generalises to many
fields. Consider φφφ = (φ1, ..., φN )T , with Lagrangian

L =
1

2
∂µφφφ · ∂µφφφ− V (φφφ).

Here,

V (φφφ) =
1

2
m2φφφ2 +

λ

4
φφφ4,

and λ > 0. The theory has a hidden O(N) symmetry of
the fields. Exactly as before, φφφ = 0 is the vacuum for
m2 > 0, but for m2 < 0, the minima of the potential are
described by φφφ2 = v2 for v =

√
−m2/λ.

Choose the vacuum φφφ = (0, 0, ..., 0, v)T and perturb
to φφφ = (π1(x), ..., πN−1(x), v + σ(x))T . The Lagrangian
becomes

L =
1

2
∂µπππ · ∂µπππ +

1

2
∂µσ∂

µσ − V (πππ, σ),

where

V (πππ, σ) =
1

2
m2
σσ

2 + λv(σ2 + πππ2)σ +
λ

4
(σ2 + πππ2)2.

The σ field acquires a mass-squared m2
σ = 2λv2, but all

the πi fields are massless.

This makes sense since the potential is like the bottom of a
wine-bottle; radial excitations climb the walls and have high
energy cost (manifested as mass), but angular excitations
have no energy cost.

Note that the final Lagrangian has a hidden O(N − 1) from
transformation of the πππ fields, but the O(N) symmetry has
been broken.

3.2 Classical form of Goldstone’s Theorem

The examples above can be generalised dramatically to
Goldstone’s Theorem.

Definition: A transformation φ(x) 7→ gφ(x) of fields
is a symmetry of the Lagrangian if V (gφ) = V (φ). The set
of all symmetries is the symmetry group of the Lagrangian.

Definition: Let Vmin be the minimum value of V (φ).
The manifold Φ0 = {φ0 : V (φ0) = Vmin} is called the
vacuum manifold.

Definition: Suppose we fix a vacuum φ0. The in-
variant subgroup (or stability group) of the vacuum φ0 is
the subgroup H = {h ∈ G : hφ0 = φ0} ≤ G.

In general, we assume that H is normal in G, H E G, and
that G acts transitively on Φ0.

Theorem: The stability groups of all vacua φ0 ∈ Φ0

are isomorphic.

Proof: Let φ′0 = gφ0 (assumes transitivity!!), and suppose
H ′ is the stability group of φ′0, H is the stability group of
φ0. It’s intuitively clear that H ′ ∼= gHg−1, since h′φ′0 = φ′0
and ghg−1φ′0 = ghφ0 = gφ0 = φ′0. Since H is normal,
gHg−1 ∼= H and we’re done.

Theorem: For any stability group H, we have Φ0
∼= G/H.

Proof: Fix a vacuum φ0. Let φ′0 be any other vac-
uum. Suppose φ′0 = g1φ0 = g2φ0. Then g−12 g1 ∈ H, so
g2 and g1 are in the same coset. So going from φ0 to
any other point is specified by a particular coset, hence
Φ0
∼= G/H.

10
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Goldstone’s Theorem: Under spontaneous symmetry
breaking of a continuous symmetry G of the Lagrangian
to a subgroup H, there are at least dim(G) − dim(H)
massless modes.

Proof: Since the symmetry is continuous, write it as
gφ = φ+ δφ, where δφ = iαataφ. Here, αa are infinitesimal
parameters and ita generate the Lie algebra of G.

Since g is a symmetry, we have

V (φ+ δφ)− V (φ) = iαa(taφ)r
∂V

∂φr
= 0. (∗)

Let φ0 be the broken vacuum. Expanding V around φ0,

V (φ)− V (φ0) =
1

2
(φ− φ0)r

∂2V

∂φr∂φs

∣∣∣∣
φ=φ0

(φ− φ0)s + · · · .

There is no first derivative term, since φ0 is a minimum of
V . The quadratic term is the mass term, as we saw in the
examples. Write

M2
rs =

∂2V

∂φr∂φs

∣∣∣∣
φ=φ0

to denote the mass-squared matrix. Go back to (∗) and
differentiate wrt φs, and evaluate at φ = φ0:

iαa(taφ)r
∂2V

∂φr∂φs

∣∣∣∣
φ=φ0

= iαa(taφ)rM2
rs = 0.

Note there is no other term in the product rule expansion,
since ∂V/∂φr = 0 at φ = φ0. Since this holds for all αa,
this reduces toM2

sr(t
aφ)r = 0.

If the symmetry is unbroken, then gφ0 = φ0 for all
choices of vacuum, implying taφ ≡ 0 for all a. Else, there
exists g ∈ G such that gφ0 6= φ0, so that taφ0 6= 0 for some
a values. Then taφ is an eigenvector ofM2 with evalue 0.

Let {it̃i, iθã} be the basis of the Lie algebra, where
t̃iφ preserve the symmetry via t̃iφ0 = 0, and θãφ are
eigenvectors ofM2 with zero eigenvalue. WLOG, we can
choose the θã to be orthogonal to t̃i wrt the Killing form,
i.e.

Tr(t̃iθã) = 0.

Then it̃i generate the Lie algebra of the stability group
H, and hence there are dim(H) of them. There are
dim(G) generators in total, so it follows there are at least
dim(G)− dim(H) massless modes, as required.

If M2 is N × N , we should generally expect there to
be N − (dim(G) − dim(H)) massive modes, but it is
possible some of these end up massless anomalously.

Definition: The massless modes coming from Gold-
stone’s Theorem are called Goldstone bosons.

3.3 Many examples

Example 1: Let M be an N ×N matrix, and consider:

L = Tr(∂µM†∂µM)− 1

2
λTr(M†MM†M)− kTr(M†M),

for λ > 0. A general symmetry looks like M 7→ AMB−1,
and it’s clear that A,B ∈ U(N) for this to stand a chance
of being a symmetry. Is the symmetry group U(N)×U(N)?

No. Consider the homomorphism φ : U(N) × U(N) → G
where G is the symmetry group of L. Assuming this is
surjective, the first isomorphism theorem gives

G ∼=
U(N)× U(N)

Ker(φ)
.

The kernel of φ is {(A,B) : φ(A,B) = id}. Explicitly,
(A,B) is in the kernel iff AMB† = M for all M .

Choose M = I. Then A = B. So AMA† = M ⇒
[A,M ] = 0 for all M , and hence A ∝ λI by Schur’s
Lemma. But A ∈ U(N), so λ must be a phase. Hence
Ker(φ) = {(eiθI, eiθI)} ∼= U(1). Thus

G ∼=
U(N)× U(N)

U(1)
.

For k < 0, this theory undergoes SSB. Completing
the square, we find

V (φ) = −1

2
λtr

((
M†M +

k

λ
I

)2
)

+
1

2

k2N

λ
.

We want the trace’s argument to be zero, since
M†M + k

λI is a Hermitian matrix so has real evalues, so(
M†M + k

λI
)2

has non-negative evalues. So the vacuum
manifold is M†M = −(k/λ)I = v2I, where v =

√
−k/λ.

This can be rewritten as Φ0 = {vM : M ∈ U(N)|}.

To find the invariant subgroup H, we can pick any
φ0 ∈ Φ0. Select vI, and consider transformations
vI 7→ AvIB−1. For vI ∈ H, we need AvIB−1 = vI, i.e.
A = B. So

H = {(A,B) ∈ (U(N)× U(N))/U(1) : A = B} ∼=
U(N)

U(1)
.

Goldstone’s Theorem then implies there are
dim(G) − dim(H) = 2N2 − 1 − N2 + 1 = N2 Gold-
stone bosons.

Example 2: Consider the same Lagrangian with the
additional term

L′ = h(det(M) + det(M†).

For (A,B) to give a symmetry, we now need det(M) =
det(A)
det(B) det(M) for all M , i.e. det(A) = det(B). Write
A = eiθA′ and B = eiφB′, where A′, B′ ∈ SU(N) (this
is possible since |det(U)| = 1 for U ∈ U(N)).

11
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The determinant condition then gives eiNθ = eiNφ,
which implies θ = φ + 2πik/N . So our symme-
try transformations are specified by (A′, B′, θ, k) ∈
SU(N)×SU(N)×U(1)×ZN . Is this the symmetry group?

Let φ : SU(N) × SU(N) × U(1) × ZN → G. The
kernel is given by (A,B, θ, k) such that

eiθA′Me−iθB′
†
e2πik/N = M, for all M.

Clearly this holds for all θ. We can also absorb e2πik/N

into A′ to just get another element of SU(N). So can
immediately quotient out U(1)× ZN .

Left with A′MB′
†

= M . Choosing M = I gives
A′ = B′. Then [A′,M ] = 0 so by Schur’s Lemma
A′ = e2πik/NI, since A′ ∈ SU(N). Hence the kernel is
{(e2πik/N , e2πik/N )} ∼= ZN . Hence the symmetry group is

G =
SU(N)× SU(N)

ZN
.

The vacuum manifold remains M†M = v2I, so choose
vacuum vI WLOG. Then the invariant subgroup is
(A,B) ∈ G such that

AvIB−1 = vI ⇒ A = B.

Hence the invariant subgroup is H = SU(N)/ZN . So
there are dim(G)− dim(H) = 2N2 − 2−N2 + 1 = N2 − 1
Goldstone bosons.

Example 3: Consider a theory of five scalars φa,
a = 1, ..., 5 expressed as a symmetric traceless 3 × 3
matrix

Φ =

5∑
a=1

φata,

where ta are a basis of symmetric traceless matrices obey-
ing Tr(tatb) = δab. The theory has Lagrangian

L =
1

2
Tr (∂µΦ∂µΦ)−g

(
1

4
Tr(Φ4) +

1

3
bTr(Φ3) +

1

2
cTr(Φ2)

)
,

where g > 0. It’s trivial to see this has an SO(3) symmetry
Φ 7→ AΦA−1, A ∈ SO(3).

Let M0 be the vacuum manifold. If Φ0,Φ
′
0 ∈ M0,

then Φ′0 = AΦ0A
T for some A ∈ SO(3), assuming tran-

sitivity. So Φ0 and Φ′0 are similar so have the same evalues.

Also Tr(Φ) = 0, all evalues of Φ sum to zero. Hence all
elements of vacuum manifold have same evalues, which
sum to zero. Let the eigenvalues be λ1, λ2 and λ3, and
choose to work with vacuum

Φ0 = diag{λ1, λ2, λ3}.

There are three cases for the invariant symmetry group:

1. All evalues are equal. Then λ1 = λ2 = λ3 = 0. So for
all A ∈ SO(3), we have AΦ0A

−1 = Φ0, and it follows
that H = SO(3). There is no SSB.

2. Two evalues are equal. We have Φ0 = diag{λ′, λ, λ}.
It’s straightforward to see that

A =

(
1 0

0 Ã

)
∈ H

for Ã ∈ SO(2). So H ∼= SO(2).

3. All evalues are distinct. Then it can be shown that the
only A ∈ SO(3) with AΦ0A

−1 = Φ0 is A = I. Hence
H = {e}.

To get further constraints on λi, we need to calculate
M0 directly using a Lagrange multiplier µ to ensure
Tr(Φ) = 0. We find

0 = Φ3 + bΦ2 + cΦ− µI

is the vacuum manifold. Taking the trace, we see

3µ = Tr(Φ3) + bTr(Φ2) + cTr(Φ).

For example, for H ∼= SO(2), we set Φ = Φ0 =
diag(λ, λ,−2λ). Inserting this into both equations above,
we can eliminate µ to derive 0 = λ(3λ2 − bλ + c). So we
get λ = 0 (i.e. no SSB) or 3λ2 − bλ+ c = 0.

Using the discriminant, this has solutions iff b2 ≥ 12c. If
this is fulfilled, it’s possible to get H ∼= SO(2).

Example 4: Consider b = 0 in Example 3. We use
the identity

Tr(M4) =
1

2
(Tr(M2))2

for traceless matrices to rewrite the Lagrangian as

L =
1

2
Tr(∂µΦ∂µΦ)− 1

8
(Tr(Φ2))2 − 1

2
gcTr(Φ2).

Note Tr(Φ2) = Tr(φaφbtatb) = φaφbδab = φφφ · φφφ, so we can
again rewrite the Lagrangian as:

L =
1

2
∂µφφφ · ∂µφφφ−

1

8
g(φφφ ·φφφ)2 − 1

2
cφφφ ·φφφ.

It’s then evident that the theory has the larger symmetry
group SO(5).

Minimising the potential, we find the vacuum mani-
fold is a subset of 0 = 1

2φφφ|φφφ|
2 + cφφφ. If c > 0, get

φφφ = 0, but if c < 0 we get SSB, with vacuum manifold
|φφφ|2 = −2c. So clearly M0 is a 4-sphere. It’s possible to
show that SO(5)/SO(4) ∼= S4, so H = SO(4). There are
dim(SO(5))−dim(SO(4)) = 10−6 = 4 Goldstone bosons.

12
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3.4 Quantum form of Goldstone’s Theorem

Theorem: Let G be the Lie group of symmetries of a La-
grangian L, and suppose it is spontaneously broken to
the Lie group H by the non-zero VEV 〈0|φ(x)|0〉 = φ0 6=
0. That is, 〈0|hφ(x)|0〉 = φ0 6= 0 for all h ∈ H, but
〈0|gφ(x)|0〉 = 0 for all g ∈ G\H. Assume also that:

1. we are working with a Lorentz covariant theory;

2. all states in our Hilbert space have non-negative
norm.

Then there are at least dim(G) − dim(H) Goldstone
bosons.

Proof: The Lie algebra of G is generated by ita,
a = 1, ...,dim(G), and the Lie algebra of H is generated
by it̃i, i = 1, ...,dim(H), where ta, t̃i are Hermitian.

Since each generator gives a symmetry, by Noether’s
Theorem we have conserved currents and charges:

jaµ(x) = i
∂L

∂(∂µφ)
taφ,

Qa =

∫
R3

d3x ja0(x) = i

∫
R3

d3x π(x)taφ(x).

Using the relation [φ(x, t), π(x′, t)] = iδ(x − x′), we can
show that [Qa, φ(0)] = taφ(0) (possible to use equal time
commutation relations since Qa is conserved). We relate
these to the currents via

〈0|[Qa, φ(0)]|0〉 =

∫
d3x Ca0(x),

where Caµ = 〈0|[jaµ(x), φ(0)]|0〉.

We now try to compute Caµ. Insert a complete set
of states to get

Caµ =
∑
n

(〈0|jaµ(x)|n〉 〈n|φ(0)|0〉 − 〈0|φ(0)|n〉 〈n|jaµ(x)|0〉) .

The sum over n here includes integrals over d3p, etc, de-
pending on the form of |n〉. Define the spectral density
functions by

iρaµ(k) = (2π)3
∑
n

δ4(k − pn) 〈0|jaµ(0)|n〉 〈n|φ(0)|0〉 ,

iρ̃aµ(k) = (2π)3
∑
n

δ4(k − pn) 〈0|φ(0)|n〉 〈n|jaµ(0)|0〉 .

Recalling jaµ(x) = eiP ·xjaµ(0)e−iP ·x (since momentum
generates translations in quantum theory), so that

〈0|jaµ(x)|n〉 = 〈0|eiP ·xjaµ(0)e−iP ·x|n〉 = 〈0|jaµ(x)|n〉 e−ipn·x,

where pn is the momentum of state |n〉 (assuming |0〉 has
zero momentum). Thus we can then write Caµ as

Caµ = i

∫
d4k

(2π)3
(
ρaµ(k)e−ik·x − ρ̃aµ(k)eik·x

)
.

The spectral densities only depend on k, so if they are
to be Lorentz covariant, they must be proportional to kµ.
Also, physical states have k0 > 0 (i.e. non-negative en-
ergy), hence we have:

ρaµ(k) = kµΘ(k0)ρa(k2), ρ̃aµ(k) = kµΘ(k0)ρ̃a(k2).

Thus

Caµ = −∂µ
∫

d4k

(2π)3
Θ(k0)

(
ρa(k2)e−ik·x + ρ̃a(k2)eik·x

)
.

Recall the propagator in QFT had the integral expression:

D(x− y;σ) = 〈0|φ(x)φ(y)|0〉 =

∫
d3p

(2π)3p0
e−ip·(x−y)

∣∣∣∣
p0=
√
|p|2+σ

=

∫
d4p

(2π)3
Θ(p0)δ(p2 − σ)e−ip·(x−y),

where σ is the mass-squared of the φ field. Writing

ρ(k2) =

∫
dσρ(σ)δ(k2 − σ),

we can reduce Caµ to a propagator:

Caµ = −∂µ
∫
dσ
(
ρa(σ)D(x;σ) + ρ̃a(σ)D(−x;σ)

)
.

For all spacelike x, i.e. x2 < 0, we have
D(x;σ) = D(−x;σ). But when x2 < 0, Caµ is a
commutator of spacelike-separated operators, and hence
must vanish. So ρa(σ) = −ρ̃a(σ) holds when x is space-
like.

But neither ρa or ρ̃a depend on x. So this relation
holds everywhere. Hence

Caµ = −∂µ
∫
dσ ρa(σ)i∆(x;σ),

where i∆(x;σ) = D(x;σ)−D(−x;σ) is the Feynman prop-
agator. Conservation of the current implies ∂µjaµ = 0, so
∂µC

aµ = 0. Thus:

−∂2
∫
dσ ρa(σ)i∆(x;σ) = −

∫
dσ ρa(σ)i∂2∆(x;σ) = 0.

Recall the Feynman propagator satisfies Klein-Gordon, so
(∂2 + σ)∆ = 0, and we can rewrite the condition as∫

dσ σρa(σ)i∆(x;σ) = 0.

This must hold for all x, including timelike x where
∆(x;σ) 6= 0. Hence σρa(σ) = 0 (assuming ρ(σ) > 0, which
is true since the original spectral densities were defined in
terms of norms of states). There are 2 cases:

1. ρa(σ) = 0. Then Caµ = 0, and so 〈0|taφ(0)0〉 =
〈0|[Qa, φ(0)]|0〉 = 0. So ta is an unbroken generator.

2. ρa(σ) = Naδ(σ), for Na 6= 0. Then Caµ =
−iNa∂µ∆(x;σ), and so

〈0|[Qa, φ(0)]|0〉 = −iNa

∫
d3x ∂0∆(x; 0).

13
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Need to evaluate the RHS. Recall

i∆(x; 0) = D(x;σ)−D(−x;σ) =

∫
d4k

(2π)3
δ(k2−σ)ε(k0)e−ik·x,

where ε(k0) = +1 for k0 > 0 and −1 for k0 < 0. Integrating
over d3x, we can convert e−ik·x into a delta function. We
also introduce a limit as a technical trick:∫

d3x i∆(x; 0) = lim
σ→0

∫
dk0δ((k0)2 − σ)ε(k0)e−ik

0x0

= lim
σ→0

∫
dk0

(
δ(k0 −

√
σ)

|2
√
σ|

+
δ(k0 +

√
σ)

|2
√
σ|

)
e−ik

0x0

= − lim
σ→0

1√
σ

sin(x0
√
σ) = −x0.

Therefore, we have

〈0|[Qa, φ(0)]|0〉 = −iNa

∫
d3x ∂0∆(x; 0) = iNa 6= 0.

So ta is a broken generator.

We still need to count the Goldstone bosons. We’ll
do so by going back to the spectral density functions ρaµ,
ρ̃aµ. Label the states with non-zero contribution to φ0 by
B(p), and let (permitted by Lorentz covariance):

〈0|jaµ(0)|B(p)〉 = iF aBp
µ, 〈B(p)|φ(0)|0〉 = ZB .

Note that |B(p)〉 is spinless, since φ(0) |0〉 and ZB are
rotationally invariant. Note also that |B(p)〉 is massless,
since in the case where we have a φ0 contribution,
we must have ρ(σ) = Naδ(σ), which only contributes
when the φ field mass is σ = 0 (this carries across to
ρaµ(k) = kµΘ(k0)ρa(k2) = kµΘ(k0)Naδ(k2), showing we
only get a contribution to Caµ, and hence to φ0, when
k2 = 0, i.e. the field is massless).

We need to count the |B(p)〉, which we are now cer-
tain are the Goldstone bosons. Recall that

iρaµ(k) = ikµΘ(k0)Naδ(k2) =

∫
d3p
2|p|

δ4(k − p)ikµNa,

and

iρaµ(k) =
∑
B

∫
d3p
2|p|

δ4(k − p) 〈0|jaµ(0)|B(p)〉 〈B(p)|φ(0)|0〉

=

∫
d3p
2|p|

δ4(k − p)ikµ
∑
B

F aBZ
B ,

by definitions. These are equal for arbitrary k, and so

Na =
∑
B

F aBZ
B .

The unbroken generators span H, so there are dim(H)
unbroken generators, and n = dim(G) − dim(H) broken
generators, i.e. n components of Na. So F aB has rank
n. Since row rank is the same as column rank, and col-
umn rank is the dimension of the space spanned by the
columns, we must have at least n B labels. So there are
at least n Goldstone bosons.

3.5 The Abelian Higgs mechanism

Gauge theories can violate the conditions of Goldstone’s
Theorem. For example, they can contain states with
negative norm (ghosts) or can have non-Lorentz invariant
gauge conditions.

Example: Consider scalar electrodynamics, described by
Lagrangian

L = −1

4
FµνF

µν + (Dµφ)∗(Dµφ)− V (φ∗φ),

where Fµν = ∂µAν − ∂νAµ and Dµ = ∂µ + iqAµ. This
theory has a U(1) gauge symmetry, given by

φ(x) 7→ eiα(x)φ(x), Aµ 7→ Aµ −
1

q
∂µα(x).

Take V (φ∗φ) = µ2|φ|2 + λ|φ|4, with λ > 0, and consider
how µ2 changes.

• If µ2 > 0, then φ = 0 is the unique vacuum and µ2|φ|2
is the usual mass term for the complex scalar φ. The
photon is massless (no quadratic Aµ term) and φ has
mass-squared µ2.

• If µ2 < 0, then the vacuum manifold is |φ|2 =
−µ2/2λ = v2/2, for v2 = −µ2/λ. WLOG, set φ =
v/
√

2, and expand around the minimum:

φ =
1√
2
eiθ(x)/v(v + η(x)) =

1√
2

(v + η(x) + iθ(x)).

Here, η(x) is real and θ(x) is real. The Lagrangian
becomes:

L =
1

2
(∂µη∂

µη − 2v2λη2) +
1

2
(∂µθ)(∂

µθ)− 1

4
FµνF

µν

+qvAµ∂
µθ +

1

2
q2v2AµA

µ + Lint,

where Lint denotes interaction terms. We see η has
mass

√
2v2λ, Aµ has mass qv (i.e. the photon has

become massive!) and θ is massless.

Now note we can factorise the Lagrangian as:

L =
1

2
(∂µη∂

µη − 2v2λη2)− 1

4
FµνF

µν

+
1

2
q2v2

(
Aµ +

1

vq
∂µθ

)(
Aµ +

1

vq
∂µθ

)
+ Lint,

Since this is a gauge theory, we’re free to first pick a
specific gauge. Choose to transform to unitary gauge,
α = −θ/v. Then

φ 7→ φ′ = e−iθ/vφ =
1√
2

(v+η), Aµ 7→ A′µ = Aµ+
1

vq
∂µθ.

This gives the Lagrangian

L =
1

2

(
∂µη∂

µη − 2λv2η2
)
−1

4
FµνF

µν+
1

2
q2v2A′µA

′µ+Lint.

The Goldstone boson, θ, is no longer present!
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Definition: If choosing a gauge eliminates a Goldstone
boson, we say the gauge field eats the Goldstone boson.

The above SSB process is called the Abelian Higgs
mechanism. It gives a photon of mass mγ = qv. It clearly
doesn’t happen in real life.

3.6 Review of non-Abelian gauge theory

In the Standard Model, we have a similar SSB process
to the above, but for a non-Abelian gauge theory. Hence,
let’s recap non-Abelian gauge theories.

Definition: In a gauge theory with gauge group G,
fields ψi(x) transform as ψi(x) 7→ Uij(x)ψj(x), where
Uij(x) is in some representation of G.

If ita are the generators the Lie algebra of G, this trans-
formation law becomes ψi(x) 7→ exp(itaθa(x))ijψj(x).
The conjugate field transforms as ψi(x) 7→ ψj(x)(U†)ji =

ψj exp(−itaθa(x))ji.

Recall the generators ita obey [ta, tb] = ifabctc, where fabc

are called the structure constants of the Lie algebra. The
generators may also be chosen to obey the orthogonality
condition

Tr(tatb) = T (R)δab,

where T (R) is a constant dependent on the represen-
tation, called the Dynkin index. For the fundamental
representation, T (R) = 1

2 .

In order for a theory to be invariant under gauge
transformations, we need to promote the derivatives to
covariant derivatives.

Definition: The covariant derivative of a gauge the-
ory is

(Dµ)ij = ∂µδij + ig(taAaµ)ij ,

where Aaµ is a set of gauge fields, which transform under
gauge transformations as

(taAaµ)ij 7→ UtaAaµU
−1 +

i

g
(∂µU)U−1,

or infinitesimally as

(taAaµ)ij 7→ (taAaµ)ij −
1

g
∂µθ

a − fabcθbAcµ.

The gauge fields require a kinetic term to be included in
the Lagrangian. Define the field-strength tensor by

igtaF aµν = [Dµ, Dν ] ⇒ F aµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν .

The required kinetic term is then

Lgauge = −1

4
F aµνF

aµν = − 1

4T (R)
Tr(FµνFµν).

Showing gauge invariance: This is simple, as long as
we use finite gauge transformations, and the results:

Theorem: Under a gauge transformation, Dµφ 7→ UDµφ.

Proof: We have Dµφ = ∂µφ+ igAµφ

7→ ∂µ(Uφ)+ig

(
UAµU

−1 +
i

g
∂µ(U)U−1

)
Uφ = UDµφ.

Theorem: F aµνF aµν is gauge invariant.

Proof: Note igFµνφ = [Dµ, Dν ]φ. Under a gauge
transformation then, we have

igFµνUφ = U [Dµ, Dν ]φ,

so that Fµν 7→ UFµνU
−1. Thus F aµνF aµν ∝ Tr(FµνFµν) is

gauge invariant (using cyclicity of the trace).

3.7 The non-Abelian Higgs mechanism

We are now ready to discuss SSB of non-Abelian gauge
theories. In general, we work with a Lagrangian of the form

L = −1

4
F aµνF

aµν +
1

2
(Dµφ)†(Dµφ)− V (φ),

with gauge group G, where φ is a real multiplet.

Theorem: Assuming:

(i) the generators ta of the Lie algebra of G obey
φ̃†(taφ) = (taφ̃)†φ, for all φ̃, φ;

(ii) V ′(φ)†taφ = 0;

we have that this Lagrangian is gauge-invariant.

Proof: The kinetic term is gauge invariant by the above.

The given condition is φ̃†taφ = φ̃†ta†φ for all φ̃, φ,
so ta = ta†. This implies the finite transformation
U = exp(itaθa(x)) is unitary. So under a gauge trans-
formation (Dµφ)†Dµφ 7→ (UDµφ)†UDµφ = (Dµφ)†Dµφ,
since U is unitary.

For the potential, it’s actually best to work infinitesimally.
Note V (φ) 7→ V (φ + itaθaφ) = V (φ) + iV ′(φ)†(taθaφ) =
V (φ), by assumption (ii).

Let’s consider SSB of this Lagrangian. Recall that
we can get the gauge bosons to eat some of the Gold-
stone bosons by a clever gauge choice. As before, use:

Definition: Let φ0 6= 0 be the vacuum. Then unitary
gauge is defined by (taφ0)†φ = 0.
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What is the point of this gauge choice? Note t̃iφ0 = 0
automatically holds for any unbroken generators, so this
condition says nothing about those.

For broken generators θã, we recall some differential
geometry. The vectors taφ0 span the tangent space
to φ0, so θãφ0 span a subspace of the tangent space,
corresponding to directions associated with the broken
generators.

Therefore, the gauge choice tells us that perturba-
tions to φ have no component in the broken generators’
direction (compare with the Abelian Higgs, when the
gauge choice causes θ(x) to vanish).

This is formalised in the following Theorem:

Theorem: Let φ0 6= 0 minimise V (φ), and let φ = φ0+f be
a perturbation to φ0. Then in unitary gauge, (taφ0)†f = 0.

Proof: We automatically have (taφ0)†(φ0 + f) = 0.
So just need (taφ0)†φ0 = φ†0t

aφ0 = 0.

Recall that φ is a real multiplet. So under any gauge
transformation φ 7→ φ′ = φ + iαa(x)taφ, the field must
remain real. So φ′ − φ is real, so iαa(x)ta is real. Since
we work the real Lie algebra, αa(x) ∈ R, and ita is real.
Hence (ita)∗ = ita, which implies ta∗ = −ta.

The hermiticity condition ta† = ta implies taT = −ta,
i.e. the generators are antisymmetric. So write
φ0t

aφ0 = (φ0)i(φ0)jt
a
ij = 0, and we’re done.

Theorem: Suppose V (φ) is minimised at φ = φ0 6= 0.
In unitary gauge, SSB of the above Lagrangian via the
expansion φ = φ0 + f gives a mass to the gauge bosons
corresponding to the broken generators, and gives no
Goldstone bosons (they are all eaten).

Proof: As usual, expand φ = φ0 + f . In unitary
gauge, we have (taφ0)†f = 0 from above. Since this
condition is meaningless for unbroken generators, split
everything up into broken/unbroken.

Split ta = (t̃i, θã), where t̃i are unbroken and θã are
broken. Also split the gauge fields:

Aµ = A′µ
i
t̃i + Âãµθ

ã,

so that A′µ are the ‘unbroken gauge fields’ and Âµ are the
‘broken gauge fields’. The covariant derivative splits as:

Dµφ = ∂µf + igAaµt
a(φ0 + f) = D′µf + igÂãµθ

ã(φ0 + f),

where D′µ = ∂µ + igA′µ
i
t̃i (note t̃iφ0 = 0 by definition).

Hence (Dµφ)†Dµφ =(
(D′µf)† − ig(Âãµ)†(φ0 + f)†θã

†)(
D′

µ
f + igÂb̃µθb̃(φ0 + f)

)
.

Simplifying, and keeping only the quadratic terms, we have

(D′µf)†D′
µ
f + ig(D′µf)†Âµφ0 − igφ†0Â†µD′

µ
f + g2φ†0Â

†
µÂ

µφ0.

The middle two terms combine to zero, which we show as
follows:

(D′µf)†Âµφ0 − φ†0Â†µD′
µ
f

= (∂µf
† − igf†A′µ)Âµφ0 − φ†0Âµ(∂µf + igAµf)

= ∂µf
†Âµφ0 − φ†0Âµ∂µf.

Hmm we still need something to save us. But we
haven’t used the gauge condition! Recall φ†0θ

ãf = 0, so
φ†0Âµf = 0, by multiplying through by Âãµ(x). Taking the
derivative, we have φ†0∂µÂ

µf = −φ†0Âµ∂µf .

But recall that the x dependence is entirely in the
coefficients of the generators, i.e. Âãµ(x). So we’ve shown
that

φ†0Â
µ∂µf = −(∂µÂ

ãµ)φ†0θ
ãf = 0,

by the gauge condition. Similarly, the other term is zero.
Thus we’re left with:

(D′µf)†D′
µ
f + g2φ†0Â

†
µÂ

µφ0.

We also expand V (φ) to get V (φ0) (a constant, which we
forget about) and 1

2f
†Mf , whereM is the mass matrix.

Hence the kinetic part of the Lagrangian is:

Lkin = −1

4
F aµνF

aµν+
1

2
(D′µf)†D′

µ
f+

1

2
g2φ†0ÂµÂ

µφ0−
1

2
f†Mf.

In principle, components of f could acquire mass, and
components of Âµ could acquire mass. It depends on the
matricesM and M̂ãb̃ = g2(θãφ0)†θb̃φ0.

• Âµ MASSES: All of the broken gauge fields acquire
a mass from eating the Goldstone bosons. This is
because the matrix g2(θãφ0)†θb̃φ0 has no zero eigen-
values; if it did, say vb̃, they would have to obey
vb̃θb̃φ0 = 0. But then vb̃θb̃ would be an unbroken gen-
erator, contradiction.

• f MASSES: Recall that near any φ, we can expand:

V (φ+ δφ)− V (φ) = iαa(taφ)r
∂V

∂φr
+O(α2).

Differentiate to obtain:

∂2V

∂φs∂φr
(taφ)r +

∂V

∂φr
(ta)rs.

Evaluating at φ = φ0 gives Msr(t
aφ0)r = 0. This

shows that each broken generator, i.e. θãφ0 6= 0, gives
a zero eigenvector ofMsr. But the unitary gauge con-
dition implies that f is orthogonal to such evectors,
and thus there are no necessary Goldstone bosons in
this case.
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The final technique of the proof above also allows us to
prove the following useful result:

Theorem: The mass eigenstates form multiplets of
the gauge group H (i.e. they are eigenvectors of the
generators of the Lie algebra of H).

Proof: Recall we have:

V (φ+ δφ)− V (φ) = iαa(taφ)r
∂V

∂φr
+O(α2)

and so differentiating, we get:

∂2V

∂φs∂φr
(taφ)r +

∂V

∂φr
(ta)rs.

Differentiating a second time and evaluating at φ = φ0, we
obtain:

∂3V

∂φt∂φs∂φr

∣∣∣∣
φ=φ0

(taφ0)r +Msr(t
a)rt +Mtr(t

a)rs = 0.

For unbroken generators, we have t̃aφ0 = 0, so the first
term vanishes. We’re left with:

Mt̃a + (t̃a)TM = 0.

(Notice MT = M by definition). Recall that t̃a were anti-
symmetric and {it̃a} generates H. Therefore:

[M, ita] = 0.

It follows that the mass matrix and the generators of H are
simultaneously diagonalisable; thus the result follows.

3.8 Examples of the Higgs mechanism

Example 1: Consider an SU(2) gauge theory coupled to
a complex 2-component scalar field φ via the Lagrangian:

L = −1

4
Fµν · Fµν + (Dµφ)†Dµφ−

1

2
λ(φ†φ− 1

2
v2)2.

Here, the generators of SU(2) are iτττ = 1
2 iσσσ, where σσσ are

the Pauli matrices. The structure constants are quickly
computed to be [τa, τ b] = iεabcτ c ⇒ fabc = εabc.

Notice that in this example we’ve used vector nota-
tion. We can discern its meaning as follows; recall
that

F aµν = ∂µA
a
ν − ∂νAaµ − gεabcAbµAcν ,

so in vector notation, we have

Fµν = ∂µAν − ∂νAµ − gAµ × Aν .

VACUUM AND UNITARY GAUGE: It’s clear that for v2 > 0,
we get spontaneous symmetry breaking, with the vacuum
manifold φ†φ = 1

2v
2. As usual, we can WLOG pick a vac-

uum, say φ0 = 1√
2

(
0
v

)
, and as usual it will be desirable to

impose unitary gauge.

Let’s see another example of how to construct it explicitly.
In general, a perturbation to φ0 is of the form:

φ =
1√
2

(
θ1 + iθ2

v + h+ iθ3

)
=

1√
2

(
0

v + h

)
+

1√
2

1

(v + h)

(
(v + h)(θ1 + iθ2)

(v + h)iθ3

)
=

1√
2

(
0

v + h

)
+

1√
2

1

(v + h)

(
−iθ3 θ1 + iθ2

−θ1 + iθ2 iθ3

)(
0

v + h

)
.

where θ1, θ2, θ3 and h are real fields. Notice that(
−iθ3 θ1 + iθ2

−θ1 + iθ2 iθ3

)
= 2iθ2τ1 + 2iθ1τ2 − 2iθ3τ3.

and hence we may write

φ =
1√
2

(
θ1 + iθ2

v + h+ iθ3

)
=

1√
2

exp

(
1

v + h
(2iθ2τ1 + 2iθ1τ2 − 2iθ3τ3)

)(
0

v + h

)
.

Since the exponential is an element of SU(2), we can
safely gauge transform φ such that the perturbation is
(WLOG) of the form:

φ =
1√
2

(
0

v + h

)
,

which is unitary gauge, as required.

UNBROKEN SYMMETRY: Notice that the vacuum man-
ifold can be written a2 + b2 + c2 + d2 = 1

2v
2, where

φ = (a + ib, c + id)T , and hence it follows the vacuum
manifold is of dimension 3. Now by Goldstone’s Theorem,
we have dim(H) = dim(SU(2))− dim(Φ0) = 3− 3 = 0, so
the symmetry is completely destroyed.

PARTICLE MASSES: Expanding φ near the vacuum
as above, and keeping only terms that are quadratic in h
or quadratic in Aµ (and ignoring any couplings between
fields), we see that h acquires a mass

√
λv2 and the Aaµ

fields all acquire a mass 1
2gv.

Example 2: Now consider an SU(2) gauge theory

L = −1

4
Fµν · Fµν +

1

2
(Dµφφφ) · (Dµφφφ)− 1

8
λ(φφφ2 − v2)2.

where φφφ is a real triplet (i.e. transforms in the adjoint rep,
so that the generators are (ta)jk = −iεajk). Notice that the
covariant derivative of this theory is:

Dµφφφ = ∂µφφφ− eAµ ×φφφ.

When v2 > 0, the vacuum manifold is φφφ2 = v2, this
is clearly the 2-sphere, S2. Now use the isomorphism
S2 ∼= SU(2)/U(1) to conclude that the unbroken symmetry
group is U(1).
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WLOG choose the vacuum φ0 = (0, 0, v)T and choose
a perturbation φ = (0, 0, v + h)T by moving to unitary
gauge (here, we can remove the two degrees of free-
dom in the first two components because there are
dim(SU(2))− dim(U(1)) = 3− 1 = 2 broken generators).

Inserting into the Lagrangian, we find that the mass
of the h field becomes

√
λv2, and the masses of A1

µ, A
2
µ

becomes ev. However, A3
µ remains massless (it was

protected by the U(1) invariant subgroup).

We also see there are h4, h3 self-interactions, and
gauge boson-h interactions via (Aaµ)2h and (Aaµ)2h2.

Example 3: Finally, consider an SU(2) gauge theory
coupled to a complex triplet field φφφ with Lagrangian:

L = −1

4
Fµν · Fµν + (Dµφφφ) · (Dµφφφ) +

1

2
g2(φφφ∗ ×φφφ)2.

Notice that if we write φφφ = θθθ + iχχχ, then the potential term
becomes:

V (φφφ) = −1

2
g2(φφφ∗ ×φφφ)2 = 2g2(θθθ ×χχχ)2 ≥ 0.

So we can minimise the potential by choosing
φφφ0 = ve3/

√
2 to be our ground state.

To find the invariant subgroup, recall that we’re in the
adjoint rep, so we want to relate SU(2) to 3 × 3 matrices.
Recall SU(2) is a double cover of SO(3), so we can
immediately do this. Then it’s clear that matrices of the
form: (

A 0
0 1

)
preserve the vacuum, with A ∈ SO(2). So the unbroken
symmetry group is SO(2).

It follows that by Goldstone’s Theorem that there are
dim(SU(2)) − dim(SO(2)) = 2 massless modes; these
can be eaten by the gauge bosons by imposing unitary
gauge. Since there are two massless modes, we can
remove two degrees of freedom from the perturbation in
unitary gauge, e.g. choose the conditions:

Re(v∗φφφ · e1) = Re(v∗φφφ · e2) = 0.

In this gauge choice, perturbations are of the form
φ = 1√

2
(f1 − i v1v2 f1, f3 −

v1
v2
f3, v + g1 + ig2)T . Substituting

into the Lagrangian then gives the mass terms in the usual
way.

However... the above shows that the masses will de-
pend on |v|, which means that changing |v| will change
the theory itself. In particular, theories with different v are
inequivalent - the choice of vacuum mattered here!

This is because for this theory, the gauge transformations
do not act transitively on the vacuum manifold.

4 The electroweak theory

4.1 Gauge boson-φ coupling

Definition: The electroweak theory is an SU(2) × U(1)
gauge theory, together with a complex scalar field φ,
called the Higgs field in the fundamental representation
of SU(2). Later, we’ll also include both quarks and leptons.

The gauge boson-Higgs coupling is of the standard
non-Abelian Higgs form:

Lgauge,φ = −1

2
Tr(FWµνF

Wµν)−1

4
FBµνF

Bµν+(Dµφ)†(Dµφ)−V (φ),

where the covariant derivative is given by

Dµφ = ∂µφ+ igW a
µ τ

aφ+
1

2
ig′Bµφ.

Here, iτa = 1
2 iσ

a are the generators of SU(2), and W a
µ ,

Bµ are the gauge boson fields. The factor of 1
2 next to Bµ

means that we say the Higgs has hypercharge 1
2 . From the

covariant derivative, we can read off the transformation law
for the Higgs under SU(2)× U(1) transformations as:

φ(x) 7→ exp(iαa(x)ta(x)) exp

(
1

2
iβ(x)

)
φ(x)

The potential of the theory is

V (φ) = µ2|φ|2 + λ|φ|4,

where µ2 < 0, so that SSB occurs.

The vacuum state of φ obeys |φ|2 = −µ2/2λ = v2/2,
so WLOG choose the vacuum

φ0 =
1√
2

(
0
v

)
,

The unbroken subgroup H is U(1), since the only transfor-
mations preserving φ0 are those with α1(x) = α2(x) = 0
and α3(x) = β(x):

φ0 7→ exp

(
1

2
iβ(x)

(
1 0
0 −1

))
exp

(
1

2
iβ(x)

)
φ0

=
1√
2

(
eiβ 0
0 1

)(
0
v

)
= φ0.

As we will see, this is the familiar gauge group U(1) of
electromagnetism, mediated by the photon.

We now wish to perturb around this vacuum. Let

φ =
1√
2

(
0

v + h(x)

)
,

where h(x) is a real scalar field. We’re allowed to do this
because we’ve imposed unitary gauge.

As in the Abelian Higgs mechanism (where we used
a complex φ), this amounts to removing the U(1) phase,
and any matrix U ∈ SU(2) which would rotate our field.
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After spontaneous symmetry breaking, it turns out that
some combinations of the gauge bosons W a

µ , Bµ play an
important role.

Definition: Define the following linear combinations
of the gauge bosons:

Z0 =
1√

g2 + g′2
(gW 3 − g′B), W± =

1√
2

(W 1 ∓ iW 2),

A =
1√

g2 + g′2
(g′W 3 + gB).

These are called the Z-boson, the W±-bosons and the
photon respectively. It’s convenient also to define the
Weinberg angle θW , given by

cos(θW ) =
g√

g2 + g′2
, sin(θW ) =

g′√
g2 + g′2

.

with which we can rephrase the Z and photon definitions
as: (

Z0

A

)
=

(
cos(θW ) − sin(θW )
sin(θW ) cos(θW )

)(
W 3

B

)
.

Definition: Define the field-strength tensors:

FAµν = ∂µAν − ∂νAµ, FZµν = ∂µZ
0
ν − ∂νZ0

µ,

FW
±

µν =
1√
2

(
FW1µν − iFW2µν

)
.

Theorem: In unitary gauge, expanding φ =
φ0 + (0, h/

√
2)T , the Lagrangian becomes: Lgauge,φ =

−1

2
FW

±

µν

†
FW

±µν − 1

4
FAµνF

Aµν − 1

4
FZµνF

Zµν +
1

2
|∂h|2︸ ︷︷ ︸

kinetic terms

− igW+µW−ν
(
sin(θW )FAµν + cos(θW )FZµν

)︸ ︷︷ ︸
W boson-photon and W boson-Z boson interactions

+
1

2
g2
(
W+2W−2 − (W+µW−µ )2

)
︸ ︷︷ ︸

W boson self-interactions

+
1

4
g2(v + h)2

(
W+
µ W

−µ +
1

2
sec2(θW )Z0

µZ
0µ

)
︸ ︷︷ ︸

gauge boson masses and gauge boson-Higgs interactions

+
1

2
µ2(v + h)2 +

1

4
λ(v + h)4︸ ︷︷ ︸

Higgs mass and Higgs self-interactions

.

Proof: Expanding the covariant derivative of the Higgs, we
have: Dµφ = ∂µφ+ igWµφ+ 1

2 ig
′Bµφ

=
1√
2

(
1
2 ig(W 1

µ − iW 2
µ)(v + h)

∂µh+ 1
2 i(g

′Bµ − gW 3
µ)(v + h)

)
Therefore, (Dµφ)†(Dµφ) has expansion:

1

8
g2(v + h)2|W 1 − iW 2|2 +

1

2
|∂h|2 +

1

8
(v + h)2|g′B − gW 3|2.

Tidying, we get the gauge boson-Higgs interactions, and
the Higgs kinetic term.

Now consider expanding V (φ); this clearly gives the
Higgs self-interactions and mass term as in the final result.

Finally, we deal with the kinetic terms FWaµνF
Waµν

and FBµνFBµν . Notice that

FWaµνF
Waµν = FW1µνF

W1µν + FW2µνF
W2µν + FW3µνF

W3µν

= 2FW
±

µν

†
FW

±µν + FW3µνF
W3µν ,

so we immediately get the W± kinetic term. Now, using
the structure constants of the fundamental rep of SU(2)
given by fabc = εabc, we have

FW3µν = ∂µW
3
ν − ∂νW 3

µ − gε3bcW b
µW

c
ν

= ∂µ(cos(θW )Z0
ν + sin(θW )Aν)− ∂ν(cos(θW )Z0

µ + sin(θW )Aµ)

−g
(
W 1
µW

2
ν −W 2

µW
1
ν

)
= cos(θW )FZµν + sin(θW )FAµν + ig

(
W+
µ W

−
ν −W−µ W+

ν

)
.

Squaring this, we have

FW3µνF
W3µν = cos2(θW )FZµνF

Zµν + sin2(θW )FAµνF
Aµν

−g2
(
W+
µ W

−
ν −W−µ W+

ν

)2
+ 2 sin(θW ) cos(θW )FZµνF

Aµν+

2ig
(
W+
µ W

−
ν −W−µ W+

ν

)
cos(θW )FZµν+

2ig
(
W+
µ W

−
ν −W−µ W+

ν

)
sin(θW )FAµν .

By antisymmetry of FAµν and FZµν , the last two terms can
be simplified completely to:

4igW+
µ W

−
ν

(
cos(θW )FZµν + sin(θW )FAµν

)
.

giving the expected W boson-photon and W boson-Z
boson interactions. Simplifying the W+, W− squared term
immediately gives the W -boson self-interactions.

Finally, we also need to consider contributions from
FBµν . We have

FBµν = ∂µBν − ∂νBµ = − sin(θW )FZµν + cos(θW )FAµν .

Squaring gives: FBµνFBµν =

sin2(θW )FZµνF
Zµν+cos2(θW )FAµνF

Aµν−2 sin(θW ) cos(θW )FZµνF
Aµν .

This combines exactly with FW3µνFW3µν to give the required
Lagrangian.

4.2 Analysis of Lgauge,φ

Let’s analyse the parts of the Lagrangian above:

• MASSES: We find the photon is massless, the W bo-
son has mass mW = 1

2gv (note W complex), the Z
boson has mass mZ = 1

2gv sec(θW ) (note Z real), and
the Higgs has mass mφ =

√
3λv2 + µ2 =

√
2λv2.
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• RELATION OF Z AND W MASSES: We see that the Z
and W masses are related by the formula:

mW = mZ cos(θW ).

• INTERACTIONS: Everything interacts with everything
else, except the Z boson and Higgs do not interact
with the photon. This reflects the fact that the Z boson
and Higgs have zero electric charge.

4.3 Gauge boson-lepton coupling

Leptons are a type of fermion. Leptons are again given
mass by the Higgs mechanism, so there are two forms of
coupling we need to consider:

• Gauge boson-lepton coupling through terms like
ψi /Dψ. Call the full coupling LEW

lept.

• Higgs-lepton coupling, through a part of the La-
grangian which we’ll call Llept,φ.

Begin with coupling to the gauge bosons. The action
of the covariant derivative Dµ on a fermion is given by

Dµψ = (∂µ + igW a
µT

a + ig′Y Bµ)ψ

=

(
∂µ +

1√
2
ig
(
W+
µ T

+ +W−µ T
−)

+
igZ0

µ

cos(θW )

(
T 3 − sin2(θW )(T 3 + Y )

)
+ig sin(θW )Aµ(T 3 + Y )

)
ψ,

where we’ve expanded in terms of the physical W , Z and
photon fields. Note also that iT a are the generators for
the SU(2) rep of ψ, and that Y is the hypercharge of the
lepton field ψ. We define T± = T 1 ± iT 2.

We note immediately that:

• g sin(θW ) is the coupling of Aµ to the lepton field ψ.
Hence e = g sin(θW ) is the familiar electric charge.

• Depending on the rep, Q = T 3 + Y is a matrix which
when applied to eigenvectors ψλ, returns λψλ, so that
ψλ has an actual charge eλ. Thus Q is called the
charge matrix.

We now input the experimental observation:

Observation: The two lightest lepton fields in Na-
ture are the electron field e(x) and the electron neutrino
field νe(x). The left-handed fields form an SU(2) doublet:

L(x) =

(
νeL(x)
eL(x)

)
,

where eL(x) = PLe(x) and νeL(x) = PLνe(x). Thus, the
left-handed particles couple to the W boson.

The right-handed neutrino does not couple to any bosons,
so we omit further discussion of it. The right-handed elec-
tron forms an SU(2) singlet:

R(x) = eR(x),

and hence does not couple to the W boson.

We also have from experiment that electrons have
charge −e and neutrinos are neutral. There-
fore, for the right-handed electron field, we have
−1 = Q = T 3 + Y = 0 + Y = Y , and hence eR(x)
has hypercharge −1.

For the left-handed fields, we have(
0 0
0 −1

)
= Q = T 3 + Y =

(
1
2 + Y 0

0 − 1
2 + Y

)
.

Hence νeL(x) and eL(x) have hypercharge − 1
2 .

Using the above experimental observations, we have

LEW
lept = Li /DL+Ri /DR.

Note the covariant derivatives are different! The first has
iT a = 1

2 iσ
a, while the second has T a ≡ 0.

From this Lagrangian, we can identify the interactions
between gauge bosons and leptons in the electroweak
theory. Writing out the Lagrangian in full, we have

LEW
lept = νeLi/∂νeL + eLi/∂eL + eRi/∂eR︸ ︷︷ ︸

kinetic terms

+ eeL /AeL + eeR /AeR︸ ︷︷ ︸
electron-photon interactions

− g√
2

(
νeL /W

+
eL + eL /W

−
νeL

)
︸ ︷︷ ︸
electron-neutrino-W boson interactions

− g

2 cos(θW )

(
νeL /Z

0
νeL + (2 sin2(θW )− 1)eL /Z

0
eL

+2 sin2(θW )eR /Z
0
eR

)
︸ ︷︷ ︸

electron-neutrino-Z boson interactions

.

We can tidy this up a little by noticing that

ψγµψ = (ψL + ψR)γµ(ψL + ψR)

= ψLγ
µψL + ψRγ

µψR + ψLγ
µψR + ψRγ

µψL.

Now note that ψLγµψR = ψPRγ
µPRψR = 0 (since PR

changes into a PL when it passes through the γµ). Simi-
larly ψRγµψL = 0.

So the whole Lagrangian can be simplified to:

LEW
lept = νeLi/∂νeL + ei/∂e︸ ︷︷ ︸

kinetic terms

+ ee /Ae︸ ︷︷ ︸
e-photon ints

− g√
2

(
νeL /W

+
eL + eL /W

−
νeL

)
︸ ︷︷ ︸
electron-neutrino-W boson interactions

− g

2 cos(θW )

(
νeL /Z

0
νeL −

1

2
e/Z

0
(1− γ5 − 4 sin2(θW ))e

)
︸ ︷︷ ︸

electron-neutrino-Z boson interactions

.
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To tidy this up even further, we make the following defini-
tions:

Definition: The leptonic electromagnetic current is:

Jµlept,EM = −eγµe.

The leptonic charged weak current is:

Jµlept = νeLγ
µ(1− γ5)e.

The leptonic neutral weak current is:

Jµlept,n =
1

2

(
νeLγ

µ(1− γ5)νe − eγµ(1− γ5 − 4 sin2(θW ))e
)
.

With this notation (omitting the lept’s), the Lagrangian re-
duces to:

LEW
lept = νeLi/∂νeL + ei/∂e− eAµJµEM

− g

2
√

2

(
W+
µ J

µ +W−µ J
µ†
)
− g

2 cos(θW )
JµnZ

0
µ.

4.4 Higgs boson-lepton coupling

A useful result for this section is:

Theorem: Let ψ be a spinor. Then ψψ = ψLψR + ψRψL.

Proof: We have

ψLψR + ψRψL = ψPRPRψ + ψPLPLψ = ψ(PR + PL)ψ.

We now want to give the leptons masses. We can’t
do this directly, because fermion mass terms such as

meee = me (eLeR + eReL)

explicitly break gauge invariance. Thus to give the leptons
masses, we must couple them to the Higgs boson and
use SSB.

Definition: The Higgs boson-lepton coupling before
SSB is

Llept,φ = −
√

2λe
(
LφR+Rφ†L

)
,

where λe is called the Yukawa coupling.

Theorem: Llept,φ is gauge invariant.

Proof: Under a gauge transformation, L 7→ e−
1
2 iαUL,

φ 7→ e
1
2 iαUφ and R 7→ e−iαR. It’s then straightforward to

substitute these formulae in and check.

Theorem: In unitary gauge, expanding the Higgs field
as φ = (0, (v + h)/

√
2)T gives: Llept,φ = −meee − λehee,

where me = λev is the electron’s acquired mass.

Proof: Very simple calculation.

4.5 Generations

The electron has some heavier cousins, called the muon,
µ, and tau, τ . The electron neutrino also has heavier
muon neutrino and tau neutrino counterparts. These are
included in the Standard Model in exactly the sam way as
the electron and electron neutrino, now with three L and R
fields:

L1 =

(
νeL
eL

)
, L2 =

(
νµL
µL

)
, L3 =

(
ντL
τL

)
,

and
R1 = eR, R2 = µR, R3 = τR.

Each of the three sets is referred to as a generation.

We can generalise the couplings to the gauge bosons and
the Higgs as follows.

LEW
lept just gets three copies of itself, with e 7→ µ 7→ τ

for each generation, so remains simple.

Llept,φ becomes more complicated. It’s possible we
get something of the form

Llept,φ = −
√

2
(
λijL

i
φRj + (λ†)ijR

i
φ†Lj

)
,

where λij is a matrix responsible for mixing generations.

Theorem: λ may be diagonalised, so that there is
no mixing between lepton generations.

Proof: Note λλ† is Hermitian, so there exists unitary
K such that λλ† = KΛ2K†, where Λ is diagonal with real
entries (note we can write Λ2, since if v is an evector of
λλ†, we have 0 ≤ ||λ†v||2 = vλ†λv = ||v||2α, where α is
the evalue, i.e. all evalues are non-negative).

Let S = λ†KΛ−1. Then S is unitary, since

S†S = Λ−1K†λλ†KΛ−1 = Λ−1Λ2Λ−1 = I.

Therefore, λ = KΛS†.

Let Li 7→ KijLj and Ri 7→ SijRj . This diagonalises
Llept,φ, but leaves

LEW
lept =

3∑
i=1

(
L
i
i /DLi +R

i
i /DRi

)
invariant. So we can assume WLOG no mixing between
lepton generations (by taking the lepton generations to be
the vectors KijLj , SijRj , i.e. after diagonalisation).
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4.6 Coupling to quarks

Observation: Quark fields are fermion fields. There are
six flavours of quark in Nature: up, down, charm, strange,
top and bottom. Their behaviour depends on whether they
are left-handed or right-handed:

• Right-handed quarks are in SU(2) singlets:

uiR = (uR, cR, tR), diR = (dR, sR, bR).

Here, i labels the generation of quark. Experiment
says that up, charm and top quarks have charge +2/3,
so they have hypercharge +2/3 too. Down, strange
and bottom quarks have charge −1/3, so they have
hypercharge −1/3 also.

• Left-handed quarks are in SU(2) doublets:

QiL =

(
uiL
diL

)
=

((
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

))
.

To get the charges right, we need a charge matrix:(
2/3 0
0 −1/3

)
= Q = T 3 + Y =

(
1
2 + Y 0

0 − 1
2 + Y

)
.

So left-handed quarks have hypercharge Y = 1/6.

Quarks have the usual coupling to the gauge bosons, via

LEW
quark =

3∑
i=1

(
Q
i

Li /DQ
i
L + uiRi /Du

i
R + d

i

Ri /Dd
i
R

)
.

Just as for leptons, we can expand the covariant deriva-
tives to find all the interactions:

Theorem: The above Lagrangian can be written as:

LEW
quark =

3∑
i=1

(
iui /∂ui + id

i
/∂di︸ ︷︷ ︸

kinetic terms

− 2

3
eui /Aui +

1

3
ed
i
/Adi︸ ︷︷ ︸

quark-photon couplings

− g√
2

(
uiL /W

+
diL + d

i

L /W
−
uiL

)
︸ ︷︷ ︸

quark-W boson couplings

− g

2 cos(θW )

(
1

2
ui /Z

0
(

1− γ5 − 8

3
sin2(θW )

)
ui

+
1

2
d
i
/Z
0
(

4

3
sin2(θW )− 1 + γ5

)
di
)
.︸ ︷︷ ︸

quark-Z boson coupling

Proof: By a similar calculation to LEW
lept.

We can tidy this up by defining currents.

Definition: For quarks, the hadronic electromagnetic
current is defined by

Jµhad,EM =
2

3
uiγµui − 1

3
d
i
γµdi.

The hadronic charged weak current is

Jµhad = uiγµ(1− γ5)di.

The hadronic neutral weak current is Jµhad,n where 2Jµn =

uiγµ
(

1− γ5 − 8

3
sin2(θW )

)
ui+d

i
γµ
(

4

3
sin2(θW )− 1 + γ5

)
di

The Lagrangian then reduces to (omitting the had’s):

LEW
quark =

3∑
i=1

(
iui /∂ui + id

i
/∂di − eAµJµEM

− g

2
√

2

(
W+
µ J

µ +W−µ J
µ†
)
− g

2 cos(θW )
JµnZ

0
µ

)
.

For convenience, we define the full currents as the
sum of the leptonic and hadronic pieces:

Definition: The full electromagnetic current is:

JµEM =
∑
f

qffγ
µf,

where the sum is over all fermion species f (both quarks
and leptons), and qf is the charge of the species f . The
full charged weak current is

Jµ =

3∑
i=1

νeiγ
µ(1− γ5)ei +

3∑
i=1

uiγµ(1− γ5)di,

where e1 = e, e2 = µ and e3 = τ are the lepton genera-
tions. Finally, the full neutral weak current is

Jµn =
1

2

∑
f

[
2Iffγ

µ(1− γ5)f − 4 sin2(θW )qffγ
µf

]
,

where If is the fermion f ’s weak isospin (equal to 1
2 for

νei , u, c, t, and equal to − 1
2 for ei, d, s, b).

With this Definition, we can completely characterise
the gauge boson-fermion interactions in the electroweak
theory using the Lagrangian: LEW

ferm =∑
f

fi/∂f−eAµJµEM−
g

2
√

2

(
W+
µ J

µ +W−µ J
µ†
)
− g

2 cos(θW )
JµnZ

0
µ.

As for leptons, we give the quarks mass by coupling
them to the Higgs boson. The interaction Lagrangian is:

Lquark,φ = −
√

2

(
λijd Q

i

Lφd
j
R + λijuQ

i

Lφ
cujR

+(λ∗d)
ijd

i

Rφ
†QjL + (λ∗u)ijuiL(φc)†QjR

)
,

where (φc)α = εαβ(φ†)β , where εαβ is the Levi-Civita sym-
bol. We need this odd field in the second term to make
the hypercharges sum to 0. The λu/d matrices are called
Yukawa matrices.
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Theorem: Lquark,φ is gauge invariant.

Proof: First and third terms are trivial. For second
and fourth terms, just need to work out transformation of
φc. Under U(1), we have φc = εφ∗ 7→ ε(e

1
2 iβφ)∗ = e−

1
2 iβφc.

So φc has hyperchage −1/2, and thus the second term
transforms correctly under U(1).

Now under SU(2), we have

φc = εφ∗ 7→ εe−i(α
1τ1−α2τ2+α3τ3)φ∗

= εφ∗ − iε
(
α1τ1 − α2τ2 + α3τ3

)
φ∗

where we’ve expanded infinitesimally. Now recall that τa =
1
2σ

a, and

ε =

(
0 1
−1 0

)
= iσ2.

Now using properties of the Pauli matrices, we can com-
mute things to find

φc = ei(α
1τ1+α2τ2+α3τ3)φc.

So φc transforms in the fundamental rep of SU(2), and
hence we’re done.

Theorem: Under SSB, expanding φ = (0, (v + h)/
√

2)T :

Lquark,φ = −vλijd d
i

Ld
j
R − vλ

ij
u u

i
Lu

j
R − hλ

ij
d d

i

Ld
j
R − hλ

ij
u u

i
Lu

j
R

−v(λ∗d)
ijd

i

Rd
j
L − v(λ∗u)ijuiRu

j
L − h(λ∗d)

ijd
i

Rd
j
L − h(λ∗u)ijuiRu

j
L.

Proof: Trivial exercise.

4.7 The CKM matrix

Naturally, we wish to diagonalise the mass terms as in the
case of leptons. Using exactly the same proof as we did
for leptons, we can diagonalise:

λu = KuΛuS
†
u, λd = KdΛdS

†
d,

where Ku/d and Su/d are unitary matrices. Transform the
quark fields as

uL 7→ KuuL, uR 7→ SuuR, dL 7→ KddL, dR 7→ SddR.

Then the mass terms become completely diagonal and
we’re left with:

Lquark,φ = −
3∑
i=1

(
mi
dd
i
di +mi

uu
iuj + hΛiid d

i
di − hΛiiuu

iui
)
,

where mi
u/d = vΛiiu/d.

Unlike leptons, LEW
quark is not invariant under diagonal-

isation. The charged quark current transforms as

Jµ = uiγµ(1− γ5)di 7→ uiγµ(1− γ5)di

= 2uiLγ
µdiL 7→ 2uiLγ

µ(K†uKd)
ijdjL = uiγµ(1− γ5)(K†uKd)

ijdj .

Definition: The matrix VCKM = K†uKd is called the
Cabibbo-Kobyashi-Maskawa (CKM) matrix.

A non-diagonal VCKM leads to the W± boson mediat-
ing intergenerational quark couplings.

4.8 Cabibbo mixing

Theorem: If there are only two generations, WLOG the
CKM matrix can have the form:

VCKM =

(
cos(θC) sin(θC)
− sin(θC) cos(θC)

)
,

where θC is called the Cabibbo angle. Mixing between
generations in this case is called Cabibbo mixing.

Proof: Note VCKM is unitary. A general unitary matrix
may be expressed in the form

VCKM =

(
cos(θC)eiα sin(θC)eiβ

− sin(θC)ei(α+γ) cos(θC)ei(β+γ)

)
where θC is some angle, and eiα, eiβ , eiγ are phases.

We now perform an operation called quark rephas-
ing. Using U(1) transformations of the form qi 7→ eiφqi, we
can eliminate the phases eiα, eiβ , eiγ . This is possible,
since there are four quark fields, and we are allowed to
remove as many relative phases as we like (there are 3 rel-
ative phases for 4 fields). This leaves the desired matrix.

Example: Consider a two-generation model where
the quark mass Lagrangian is off the form:

Lm = −1

2

(
q+m+(1 + γ5)q+ + q−m−(1 + γ5)q− + h.c.

)
,

where h.c. denotes Hermitian conjugate, and

q+ =

(
u′

c′

)
, q− =

(
d′

s′

)
, m+ =

(
0 a
a∗b

)
, m− =

(
0 c
c∗ d

)
,

where b and d are assume real. Define the matrix R(θ) by

R(θ) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
,

and define the angle θ+ and the masses mu, mc by

R(θ+)

(
0 |a|
|a| b

)
R(θ+)−1 =

(
mu 0
0 −mc

)
.

This is possible because the matrix we are trying to di-
agonalise is real symmetric. Similarly define θ− forms,md.

Note that if we write a = |a|eiφ for some φ, then

m+ =

(
eiφ 0
0 1

)(
0 |a|
|a| b

)(
e−iφ 0

0 1

)
.
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Hence we see that rephasing the quark fields as

q+ 7→
(
eiφ 0
0 1

)
q+,

and then applying the rotation q+ 7→ R(θ+)−1q+, we can
diagonalise the + mass terms. Similarly for − terms.

Recall the VCKM matrix is obtained from the charged
weak current:

q+γ
µ(1− γ5)q− 7→ q+R(θ+)R(θ−)−1γµ(1− γ5)q−.

So VCKM = R(θC) = R(θ+)R(θ−)−1 and hence the
Cabibbo angle is given by θC = θ+ − θ−. By expanding
the definitions of θ+ and θ−, we find that

θ− = arctan

(
md

ms

)
, θ+ = arctan

(
mu

mc

)
,

so we have found θC explicitly in this case.

For a three-generation model, we can repeat the proof of
the Theorem. This time, 9 parameters describe VCKM, split
as 3 angles and 6 phases. There are 6 quark fields, so
5 relative phases, so we can remove 5 phases by quark
rephasing.

Therefore, VCKM is parametrised by 3 angles and 1
phase, hence is not real. It follows that the Yukawa matri-
ces are not real; from here, it is clear that CP symmetry
must be violated in the Standard Model by intergenera-
tional quark coupling. In particular, by the CPT Theorem,
T symmetry must also be violated by intergenerational
quark coupling.

4.9 Neutrino oscillations and mass

In some solar neutrino experiments in the 2000s, the
number of electron neutrinos detected was smaller than
predicted. It was theorised that electron neutrinos oscil-
lated into muon and tau neutrinos.

This phenomenon can be explained by two possible
models:

1. Neutrinos are Dirac fermions. If neutrinos are Dirac,
then there must be right-handed neutrinos. We write

N i = νiR = (νeR , νµR , ντR).

The lepton-Higgs coupling then takes the same form
as the quark version:

Llept,φ = −
√

2
(
λijL

i
φRj + λijν L

i
φcN j + h.c.

)
We diagonalise this matrix in exactly the same way as
the quark version, and get the same mixing term in the
charged weak current. This time the mixing matrix is
called the Pontecorvo-Maki-Nakagawa-Sakata matrix,
and is denoted UPMNS.

2. Neutrinos are Majorana fermions. Since neutrinos
are neutral, they could be their own antiparticles, i.e.
they are Majorana fermions. The mode expansion of
a Majorana fermion is of the form:

ν(x) =
∑
s,p

bs(p)us(p)e−ip·x + bs†(p)vs(p)eip·x.

Indeed, under charge conjugation, this field trans-
forms as Ĉν(x)Ĉ−1 = CνT (x) = ν(x), showing it is
its own antiparticle.

Furthermore, for Majorana fermions, the left and
right-handed fields are not independent. Indeed, we
have

νR(x) = ĈνL(x)Ĉ−1 = CνTL(x).

Therefore Majorana mass terms look like:

Lmν ,Majorana = −1

2

∑
i

mi
ν

(
νi,CL νiL + νiLν

i,C
L

)
,

where ψC = ĈψĈ−1. What terms in the unbroken
Lagrangian generate such mass terms?

It turns out the right operator (which is SU(2) × U(1)
invariant) to introduce is

Lνφ,Majorana = −Y
ij

M
(Li

T
φ̃)C(φ̃TLj) + h.c.,

where φ̃α = εαβφβ .
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5 Weak decays

5.1 Fermi effective theory

We’ll mainly consider processes where energies and
momenta are lower than the masses of the W and Z
boson, mW and mZ . We then use Fermi effective theory.

To derive the effective theory, we need the facts:

Theorem: The W and Z propagators, given by,

DW
µν(x− x′) = 〈0|T{W−µ (x)W+

ν (x′)}|0〉 ,
DZ
µν(x− x′) = 〈0|T{Z0

µ(x)Z0
ν (x′)}|0〉 .,

have the Fourier transform:

D̃Z/W
µν (p) =

i

p2 −m2
Z/W + iε

(
−ηµν +

pµpν
m2
Z/W

)
.

Proof: Recall from QFT the propagator is i times the
Green’s function of the EL equation for the free field.

The kinetic part of the electroweak Lagrangian for
the Z boson is

Lkin = −1

4
(∂µZν − ∂νZµ)(∂µZν − ∂νZµ) +

1

2
m2
ZZµZ

µ.

Hence the Euler-Lagrange equations are

∂2Zρ − ∂ρ∂ · Z +m2
ZZρ = 0.

If we add a source jµ(x), the Lagrangian is appended by
Zµj

µ and the equation of motion becomes:

∂2Zρ − ∂ρ∂ · Z +m2
ZZρ = −jρ.

Note that taking the divergence of the above equation, we
have m2

Z∂ · Z = −∂ · j; substituting this back in, we have

(∂2 +m2
Z)Zµ = −

(
ηµν +

∂µ∂ν
m2
Z

)
jν .

Take the Fourier transform of this equation to obtain:

Z̃µ(p) =
1

p2 −m2
Z

(
ηµν −

pµpν
m2
Z

)
j̃ν(p).

By the definition of a Green’s function, we have

Zµ(x) = i

∫
d4x′ DZ

µν(x− x′)jν(x′).

Taking the Fourier transform (recall convolution becomes
product):

Z̃µ(p) = iD̃Z
µν(p)j̃ν(p),

then just compare to get result. Exactly the same for the
W boson (just replace Z 7→W and mZ 7→ mW ).

Theorem: When a process has energies and momenta
much less than mW and mZ , we may replace the weak
interaction part of the Lagranian, LW , with the Fermi effec-
tive Lagrangian:

Leff
W = −GF√

2

(
Jµ†(x)Jµ(x) + ρJµn

†(x)Jnµ(x)
)
,

where
GF√

2
=

g2

8m2
W

, ρ =
m2
W

m2
Z cos2(θW )

.

Proof: The weak part of the Lagrangian in the electroweak
theory is:

LW = − g

2
√

2

(
JµW+

µ + Jµ†W−µ

)
− g

2 cos(θW )
JµnZ

0
µ.

The scattering matrix is

S = Texp
(
−i
∫
d4x LW (x)

)
.

Since g is a small coupling constant at low energies, we
can expand the matrix element using Dyson’s formula:

〈f |S|i〉 = 〈f |I|i〉 − g2

8
〈f |
∫
d4xd4x′ T

{
Jµ†DW

µν(x− x′)Jν(x′)

+
1

cos2(θW )
Jµn
†(x)DZ

µν(x− x′)Jνn(x′)

}
|i〉+O(g4).

where we’ve assume the W and Z bosons are not in the
initial or final states, so that there’s no O(g) term, and no
O(g2) cross term. We’ve also used Wick’s Theorem to
obtain the W and Z propagators, DW

µν and DZ
µν .

From the propagator proof above, we know that for
m2
Z/W � p2, we have

D̃Z/W
µν (p) ≈ iηµν

m2
Z/W

⇒ DZ/W
µν (x− x′) =

iηµν
m2
Z/W

δ4(x− x′).

Substituting into the matrix element, this immediately
gives the result. (i can be removed, since this is only an
overall phase.)

Definition: GF is called the Fermi coupling and ρ is
called the rho-parameter.

Recall that in the classical electroweak theory, we
showed that m2

W = m2
Z cos2(θW ). Therefore, in the

quantum theory we may write ρ = 1 + ∆ρ, where ∆ρ
comes from quantum loop effects.

Finally, note that [GF ] = −2, to compensate for
[Jµ†Jµ] = 6. Thus this theory is non-renormalisable;
it does not hold to arbitirarily high energies. However, we
were expecting this, since we assumed that we working
well below the energy scale O(m2

W ,m
2
Z).
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5.2 Cross sections and decay rates review

Decay rates

Definition: The decay rate ΓX is:

ΓX =
number of decays of X observed

time taken× number of X in sample
.

Definition: The lifetime τX is defined by 1/ΓX .

Theorem: For a process where X can decay into
any of a set of final states f , the decay rate is given by

ΓX =
1

2mX

∑
f

∫
|MfX |2 dρf ,

where mX is the mass of X, MfX is the invariant ampli-
tude, defined in QFT by

〈f |S − I|X〉 = (2π)4δ4

(
pX −

∑
r

pr

)
iMfX ,

and dρf is the invariant integration measure, given by

dρf = (2π)4δ4

(
pX −

∑
r

pr

)∏
r

(
d3pr

(2π)3 · 2p0r

)
,

where r ranges across the particles in one of the final
states f , which have momenta pr.

Proof: We use 〈f |S − I|X〉, since we want to exclude the
possibility that no decay occurs. Then the probability of
the decay X → f is

P(X → f) =
| 〈f |S − I|X〉 |2

〈f |f〉 〈X|X〉
.

In QFT, we used wavepackets to deal with the possibil-
ity that 〈f |f〉, 〈X|X〉 could be infinite. Here, we’ll instead
work in finite spatial volume V and temporal extent T . In
particular, the delta functions become

(2π)3δ3(0) 7→ V, (2π)4δ4(0) 7→ V T.

Recall that with relativistic normalisation, we have

〈X|X〉 = (2π)32p0Xδ
3(0) 7→ 2p0XV, 〈f |f〉 =

∏
r

(
2p0rV

)
.

In the rest frame, p0X =X . Hence

P(X 7→ f) =

|MfX |2(2π)4δ4

(
pi −

∑
r

pr

)
V T

2mXV ·
∏
r

(2p0rV )

Note the V T in the numerator comes from the δ function
squared in | 〈f |S − I|X〉 |2.

We now convert this to the decay rate Γ(X → f), then sum
over final states f to get the answer. The decay rate is, by
definition: Γ(X → f) =

P(X → f)

T
=
|MfX |2(2π)4

2mX
δ4

(
pi −

∑
r

pr

)∏
r

(
1

2p0rV

)
.

We can’t ever measure the momenta pr with exact pre-
cision, though. So we have to integrate over all possible
1-particle states in a box V with momentum pr, for each r,
which is given by ∏

r

(
V d3pr
(2π)3

)
.

So we’re left with the final expression, as required.

Cross-sections

Definition: Suppose we fire a beam of particle at a
target. Let n be the number of scattering events per unit
time, divided by the number of target particles. Let the
incident flux be F , i.e. the number of incoming particles
per unit area per unit time. Then the cross-section is
defined by σ = n/F .

Theorem: The cross section for the process i → f
(with two initial particles in i) is given by

dσ =
|Mfi|2

F
dρf ,

where F is the flux factor, given by F = 4E1E2|va − vb|.
Here, |va − vb| is the relative velocity of the incident beam
to the target, and E1, E2 are the energies of the two initial
particles.

Proof: The total number of scattering events per unit
time is N = nρbV , where ρb is the density of the target,
and V is the finite spatial volume. The incident flux is
F = |va − vb|ρa, where ρa is the density of the incident
beam, and va − vb is the relative velocity of the incident
beam to the target. Hence

N = nρbV = FσρbV = |va − vb|ρaρbV σ.

The normalisation 〈i|i〉 = 2p0iV corresponds to having one
particle per unit volume; similarly for 〈f |f〉. Hence ρa =
ρb = 1/V . So

N =
|va − b|σ

V
⇒ dN =

|va − vb|
V

dσ. (∗)

Now use decay rate derivation to find dN , except since we
have two incoming particles, we get 〈i|i〉 = (2E1V )(2E2V )
in the denominator. This gives

dN =
1

(2E1)(2E2)V
|Mfi|2dρf .

Substituting (∗) and rearranging, we get the result.
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5.3 Higgs decay

Example: Consider Higgs to lepton decay h→ l
i
li, where

li is a specific lepton (either e, µ or τ ). The coupling of the
Higgs to leptons is given in the electroweak Lagrangian by

Lint = −
∑
i

λihl
i
li,

where λi is a Yukawa coupling. Thus at tree-level the only
contributing Feynman diagram is:

h

li

l
i

So by the Feynman rules, the tree-level amplitude for
h→ ll decay is iM = −iλius(q)vr(k).

To get the probability, we need to sum over final spins and
average over initial spins. The Higgs boson is spinless, so
the probability of decay is∑

s,r

|M|2 = λ2i
∑
s,r

[vrα(k)usα(q)][us(q)βv
r
β(k)]

= λ2iTr((/q +mi)(/k −mi)).

Here, we’ve used results about the plane wave spinors
from QFT. Now use results on traces of γ matrices from
QFT to simplify to∑

s,r

|M|2 = 4λ2i (k · q −m2
i ).

It’s now quickest to recognise that there is a 4-momentum
conserving δ function in the decay rate formula; hence we
can impose 4-momentum conservation now. Squaring the
conservation law p = k + q, the probability simplifies to
2λ2i (m

2
h − 4m2

i ), where mh is the mass of the Higgs.

To get the decay rate, the only non-trivial integral we
need to do is the integral over dρf , which we perform in
the rest frame, so that p = (mh,0)T . Calculating, we have:

1

4π2

∫
d3k
2k0

d3q
2q0

δ4(p− k − q)

=
1

4π

∞∫
0

d|k|
m2
i + |k|2

|k|2δ
(
mh − 2

√
m2
i + |k|2

)
.

It’s now simple to use a standard δ function identity to do
the integral. The answer we obtain is

Γ =
λ2i

8πm2
h

(m2
h − 4m2

i )
3/2.

We can write this in terms of GF , the Fermi coupling, using
the fact that the Yukawa couplings are given by

λ2i =
m2
i

v2
=
m2
i g

2

4m2
W

= 2m2
i ·
GF√

2
,

where we’ve also used the fact that m2
W = v2g2/4, from

a long time ago when we studied the electroweak theory.
Therefore, the final answer may be written as

Γ =
GF√

2
· 1

4π
· m

2
i

m2
h

(m2
h − 4m2

i )
3/2.

5.4 Z boson decay

Example: Consider Z boson decay into two specific lep-
tons: Z → ll. We can’t use Fermi effective theory, as this
wipes away the existence of the Z and W bosons. So we
return back to the coupling the electroweak Lagrangian,
given by:

− g

2 cos(θW )
JµnZµ,

where Jµn is the leptonic neutral weak current. Recall that
this can be written as:

Jµn =
∑
f

fγµ
[
If (1−γ5)−2 sin2(θW )qf

]
f =

∑
f

fγµ(v−aγ5)f,

where v = If − 2 sin2(θW )qf and a = If ; here v and a
depend on the species of lepton in question (whether it is
an electron, neutrino, etc).

The only contributing Feynman diagram is:

Z

l

l

which by the Feynman rules has amplitude:

iM =
ig

2 cos(θW )
[ul(k)γµ(v − aγ5)vl(q)]εµ(p, λ).

Here, εµ(p, λ) is a polarisation vector. Now’s a good time
to review what this means.

Recall that the quantum Z field has mode expansion:

Zµ =
∑
p,λ

(
aZ(p, λ)εµ(p, λ)e−ip·x + a†Z(p, λ)ε∗µ(p, λ)eip·x

)
,

where λ is the polarisation, running over λ = −1, 0, 1. The
operators aZ and a†Z obey

[aZ(p, λ), a†Z(p′, λ′)] = δ(p− p′)δλ,λ′ .
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Similarly, the quantum W field has mode expansion:

Wµ =
∑
p,λ

(
aW (p, λ)εµ(p, λ)e−ip·x + c†W (p, λ)ε∗µ(p, λ)eip·x

)
,

where a†W creates a W+ particle and c†W creates a W−

particle.

The polarisation vectors satisfy the identities:

Theorem: We have the following:

(i) ε(p, λ) · p = 0.

(ii) ε∗(p, λ) · ε(p, λ′) = −δλ,λ′ .

(iii)
∑
λ

εµ(p, λ)ε∗ν(p, λ) = −ηµν +
pµpν
m2
Z/W

.

Proof: (i) and (ii) can be arranged by Definition of polarisa-
tion vectors (see QED in QFT). To prove (iii), simply note
that {ε∗(p, λ), p}, when taken over λ = −1, 0, 1, forms a
basis. So we can contract both sides with each basis ele-
ment to check the identity holds. Contracting with ε∗(p, λ′),
On the LHS, we have:∑

λ

εµ∗(p, λ′)εµ(p, λ)ε∗ν(p, λ) = −ε∗ν(p, λ′)

and on the RHS, we have

−ε∗ν(p, λ′),

since ε∗(p, λ) · p = 0 (since p is real, this follows from (i)).
Just by looking at the equation, it’s trivial the contraction
with p also works. So we’re done.

BACK TO Z BOSON DECAY...

To calculate the probability, we sum |M|2 over the fi-
nal spins, and average over the initial polarisations. There
are three polarisations of the Z boson, so we want to find:

1

3

∑
spins

polarisations

|M|2

=
g2

12 cos2(θW )

∑
r,s,λ

[vsl (q)γ
µ(v − aγ5)url (k)]ε∗µ(p, λ)·

[url (k)γν(v − aγ5)vsl (q)]εν(p, λ)

=
g2

12 cos2(θW )
Tr((/kγν(v − aγ5)/qγ

µ(v − aγ5))

(
−ηµν +

pµpν
m2
Z

)
where we’ve used the identity for the polarisation vectors.
We’ve also neglected fermion masses, which are small
compared to the mass of the Z boson.

Now use some trace identities from QFT:

Tr(γµ1 ...γµ2n+1) = 0,

Tr(γµγνγργσ) = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ),

Tr(γ5γµγνγργσ) = −4iεµνρσ,

These reduce the probability to

g2

3 cos2(θW )
(v2 + a2)

(
k · q +

2(k · p)(q · p)
m2
Z

)
.

Pre-emptively use conservation of 4-momentum, p = q+k,
to obtain:

p2 = q2 + 2q · k + k2 = 2q · k ⇒ q · k =
1

2
m2
Z .

Similarly, by considering (p − k)2 and (p − q)2, we obtain
p ·k = 1

2m
2
Z and p · q = 1

2m
2
Z . So the probability reduces to

g2(v2 + a2)m2
Z

3 cos2(θW )
.

It’s now simple to insert into the decay rate formula, per-
form the standard integrals (in the rest frame of the Z bo-
son) and get the answer:

Γ =
g2mZ(v2 + a2)

48π cos2(θW )
=
GF√

2
· m

2
Z(v2 + a2)

6π
,

using GF /
√

2 = g2/8m2
W = g2/8m2

Z cos2(θW ).

5.5 Muon decay

Example: Consider muon decay µ−(p) →
e−(k)νe(q)νµ(q′). Since mµ ≈ 106 MeV� mW ≈ 80 GeV,
we can use Fermi effective theory.

Since this is a flavour-changing interaction (a muon
turns into an electron), it is mediated by the W boson, and
hence we only need to consider

Lint = −GF√
2
Jµ†Jµ,

where the relevant part of the charged weak current is

Jα = νeγ
α(1− γ5)e+ νµγ

α(1− γ5)µ.

Instead of using Feynman diagrams to calculate the
amplitude, we’ll use a different technique:

Theorem: To tree-level, and up to some phase, for
any process i→ f with Lagrangian L(x), we have

Mfi = 〈f |L(0)|i〉 .

Here, L(0) is the Lagrangian evaluated at zero.
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Proof: Recall:

〈f |S − I|i〉 = i(2π)4δ4(pf − pi)Mfi = i

∫
d4x 〈f |L(x)|i〉 .

Writing L in momentum space, we have

i(2π)4δ4(pf − pi)Mfi = i

∫
d4p

(2π)4

(∫
d4x e−ip·x

)
〈f |L̃(p)|i〉 .

We know from QFT that commuting operators in 〈f |L̃(p)|i〉
will eventually enforce global momentum conservation, at
least up to a phase and up to tree level, so that p = pf − pi
in the exponent. Thus integrating out x, we have:

i(2π)4δ4(pf − pi)Mfi = i(2π)4δ4(pf − pi) 〈f |L̃(0)|i〉 ,

up to a phase. The result follows.

Thus in our case, we want to compute:

M = −GF√
2
〈e−(k)νe(q)νµ(q′)|Jα†Jα(0)|µ−(p)〉

= −GF√
2
〈e−(k)νe(q)|e(0)γα(1− γ5)νe(0)|0〉

· 〈νµ(q′)|νµ(0)γα(1− γ5)µ(0)|µ−(p)〉 .

To get the final line, we’ve inserted Jα and Jα†, and con-
sidered mode expansions of the fields. To proceed, we
insert the full mode expansions; this gives, for example:

µ(0) |µ−(p)〉 =
∑
s,p̃

(
us(p̃)b(p̃) + d†(p̃)vs(p̃)

)√
2Epb

†(p) |0〉

= us(p) + (d† term which cancels to the left)

Carrying out the whole computation, we find

M = −GF√
2

[ue(k)γα(1−γ5)vνe(q)][uνµ(q′)γα(1−γ5)uµ(p)],

where we’ve suppressed the spin indices, but there is a
different one for each spinor. Since the initial state has two
spin states, we must average and sum to get:

1

2

∑
spins

|M|2 =
G2
F

4
Tr((/k +me)γ

α(1− γ5)/qγ
β(1− γ5))

·Tr((/q′γα(1− γ5)(/p+mµ)γβ(1− γ5)).

We used some trace identities from above, and we also
needed to use the identity:

εαβσρεαβλτ = −2(δσλδ
ρ
τ − δστ δ

ρ
λ).

The result is:

1

2

∑
spins

|M|2 = 64G2
F (p · q)(k · q′).

INTERLUDE: Consider the case when e, νµ go out along
the +z axis, and νe goes out along the −z direction. Then

k · q′ =
√
m2
e + k2zq

′
z − kzq′z.

We see that if me = 0, the above probability is zero - this
process never occurs!

The reason is because angular momentum conser-
vation is violated by this process. For massless spinors,
recall that helicity (spin in the direction of travel) is the
same as chirality. Since the weak interaction only couples
to left-handed particles, we must have spins as shown:

νe νµ e

Spins are in direction of travel for particles, and opposite
direction of travel for anti-particles, since they are all
left-handed. This gives total spin |Sz| = 3

2 after the
interaction. But the total spin of the muon is 1

2 , so we have
a contradiction.

When me 6= 0, the process can occur, since there is
no longer a one to one correspondence between spin and
helicity. Left and right handed spinors are coupled through
a mass term so that this (valid) setup is possible instead:

νe νµ e

We say that the process that does occur has its helicity
suppressed.

BACK TO MUON DECAY...

The decay rate is now given by:

Γ =
(2π)4 · 64G2

F

2µ · (2π)9

∫
d3k
2k0

d3q
2q0

d3q′

2q′0
δ4(p−k−q−q′)(p·q)(k·q′).

There is a clever trick for the evaluation of this integral.
We do it in two pieces.

PIECE 1: First, define

Iµν(p− k) =

∫
d3q
|q|

d3q′

|q′|
δ4(p− k − q − q′)qµq′ν .

Note q0 = |q| q′0 = |q′|, since neutrinos are assumed
massless here. Since this is Lorentz covariant, and sym-
metric on µ, ν, it must be of the form:

Iµν = a (p− k)µ(p− k)ν︸ ︷︷ ︸
RHS is Lorentz covariant,

and only depends on p− k

+bηµν (p− k) · (p− k)︸ ︷︷ ︸
for convenience
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To find a and b, we contract Iµν with various things. Firstly,

(p−k)2(a+4b) = ηµνIµν =

∫
d3q
|q|

d3q′

|q′|
δ4(p−k−q−q′)q ·q′.

The δ function allow us to compute:

(p− k)2 = q2 + 2q · q′ + q′
2

= 2q · q′,

since neutrinos are massless. So we find

a+ 4b =
1

2

∫
d3q
|q|

d3q′

|q′|
δ4(p− k − q − q′)

Now simply do the integral on the RHS. Choose a frame
where p− k = 0 (possible since RHS is a Lorentz scalar).
Then q = −q′ from the δ function, and we’re left with∫

d3q
|q|2

δ(p0−k0−2|q|) = 2π

∞∫
0

δ

(
1

2
(p0 − k0)− |q|

)
d|q| = 2π.

Hence a + 4b = π. To get another equation, contract Iµν
with (p− k)µ(p− k)ν . Then

(p−k)4(a+b) =

∫
d3q
|q|

d3q′

|q′|
δ4(p−k−q−q′)q·(p−k)q′·(p−k).

Again, use the δ function to write

(p− k − q)2 = q′
2

= 0 ⇒ (p− k)2 = 2(p− k) · q,

and similarly (p − k)2 = 2(p − k) · q′. Then a + b = 1
2π

using the integral we worked out earlier.

Solving our two equation simultaneously, we find that

a =
π

3
, b =

π

6
.

PIECE 2: Substitute Iµν back into the decay rate to
find:

Γ =
G2
F

(2π)43mµ

∫
d3k
k0
(
2p · (p− k)k · (p− k) + (p · k)(p− k)2

)
Now work in the rest frame of µ. So p = (mµ,0)T , implying
that p · k = mµE, where E is the energy of the electron.
Note also that p · p = m2

µ, k · k = m2
e.

We make one final approximation: since me/mµ ≈ 0.0048,
we neglect the mass of the electron: k · k = 0. Then the
whole thing reduces to Γ =

mµG
2
F

3(2π)4

∫
d3k (3mµ − 4E) =

4πmµG
2
F

3(2π)4

1
2mµ∫
0

dE E2(3mµ−4E).

Why the limits? We need to consider maximum and min-
imum electron energies. Since E = |k|, the energy is a
minimum when the electron is at rest, E = 0.

The maximum energy occurs when νµ, νe are in the same
direction, opposite to the electron; by conservation of mo-
mentum, the electron then has its largest possible momen-
tum, and hence largest energy. In this scenario, by energy
conservation:

E + (Eνe + Eνµ) = mµ,

and by momentum conservation, E − (Eνe + Eνµ) = 0.
Hence E = mµ/2 at its maximum.

Performing the final, simple integral, we have

Γ =
G2
Fm

5
µ

192π3
.

From our earlier discussion, we know the final state when
everything is aligned in the z-direction looks like:

νe νµ e

But under a parity transformation, the particles change di-
rection, but the spins do not (spin is an axial vector). Thus
we get:

νe νµ e

Since neutrinos are massless, helicity is the same as
chirality for them. So they must be right-handed! Con-
tradiction, as weak interaction only couples left-handed
particles. Thus muon decay violates parity symmetry.

5.6 Polarised muon decay

Example: It’s possible to repeat the above calculation with
a polarised muon. We can represent the polarisation with a
spin 4-vector, sµ = (0,s) (in the muon rest frame), obeying

s · p = 0, uµ(p)uµ(p) = (/p+mµ) · 1

2
(1 + γ5/s).

Following a very similar calculation to muon decay above,
we arrive at the formula∑

spins

|M|2 = 64G2
F [q′ · k][q · (p−mµs)].

Note, it is useful to define r = p−mµs throughout this ex-
ample. Using very similar steps to the above (i.e. defining
a suitable Iµν and using Lorentz covariance to determine
its form, then contracting to find unknown constants), we
find that the differential decay rate is given by

dΓ =
G2
Fm

5
µ

24(2π)4
x2(3− 2x− (2x− 1)k̂ · s) dx dΩ(k̂),

where x = 2E/mµ, E is the energy of the electron, and x
may range from 0 to 1.
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5.7 Pion decay

Definition: A pion is one of a family of three composite
particles made of a valence quark and valence anti-quark.
The possibilities are:

π− = ud, π+ = du, π0 = a superposition of uu and dd.

Pions are bound together by gluons (see QCD later). We
use the term valence quarks to distinguish from the virtual
quark-anti quark pairs popping in and out of existence in
the sea of hadrons (again, see QCD).

Consider the process π−(p) → e−(k)νe(q), i.e. a
pion decaying into an electron and an anti-neutrino.

This time, the interactions are governed by both the
leptonic part of the charged weak current

Jαlept = νeγ
α(1− γ5)e+ (irrelevant stuff)

and the hadronic (quark) part of the charged weak current:

Jαhad = uγα(1− γ5)(Vudd+ Vuss+ Vubb) + (irrelevant stuff)

= uγα(1− γ5)Vudd+ (irrelevant stuff)

Here, Vud comes from the VCKM matrix which governs the
coupling of different generations of quarks. We normally
write Jαhad = V αhad −Aαhad, where

V αhad = uγαVudd, Aαhad = uγαγ5Vudd.

The first piece is called the vector-like hadronic current
and the second part is called the axial hadronic current for
obvious reasons.

In Fermi effective theory then, the amplitude for the
process is

M = 〈e−(k)νe(q)|Leff
W (0)|π−(p)〉

= −GF√
2
〈e−(k)νe(q)|e(0)γα(1− γ5)νe(0)|0〉 〈0|Jαhad(0)|π−(p)〉

= −GF√
2

(ue(k)γα(1− γ5)vνe(q)) 〈0|V αhad(0)−Aαhad(0)|π−(p)〉 .

Note that we cannot expand the second matrix element.
This is because the pion is a bound QCD state, and
cannot be expanded perturbatively, since QCD is a
strongly-coupled theory.

To skirt round the issue, we define:

Definition: The pion decay constant, Fπ, is defined
by 〈0|Aαhad(0)|π−(p)〉 = 〈0|Vuduγαγ5d|π−(p)〉 = i

√
2Fπp

α.
This definition is allowed by Lorentz covariance.

Do we need another constant for the vector-like piece?
No, it is excluded on the grounds of parity. By Lorentz
covariance, the only thing we can have on the RHS for the
vector-like piece is

〈0|uγαd|π−(p)〉 = Apα.

Experimentally, we know that the pion is a pseudoscalar,
i.e. it has intrinsic parity −1 and spin zero. Under a parity
transformation then, we then have:

Apα = 〈0|uγαd|π−(p)〉 = 〈0|P̂−1P̂ uγαdP̂−1P̂ |π−(p)〉
= −〈0|Pαβuγβd|π−(pP )〉 = −PαβApα = −ApαP .

We get a contradiction unless A = 0, so we can just ignore
the vector-like piece. Thus the amplitude is

M = iGFFπue(k)/p(1− γ5)vνe(q)

We’re ready to calculate now. Begin by pre-emptively ap-
plying 4-momentum conservation p = k+q. Then /p = /k+/q,
and recalling the Dirac equation for plane wave spinors:
ue(k)/k = meue(k), /qvνe(q) = 0 (since neutrino massless),
the amplitude simplifies to:

M = iGFFπmeue(k)(1− γ5)vνe(q)

Since the pion has spin zero, after some calculation we
find the probability of decay is∑

spins

|M|2 = 8|GFFπmeVud|2(k · q).

The best thing to do now is impose momentum conserva-
tion early, via m2

π = p2 = (k+q)2 = k2 +2k ·q = m2
e+2k ·q.

Then we can write k · q in terms of constant quantities, and
pull it out of any integrals.

Doing the remaining integrals in the decay rate cal-
culation in the standard way, we find

Γ =
|GFFπmeVud|2

πmπ

(
m2
π −m2

e

2mπ

)2

.

An identical calculation for π → µνµ decay gives

Γ =
|GFFπmµVud|2

πmπ

(
m2
π −m2

µ

2mπ

)2

.

Dividing the two results, we find

r =
Γ(π− → e−νe)

Γ(π− → µ−νµ)
=
m2
e

m2
µ

(
m2
π −m2

e

m2
π −m2

µ

)2

≈ 1.28× 10−4.

This is very small. This shows that helicity is much less
suppressed for the muon because of its greater mass.

5.8 Kaon decay

Definition: A kaon is a composite particle containing
a strange valence quark or strange valence antiquark,
together with one other valence quark. The lightest kaons
are: K0 = sd, K

0
= ds, K+ = su, K− = us.

Like pions, kaons are pseudoscalar particles, i.e. they
have intrinsic parity −1 and are spinless.
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Example: Consider the decay K−(p)→ µ−(k)νµ(q). This
time, the relevant parts of the currents are

Jαlept = νµγ
α(1− γ5)µ,

Jαhad = Vusuγ
α(1− γ5)s = V αhad −Aαhad,

where V αhad = Vusuγ
αs, Aαhad = Vusuγ

αγ5s. In exactly
the same way as π− decay, we have that K− is a pseu-
doscalar, so only Aαhad is relevant to the decay. As per
usual, the amplitude is given by:

M = 〈µ−(p)νµ(q)|Leff
W (0)|K−(p)〉

=
GF√

2
〈µ−(p)νµ(q)|µγα(1− γ5)νµ|0〉 〈0|Aα(0)|K−(p)〉 .

Again, to skirt round the issue of QCD, we define:

Definition: The kaon decay constant FK is defined
by

〈0|Aα(0)|K−(p)〉 = iVus
√

2FKpα.

Thus we’re left with

M = iGFVusFKuµ(k)/p(1− γ5)vνµ(q).

Again, pre-emptively using p = k + q, we can reduce this
to:

M = iGFVusFKmµuµ(k)(1− γ5)vνµ(q).

Now calculating as usual, we find the decay rate:

Γ =
G2
F |FK |2 sin2(θC)

4π
m2
µmK

(
1−

m2
µ

m2
K

)2

,

where Vus = sin(θC), and θC is the Cabibbo angle (as-
suming we are working at sufficiently low energies such
that top and bottom quarks may be neglected).

5.9 Neutral kaon mixing

The neutral kaons are K0 and K̄0. Neutral kaon mixing
is important because it gives empirical evidence of CP
violation in the Standard Model.

Since K0 and K̄0 are a particle-antiparticle pair, they
are Ĉ conjugates. They are also pseudoscalars so both
have intrinsic parity −1. Thus we can arrange for the
phases to be such that

ĈP̂ |K0〉 = − |K̄0〉 , ĈP̂ |K̄0〉 = − |K0〉 .

From these equations, it’s clear we can construct CP
eigenstates:

|K0
+〉 =

1√
2

(|K0〉 − |K̄0〉), |K0
−〉 =

1√
2

(|K0〉+ |K̄0〉),

where ĈP̂ |K0
+〉 = |K0

+〉 and ĈP̂ |K0
−〉 = − |K0

−〉.

Consider the weak decays K0 → π0π0 and K0 → π+π−

given by the Feynman diagrams:

Starting in the kaon’s rest frame, there is zero angular
momentum before the decay, so by conservation of
angular momentum, both π0π0 and π+π− must have zero
angular momentum. In particular, their relative orbital
angular momentum L must be zero: L = 0.

Therefore:

ĈP̂ |π+π−〉 = Ĉ (−1)2︸ ︷︷ ︸
intrinisic

parity

(−1)L |π+π−〉 = |π−π+〉 = |π+π−〉 .

Similarly, ĈP̂ |π0π0〉 = |π0π0〉. So the final states are both
CP-even. Thus if CP is conserved in this interaction, we
expect |K0

+〉 to be able to decay into 2 pions, but |K0
−〉

should not be able to do this. However, |K0
−〉 could decay

into 3, or more, pions.

Thus we expect |K0
+〉 to be short-lived (since there is

a larger phase space to decay into), and |K0
−〉 to be

long-lived (smaller decay phase space available).

Experimentally, we find there are two species of neu-
tral kaon: K0

S , which is short-lived, and K0
L, which is

long-lived. We find that

η+− =
| 〈π+π−|H|K0

L〉 |
| 〈π+π−|H|K0

S〉 |
, η00 =

| 〈π0π0|H|K0
L〉 |

| 〈π0π0|H|K0
S〉 |

,

have experimental values η+− = η00 ≈ 2.2 × 10−3 6= 0,
and so we conclude that the weak interaction violates CP
symmetry. In particular, K0

L decays to both π+π− and
π0π0.

There are two ways in which this can occur here:

1. Direct CP violation. There is a complex phase in
VCKM, violating CP symmetry of the s, u interactions
(see way earlier in the course).
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2. Indirect CP violation. There is CP violation due to
K0, K̄0 mixing (this ultimately comes from a complex
phase in VCKM too). It turns out this effect is mainly
responsible for the violation we see experimentally.

There is no tree-level mixing of K0, K̄0. The mixing comes
primarily from the loop diagrams:

Therefore, we get small quantum loop corrections to the
short/long-lived states, which to a first approximation were
CP eigenstates:

|K0
S〉 =

1√
1 + |ε1|2︸ ︷︷ ︸

for normalisation

(
|K0

+〉+ ε1 |K0
−〉
)
≈ |K0

+〉 ,

|K0
L〉 =

1√
1 + |ε2|2

(
|K0
−〉+ ε2 |K0

+〉
)
≈ |K0

−〉 .

In general it is hard to compute ε1, ε2 (see AQFT). Instead,
here we make:

Definition: The Wigner-Weisskopf approximation as-
sumes that

(i) |K0
S〉 and |K0

L〉 are linear combinations of |K0
+〉 and

|K0
−〉 alone (and not of any excited states);

(ii) we can ignore details of the strong interaction in con-
sidering the mixing.

Then, we can assume that as they propagate the states
have the form:

|K0
S/L〉 = aS/L(t) |K0〉+ bS/L(t) |K̄0〉 .

Making this assumption, the Schrödinger equation
gives us:

i
d

dt

(
ai(t)
bi(t)

)
=

(
〈K0|H ′|K0〉 〈K0|H ′|K̄0〉
〈K̄0|H ′|K0〉 〈K̄0|H ′|K̄0〉

)
︸ ︷︷ ︸

R

(
ai(t)
bi(t)

)
.

Here, i = S,L and H ′ is the next-to-leading order weak
Hamiltonian. The off-diagonal elements in R are responsi-
ble for the mixing.

Since the kaons are decaying, the amplitudes ai(t), bi(t)
are not conserved, and hence R is not Hermitian. Write

R = M − i

2
Γ,

where M is the mass matrix and Γ is the decay matrix,
both of which are Hermitian.

We can use the CPT Theorem to find relationships
between the matrix elements, and to find ε1, ε2 in terms of
the R matrix:

Theorem: R11 = R22.

Proof: Let Θ̂ = ĈP̂ T̂ . Since CPT is a good symme-
try, Θ̂H ′Θ̂−1 = H ′

† (since time-reversal acts to change
direction of time in U(t) = eiHt; this is achieved by taking
the †).

In the rest frame of the kaons, we must have T̂ |K0〉 = |K0〉
and T̂ |K̄0〉 = |K̄0〉, and so recalling their CP transforma-
tions, we have Θ̂ |K0〉 = − |K̄0〉 and Θ̂ |K̄0〉 = − |K0〉.

Therefore, we can write R11 as:

R11 = (K0, H ′K0) = (Θ̂−1Θ̂K0, H ′Θ̂−1Θ̂K0)

= (Θ̂−1K̄0, H ′Θ̂−1K̄0) = (K̄0, Θ̂H ′Θ̂−1K̄0)∗ = (K̄0, H ′
†
K̄0),

where in the last step, we used the fact that Θ̂ is anti-
unitary (since it contains two unitary operators and one
anti-unitary operator). Now use conjugate symmetry of the
inner product:

R11 = (H ′
†
K̄0, K̄0) = (K̄0, H ′K̄0) = R22,

and we’re done.

Theorem: If CP symmetry is respected, then R12 = R21.

Proof: By CPT, T must be a good symmetry if CP is.
Hence T̂H ′T̂−1 = H ′

†.

Now do exactly the same calculation as above Theo-
rem:

R12 = (K0, H ′K̄0) = (T̂−1K0, H ′T̂−1K̄0)

= (K0, H ′
†
K̄0)∗ = (H ′

†
K̄0,K0) = (K̄0, H ′K0) = R21.

Theorem: ε1 = ε2 = ε, where

ε =

√
R12 −

√
R21√

R12 +
√
R21

.

Proof: The independent solutions of the Wigner-Weisskopf
approximation equation are of the form e−λt |v〉, where |v〉
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is an eigenvector of R. By construction though, at time t =
0, the solution of the S equation is |K0

S〉 and the solution of
the L equation is |K0

L〉. Hence these must be eigenvectors
of R.
Writing |K0

S〉 and |K0
L〉 in the |K0〉 and |K̄0〉 basis, we have:

|K0
S〉 ∝

(
1 + ε1
−1 + ε1

)
, |K0

L〉 ∝
(

1 + ε2
1− ε2

)
.

Hence these are eigenvectors of R.

Using this fact, we have(
R11 R12

R21 R11

)(
1 + ε1
−1 + ε1

)
= µ

(
1 + ε1
−1 + ε1

)
,

where µ is some evalue. Separating this into two equa-
tions, and dividing to get rid of µ, we have an equation for
ε1. Recalling ε1 < 1, we can solve this equation to get

ε1 =

√
R12 −

√
R21√

R12 +
√
R21

,

as desired. In exactly the same way, we find ε2, which is
equal to ε1.

In particular, the final two Theorems show that if CP
is respected, then ε1 = ε2 = 0, i.e. there is no mixing.
This contradicts the experimental observations we noted
earlier.

6 Quantum chromodynamics

6.1 The QCD Lagrangian

Definition: Quantum chromodynamics (QCD) is an SU(3)
gauge theory, where SU(3) is the called colour symmetry.
The gauge bosons of the theory are called gluons. The
Lagrangian is given by:

LQCD = −1

4
F aµνFaµν +

∑
f

f(i /D −mf )f,

where f denotes all possible quark flavours: u, d, s, c, t
and b, and mf denotes their mass. The quarks here are in
the fundamental representation of SU(3), i.e.

f =

 fred
fgreen
fblue

 .

The covariant derivative here is Dµ = ∂µ + igAaµT
a, where

the iT a are the generators of the Lie algebra of SU(3). We
may choose

T a =
1

2
λa,

where the λa are called the Gell-Mann matrices (of which
there are 8, and hence there are 8 gluon fields).

Note that SU(3) is not spontaneously broken in the
Standard Model by the Higgs mechanism. Gluons are
therefore massless particles, just like photons.

Also note that the mass term for the quarks here
comes from their coupling to the Higgs boson; we saw this
in the electroweak theory.

6.2 Renormalisation of QCD

The parameters in the Lagrangian are not the physical
parameters we observe in experiments.

Definition: We relate the Lagrangian’s couplings
to physical couplings by renormalisation conditions:
g0i = G0

i ({gi(µ)}, µ), where µ is an energy scale.

The renormalised couplings depend on µ via a beta
function:

βj({gj(µ)}, µ) = µ
d

dµ
(gj(µ)).

Theorem: It can be shown that the beta function for the
coupling in a non-Abelian gauge theory is:

β(g) = −β0
g3

16π2
+O(g5),

where
β0 =

11

3
c− 4

3

∑
f

Tf .

Here, cδab = facdf bcd, where the fabc’s are the struc-
ture constants of the rep (note c = N for SU(N)) and
Tfδ

ab = Tr(taf t
b
f ), where the itaf are the generators of

the Lie algebra rep for the particle f (for a fermion in the
fundamental rep, Tf = 1

2 , and for a scalar particle in the
trivial rep, Tf = 0).

Proof: Beyond scope of course.

In our case, this expression gives us:

β0 = 11− 2

3
Nf ,

where Nf is the number of active quark flavours. We note
β0 > 0 for Nf ≤ 16 (depending on energy scale, more
quarks become activated, so Nf can vary between 1 and
6 depending on the problem we are solving).

Definition: The standard coupling used in QCD is
the strong coupling, given by αs = g2/4π in terms of the
coupling g above for a generic non-Abelian gauge theory.

Theorem: We have:

αS(µ) =
2π

β0 log(µ/ΛQCD)
,

where ΛQCD is the energy scale at which αS diverges.
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Proof: Using the beta function, we have

µ
dαS
dµ

=
dαS

d log(µ)
= −β0

2π
α2
S + · · · .

Therefore, integrating this equation we get:

αS(µ) =
2π

β0
· 1

log(µ/µ0) + 2π/β0αS(µ0)
.

This diverges at ΛQCD, hence:

log(ΛQCD) = log(µ0)− 2π

β0αS(µ0)
,

and the result follows.

Notice that for β0 the strong coupling decreases for
increasing µ. This property is called asymptotic freedom.
That is, the quarks are less strongly bound at higher
energies, but are more strongly bound at lower energies.
This means that we can’t use perturbation theory at the
lower energies we are interested in.

Free quarks are never seen at low energies, a prop-
erty called confinement.

6.3 e+e− → hadrons

Example: Consider annihilation of an electron and
positron to give quarks. We know that quarks can never
be seen alone (at low energies), and hence they must turn
into hadrons, a process called hadronisation.

The Feynman diagram for the process is:

e−

e+

Here, we get some non-perturbative mess after the
electrons interact.

The first vertex is just a QED vertex so has an easy
contribution. The second vertex is a coupling of quarks to
a photon, so we must use the hadronic electromagnetic
current from the electroweak theory, which recall has the
form:

Jµh =
∑
f

qffγ
µf,

where f sums over all quark flavours. If the final state is
X, the amplitude is then (where q = p1 + p2):

iA =
(−ie)2i
q2

〈X|Jµh |0〉 ve(p2)γµue(p1).

The cross-section (inclusive of all possible hadrons X) is
then:

σ(e+e− → hadrons) =
1

8p01p
0
2

1

4

∑
X

∑
spins

(2π)4δ4(q−pX)|A|2,

where the sum over X means:∑
X

=
∑

possible
hadrons X

∫
d4pX
2p0X

,

where pX is the momentum of the hadron species X.

In order to deal with |A|2 non-perturbatively, we intro-
duce the hadronic spectral density function:

Definition: The hadronic spectral density is defined
by

ρµνh (q) = (2π)3
∑
X

δ4(q − pX) 〈0|Jµh |X〉 〈X|J
ν
h |0〉 .

Theorem: We can write ρµνh (q) in the form:

ρµνh (q) = (−ηµνq2 + qµqν)θ(q0)ρh(q2),

where ρh(q2) is a scalar function and θ is the Heaviside
step function.

Proof: Note ρµνh is symmetric on µ, ν, so must be a
linear function of ηµν and qµqν be Lorentz covariance.
Furthermore, we can use the Ward identity (proved in
AQFT) which gives qµρ

µν
h = qνρ

µν
h = 0. Finally, since

states labelled by X have positive energy, ρµνh should
vanish for q0 < 0. The result follows.

Using this in the cross-section formula, we find that

σ(e+e− → hadrons) =
16π3α2

q2
ρh((p1 + p2)2),

where α is the fine structure constant, e2/4π.

Is it possible to actually calculate this function? No.
However, we can come up with models that allow us to
approximate it.

For example, we might consider X to actually be a
quark, anti-quark or gluon (these are called partons in this
context). Then we assume:∑

X

=
∑

X=f,f,g

This allows us to actually compute ρµνh and in turn ρh.
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6.4 τ decay into hadrons

Example: Consider τ decay into hadrons and a τ neutrino
via the weak hadronic current term:

LW = −GF√
2
Jhα
†
ντγ

α(1− γ5)τ.

Again, we can define spectral density functions via:∑
X

(2π)3δ4(PX − k) 〈0|Jhα |X〉 〈X|Jhβ
†|0〉

= kαkβρ0(k2) + (−ηαβk2 + kαkβ)ρ1(k2).

We need two spectral density functions because we don’t
necessarily have the Ward identity for this current (it
applies only to electromagnetic currents, coupled to the
photon).

Computing the decay rate, we get (after a lengthy
calculation):

Γ =
G2
Fm

3
τ

16π

m2
τ∫

0

dσ

(
1− σ

m2
τ

)2(
ρ0(σ) +

(
1 +

2σ

m2
τ

ρ1(σ)

))
.

If we somehow knew that the final hadron would be a pion,
we could find the spectral density functions. Recalling that
〈0|Jhα |π〉 = Vudi

√
2Fπpα, where Fπ is the pion decay con-

stant, we can find that

ρ0(σ) = 2F 2
π cos2(θC)δ(σ −m2

π), ρ1(σ) = 0,

where θC is the Cabibbo angle. Thus the final decay rate
for τ to a pion is:

Γ =
G2
Fm

3
τ

8π
F 2
π cos2(θC)

(
1− m2

π

m2
τ

)2

.

6.5 Deep inelastic scattering

Consider electron-proton scattering via exchange of a
photon in the deep inelastic scattering regime.

Definition: Deep refers to a high energy process.
Inelastic means that the electron’s energy can change
during the scattering process.

In general, a Feynman diagram for the process looks
like:

KINEMATICS: First deal with kinematics of problem. We
have:

Definition: Define the scattering angle by p · p′ =
|p||p′| cos(θ). Write also the electron energies as E = p0

and E′ = p′
0.

Since the electrons have mass negligible to the pro-
ton, treat them as massless.

Definition: Define Q2 = −q2, where q is the photon
momentum. Define ν = pH · q, where pH is the proton
momentum. Finally, define the dimensionless Bjorken
quantities by

x =
Q2

2ν
, y =

ν

pH · p
.

Theorem (Kinematics): We have (i) Q2 ≥ 0; (ii) Q2 ≤ 2ν;
(iii) 0 ≤ x ≤ 1 and (iv) 0 ≤ y ≤ 1.

Proof: (i) Note that q = p − p′ so that q2 = 2p · p′ =
2EE′(cos(θ)− 1) ≤ 0, and therefore Q2 ≥ 0.

(ii) In the rest frame of the proton, ν = M(E − E′) ≥ 0,
where M is the proton’s mass. Now by conservation of
momentum, the momentum of the final state X is:

pX = pH + q ⇒M2
X = M2 + 2ν −Q2. (∗)

Now note that by 3-momentum conservation,
q = pX , and also by energy conservation, we have√
M2
X + |pX |2 = |q| + M , which on squaring gives:

M2
X −M2 = |q|2 − |pX |2 + 2M |q| = 2M |q| ≥ 0. Therefore

M2
X ≥M2 and (ii) then follows from (∗).

(iii) follows immediately by (i) and (ii).

(iv) In the proton’s rest frame,

y =
ν

ME
.

which is clearly greater than 0. Also, recall ν = M(E−E′),
so

y = 1− E′

E
≤ 1.

and we’re done.

Definition: The deep inelastic limit of the problem is
to take Q2 → ∞, ν → ∞ (i.e. high energies) but keep x
and y finite.
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Let us now go ahead and calculate the cross section. The
amplitude is easily seen to be (by the Feynman rules):

iM = (−ie)2ue(p′)γµue(p)
(
−iηµν
q2

)
〈X|Jνh |H(pH)〉 .

Working in the rest frame of the proton, the flux factor is
|ve − vH | = 1, since electrons are massless in this regime
and the proton is stationary. The differential cross section
is then:

dσ =
1

4ME

d3p′

(2π)32E′

∑
X

(2π)4δ4(q+pH−pX) · 1
2

∑
spins

|M|2.

Write

1

2

∑
spins

|M|2 =
e4

2q4
Lµν 〈H|Jµh

†|X〉 〈X|Jνh |H〉 ,

where Lµν is the contribution from the electrons, given by

Lµν = Tr(/pγµ/p′γν) = 4(pµp
′
ν + p′µpν − ηµνp · p′).

Notice that Lµν is symmetric under µ↔ ν.

Also write:

Wµν
H =

1

4π

∑
X

(2π)4δ4(q + pH − pX) 〈H|Jµh
†|X〉 〈X|Jνh |H〉 .

Then
dσ

d3p′
1

8(2π)2
· 1

mEE′
· e

4

q4
LµνW

µν
H .

As is now standard, we use an argument based on Lorentz
invariance for the form of Wµν

H . Notice it is contracted with
Lµν , so we may as well assume it is symmetric (any anti-
symmetric part will vanish). We also have the Ward iden-
tity qµW

µν
H = 0 since it comes from an EM vertex. These

restrictions are enough to force:

Wµν
H =

(
−ηµν +

qµqν

q2

)
W1(ν,Q2)

+

(
pµH −

pH · q
q2

qµ
)(

pνH −
pH · q
q2

qν
)
W2(ν,Q2).

for some scalar functions W1 and W2.

Notice that qµLµν = 0 by the Ward identity too. Thus we’re
left with:

LµνW
µν
H = 4Q2W1 + 2M2(4EE′ −Q2)W2.

It follows that

dσ

d3p′
=

e4

8(2π)2MEE′q4
(4Q2W1 + 2M2(4EE′ −Q2)W2).

Writing this in terms of the Bjorken x and y, and taking the
DIS limit Q2 →∞ and ν →∞, we see that

LµνW
µν
H = 8EM

(
xyW1 +

1− y
y

νW2

)

The measure also becomes:

d3p′ = 2π(E′)2d cos(θ)dE′ = πE′dQ2dy = 2πE′νdxdy.

Therefore the final differential cross section is:

dσ

dxdy
=

8πα2ME

Q4

(
xy2F1 + (1− y)F2

)
,

where the functions F1 = W1 and F2 = νW2 are the
dimensionless structure functions of the proton.

6.6 The parton model

The parton model assumes that the photon interacts with
a single constituent of the proton. The leading order ap-
proximation in the parton model is then:

We assume we can write:∑
X

=
∑
X′

∑
f

1

(2π)3

∫
d4k̃θ(k̃0)δ(k̃2)

∑
parton spins

.

Here, the Heaviside function forces the parton to have pos-
itive energy, and the delta function forces it to be massless.

Inserting this expression in Wµν
H , we have

Wµν
H =

∑
f

∫
d4kTr(Wµν

f ΓH,f (pH , k) +W
µν

f ΓH,f (pH , k)),

where

ΓH,f (pH , k)βα =
∑
X′

δ4(pH−k−pX′) 〈H|fα|X ′〉 〈X ′|fβ |H〉 ,

and Γ is the same but with antiquarks, f . We can compute
the proton structure functions as:

F1(x,Q2) =
1

2

∑
f

q2f (f(x) + f(x)), F2(x,Q2) = 2xF1,

where qf are the charges of the partons (assumed to be
quarks here) and f(x) and f(x) are dimensionless func-
tions called parton distribution functions.

38


