Part IB: Complex Analysis Bonus Questions

Please send all comments and corrections to jmm232@cam.ac.uk.

1. Define $g: \mathbb{C} \rightarrow \mathbb{C}$ by $g(0)=0$ and $g(z)=e^{-1 / z^{4}}$ for $z \neq 0$. Show that g satisfies the Cauchy-Riemann equations everywhere, but is neither continuous nor differentiable at 0 .
2. Define the differential operators:

$$
\frac{\partial}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) \quad \text { and } \quad \frac{\partial}{\partial z}:=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) .
$$

(i) Prove that a C^{1} function f is holomorphic if and only if $\partial f / \partial \bar{z}=0$.
(ii) Show that:

$$
\Delta=4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}=4 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z}
$$

where $\Delta=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}$ is the usual Laplacian in \mathbb{R}^{2}.
(iii) Let $f: U \rightarrow V$ be holomorphic and let $g: V \rightarrow \mathbb{C}$ be harmonic. Show that the composition $g \circ f$ is harmonic.
3. Let $U \subseteq \mathbb{C}$ be open and let $f=u+i v: U \rightarrow \mathbb{C}$. Suppose that u and v are C^{1} on U as real functions of the real variables x, y, where $x+i y \in U$. Let $w \in U$ and suppose that the map f is angle-preserving at w in the following sense: for any two C^{1} curves $\gamma_{1}, \gamma_{2}:(-1,1) \rightarrow U$ with $\gamma_{j}(0)=w$ and $\gamma_{j}^{\prime}(0) \neq 0$ for $j=1,2$, the curves $\alpha_{j}=f \circ \gamma_{j}=u \circ \gamma_{j}+i v \circ \gamma_{j}$ satisfy $\alpha_{j}^{\prime}(0) \neq 0$ and

$$
\arg \frac{\alpha_{1}^{\prime}(0)}{\gamma_{1}^{\prime}(0)}=\arg \frac{\alpha_{2}^{\prime}(0)}{\gamma_{2}^{\prime}(0)}
$$

Show that f is complex differentiable at w with $f^{\prime}(w) \neq 0$. [You may find it useful to employ the operator $\partial / \partial \bar{z}$ in Q2.]
4. Use the (real) inverse function theorem (from the Analysis \& Topology course) to prove the following holomorphic inverse function theorem: if $U \subseteq \mathbb{C}$ is open, $f: U \rightarrow \mathbb{C}$ is holomorphic and $f^{\prime}\left(z_{0}\right) \neq 0$ for some $z_{0} \in U$, then there is an open neighbourhood V of z_{0} and an open neighbourhood W of $f\left(z_{0}\right)$ such that $\left.f\right|_{V}: V \rightarrow W$ is a bijection with holomorphic inverse. [Use the fact that holomorphic functions are C^{1}, i.e. have C^{1} real and imaginary parts; this is proved - in fact that holomorphic functions are infinitely differentiable - in the course.]

