Parton Distributions in the SMEFT

James Moore

27th May 2021

€ 990

1 / 32

27th May 2021

イロト イ団ト イヨト イヨト

James Moore

Structure of talk

- Background: PDFs, EFTs and the SMEFT
- **②** 'Standard' simultaneous determination of PDFs and SMEFT couplings
- Sefficient simultaneous determination of PDFs and SMEFT couplings

イロト イポト イヨト イ

Background: PDFs, EFTs and the SMEFT

990

イロト イヨト イヨト イヨト

James Moore

- Hadrons are bound states in QCD we cannot understand their structure perturbatively with current methods.
- Question: How do we make predictions for experiments involving hadrons?
- Consider this problem in the 'model' case: *deep-inelastic scattering* (DIS), pictured below. How can we obtain the cross-section without a perturbative description of the hadronic state |p⟩?

イロト イポト イヨト イ

- Idea: Feynman (1969) came up with the parton model to answer this question. In a frame where the proton is *ultra-relativistic*, time dilation causes the proton's constituents to interact very slowly - they appear free.
- Suggests that electrons instantaneously scatter off individual hadron constituents called *partons* (= part of a proton), now known to be quarks and gluons.

 Feynman's parton model implies that total cross-section can be written in the form

$$\sigma = \sum_{\substack{\text{parton species } 0\\ q \text{ in proton}}} \int_{0}^{1} dx \ f_q(x) \hat{\sigma}_q(x)$$

where:

- ► x is the fraction of the proton's momentum carried by the struck parton.
- ▶ \$\hat{\alpha}_q(x)\$ is the partonic cross-section the cross-section for electron-parton scattering, with the initial parton having momentum fraction x. This can be computed in perturbation theory.
- ► f_q(x) are parton distribution functions, representing the probability density that the struck parton is of species q and carries momentum fraction x. These are non-perturbative, but universal (only depend on proton structure).

Eventually the parton model was codified into a fully-fledged theory (*perturbative QCD*) derived from the basic principles of QCD. The key result is the *QCD factorisation theorem*, which for DIS states:

$$\sigma = \sum_{q} \int_{0}^{1} dx \ \hat{\sigma}_{q}(x) f_{q}(x, \mu^{2}) + \text{corrections suppressed by energy scale.}$$

▶ Important observation: full treatment in QCD implies that the PDFs acquire an additional dependence, $f_q = f_q(x, \mu^2)$, on an arbitrary scale called the *factorisation scale*. Similar to renormalisation scale, a simple equation (the *DGLAP equation*) governs the μ^2 dependence of PDFs:

$$\mu^2 \frac{\partial f_q}{\partial \mu^2}(x,\mu^2) = \sum_{q'} \int_x^1 \frac{dy}{y} P_{qq'}\left(\frac{x}{y}\right) f_{q'}(y,\mu_F^2).$$

Usually chosen to be energy scale, $\mu^2 = Q^2$ and the set of the

How are PDFs determined?

- PDFs non-perturbative \Rightarrow determined by *fits to data*.
- Basic outline:
 - PDFs written in some parametrisation at initial scale Q₀, e.g. NNPDF collaboration use *neural network* (advantage: unbiased).
 - 2 Evolved to all scales using DGLAP equation.
 - Minimising the goodness-of-fit statistic to experimental data at each scale then allows PDF parameters to be determined:

$$\chi^2 = (data - theory(PDFs))^T covariance^{-1}(data - theory(PDFs)).$$

イロト イポト イヨト イヨ

- ► Experimental error propagated by *Monte Carlo replica* approach.
- *N*_{rep} 'pseudodata' copies are made, and an ensemble of *N*_{rep} PDFs are created fitting to each copy of the pseudodata in turn, {*f*₁, *f*₂, ..., *f*<sub>*N*_{rep}} (here *f* = (*f*_u, *f*_d, *f*_s, ...)).
 </sub>
- Ensemble properties can then be derived, e.g.

$$\mathbf{f}_0 = \mathsf{mean} \; (\mathsf{central}) \; \mathsf{PDF} = rac{1}{N_{\mathsf{rep}}} \sum_i \mathbf{f}_i.$$

イロト 不得下 イヨト イヨト 二日

Important observation: Fitted PDFs depend on the theory in which the hard cross-section was computed:

$$\sigma = \sum_{q} \int_{0}^{1} dx \ \hat{\sigma}_{q}(x) f_{q}(x, Q^{2}).$$

Often the only *consistent* way of fitting is to determine both theory parameters and PDFs *simultaneously*.

• Toy example: To extract strong coupling $\alpha_S(m_Z^2)$:

$$\sigma = \sum_{q} \int_{0}^{1} dx \; (\hat{\sigma}_{\mathsf{LO}} + \alpha_{\mathsf{S}}(Q^2) \hat{\sigma}_{\mathsf{NLO}}) f_q(x, Q^2).$$

Fix PDFs \Rightarrow can scan $\alpha_S(m_Z^2)$ values. But PDFs were determined with some fixed value of $\alpha_S(m_Z^2)$!

Main question

- The above discussion applies also to parameters in beyond-the-Standard-Model theories (BSM theories).
- In BSM physics searches, researchers always assume PDFs are fixed to SM values ('black box PDFs') - this is inconsistent, but is it a problem?
- Care about this problem because important in *indirect searches for new physics*: small deviations from SM in high-energy observables.
- Motivates following key question:

To what extent does a consistent, simultaneous fit of PDFs and BSM parameters affect bounds on the BSM parameters?

イロト イポト イヨト イヨト

 PDF fitting group in Cambridge work with *effective field theories*, namely SMEFT, as BSM model of choice.

► An EFT is a *low-energy limit* of a renormalisable quantum field theory.

 Result is a Lagrangian with infinitely many terms, ordered in increasing powers of 1/Λ, where Λ is an energy scale where EFT breaks down - scale of 'New Physics'.

• Importantly: still renormalisable at any fixed order in $1/\Lambda$.

イロト 不得下 イヨト イヨト 二日

➤ ⇒ Can treat the SM as a low-energy limit of some unknown theory by adding on all possible non-renormalisable terms consistent with the SM symmetries and built from SM fields. The result is the *Standard Model effective field theory* (SMEFT):

$$\mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}} + \sum_{i=1}^{N_6} rac{1}{\Lambda^2} \mathcal{O}_i^{(6)} + \cdots$$

The SMEFT is sometimes called 'unbiased' as it should account for all possible renormalisable field theories of which it is is the low-energy limit.

Very difficult problem to classify which operators can appear in the expansion, however solved for dimension 6.

・ロト ・四ト ・ヨト ・

 Summary of four-fermion operators in the Warsaw basis given in table below (from arXiv:1008.4884).

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating				
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^TCu_r^{\beta}\right]\left[(q_s^{\gamma j})^TCl_t^k\right]$			
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^TCq_r^{\beta k}\right]\left[(q_s^{\gamma m})^TCl_t^n\right]$			
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[(d_{p}^{\alpha})^{T}\right]$	Cu_r^β]	$\left[(u_s^{\gamma})^T C e_t\right]$	
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$					

Image: A math a math

 Total number of operators in Warsaw basis: 59 with additional flavour symmetry assumptions, 2599 without.

Lots of parameters to fit! Ideally a *global simultaneous fit* of all couplings and PDFs at the same time, but this is impossible with current technology - instead, we focus on small numbers of couplings drawn from the SMEFT fitted simultaneously with PDFs.

ヘロト 人間ト 人団ト 人団トー

'Standard' simultaneous determination of PDFs and SMEFT couplings

Existing studies on PDF and SMEFT interplay

- So far, there have been two studies into the simultaneous determination of PDFs and SMEFT couplings:
 - Can New Physics Hide Inside the Proton?, 2019, arXiv:1905.05215 (Carrazza, Degrande, Iranipour, Rojo, Ubiali). Proof-of-concept study based on four four-fermion operators in DIS.
 - ▶ Parton distributions in the SMEFT from high-energy Drell-Yan tails, 2021, arXiv:2104.02723 (Greljo, Iranipour, Madigan, Moore, Rojo, Ubiali, Voisey). Study based on \hat{W} , \hat{Y} operators (and an additional operator, which we omit for time reasons) and high-energy Drell-Yan data, including projections for bounds when new high-luminosity data is available.
- Both studies based on the same 'standard' methodology (with small technical differences in how SMEFT sector is implemented).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Existing studies on PDF and SMEFT interplay

- To simultaneously fit PDFs and SMEFT parameters with the 'standard method', we do the following:
 - Pick a grid of 'benchmark points' in SMEFT parameter space, a₁, a₂, ..., a_n.
 - For each benchmark point a_i, perform a PDF fit using the standard NNPDF methodology with the SMEFT parameters fixed to the values a_i.
 - Record the χ^2 goodness-of-fit statistic of the PDF to the data at each point. Interpolate the χ^2 using an appropriate hypersurface (this is just a curve for one SMEFT parameter) and use this surface to derive bounds on the SMEFT couplings.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

In this study, the focus was instead on the W, Y operators, which arise as EFT corrections to electroweak gauge-boson self-energy and have an enhanced effect in high-energy Drell-Yan data.

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating				
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^TCu_r^{\beta}\right]\left[(q_s^{\gamma j})^TCl_t^k\right]$			
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$			
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T C u_r^eta ight]\left[(u_s^\gamma)^T C e_t ight]$			
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$					

- Bounds initially derived on \hat{W}, \hat{Y} using existing data:
 - DIS-only data
 - Drell-Yan data standard to PDF sets
 - ► New high-mass Drell-Yan data implemented for this study
- Shown explicitly that SMEFT corrections to high-mass DY predictions dominated, but SMEFT effects treated consistently in DIS data too.

 Resulting χ² parabolas given below for fixed SM PDFs and simultaneous fits:

 \blacktriangleright \Rightarrow bounds change! Roughly \sim 15% change in size of bounds.

イロト イポト イヨト イ

- More pronounced effect when projections are taken into account for the high-luminosity phase of the LHC, for energies of 14 TeV and luminosities of 6 ab⁻¹.
- ▶ Below: change in 68%, 95% bounds.

• \Rightarrow huge change! Around \sim 700% for \hat{W} , \sim 100% for \hat{Y}

James Moore

Efficient simultaneous determination of PDFs and SMEFT couplings

3

3.1

► Standard approach ⇒ BSM bounds can be affected by consistent simultaneous fits with PDFs, effect will grow in future.

▶ **Problem:** Standard approach very inefficient! Leads to new question:

Is there an efficient method to simultaneously determine PDFs and BSM parameters?

Proposal: Linearise the deviation of the SMEFT PDF from the naïve SM PDF:

$$\Delta \mathbf{f}(x, Q^2) = \mathbf{f}^{\text{SMEFT}}(x, Q^2) - \mathbf{f}^{\text{SM}}(x, Q^2) = \sum_{i=1}^{N} w_i \mathbf{h}_i(x, Q^2),$$

where $w_i \in \mathbb{R}$ are parameters called *weights* and \mathbf{h}_i are some suitable basis functions.

- The basis functions should be chosen to satisfy some key theory properties:
 - Both f^{SMEFT} and fSM satisfy the DGLAP equations, so h; should also satisfy DGLAP equations by linearity.
 - PDF sum rules imply that h_i should obey some non-trivial integral relations.

Conditions (1) and (2) are met by taking \mathbf{h}_i to be a *difference of* existing PDF replicas.

► For example, we can take the functional form:

$$\mathbf{f}^{\mathsf{SMEFT}}_{j} = \mathbf{f}^{\mathsf{SM}}_{j} + \sum_{i=1}^{N} w_{i,j} (\mathbf{f}^{\mathsf{SM}}_{i} - \mathbf{f}^{\mathsf{SM}}_{j}),$$

for the *j*th replica of the SMEFT ensemble. This should be thought of as an 'expansion of the *j*th SMEFT replica about the *j*th SM replica in a basis of PDF differences'.

► Using above, can be shown predictions take the form:

$$\sigma = \sigma^{\mathsf{SM}} + \mathbf{Pw} + \mathbf{Qa},$$

where \mathbf{P}, \mathbf{Q} are constant matrices, \mathbf{w} is the vector of weights for that replica, and \mathbf{a} is the vector of SMEFT couplings.

• Linearisation requires neglecting terms of order $O(\mathbf{a} \cdot \Delta \mathbf{f})$.

Thus we have linearised the problem of simultaneous determination. The form:

$$\sigma = \sigma^{\mathsf{SM}} + \mathbf{Pw} + \mathbf{Qa},$$

makes it clear that this is a simultaneous determination of PDFs (through weights \mathbf{w}) and SMEFT parameters (\mathbf{a}), where a change in one can be compensated by a change in the other.

When inserted into the χ² formula, all we need to do is to minimise a quadratic, which can be done *analytically* - extremely fast!

- However, naïve analytic minimisation can result in overfitting of PDFs.
- ► More weights ⇒ more PDF freedom ⇒ can overfit. Need to constrain size of weight space to avoid this.
- This can be achieved by a hyperoptimisation procedure. We introduce a regulator α into the χ² statistic given by:

$$\chi^2 \mapsto \chi^2 + \frac{1}{\alpha} \mathbf{w}^T \mathbf{w}.$$

As the regulator α decreases close to 0, the weights become increasingly penalised if they are too large. Thus the regulator α limits the effective size of the space that the weights span.

 Optimal value of α found by hyperoptimisation. Pseudodata split into training/validation sets and χ² monitored on both:

James Moore

27th May 2021 29 / 32

Results so far

- This method has undergone significant revision since its initial proposal. We have confirmed so far that:
 - When the SMEFT couplings are set to zero, the method reproduces the SM PDFs, so is self-consistent (note that this is not guaranteed without input from the hyperoptimisation procedure).

Preliminary plots: not necessarily final.

イロト イポト イヨト イヨト

Results so far

- This method has undergone significant revision since its initial proposal. We have confirmed so far that:
 - ► When we make fake data based on fixed, known SMEFT parameters, the method is able to return bounds enclosing the known values.

Preliminary plot: not necessarily final.

Still to come

 Benchmark new method against old studies - see if bounds are consistent with those found previously.

After that, can consider much more ambitious PDF-EFT interplay studies, with much larger numbers of operators!

Questions?

イロト 不得 トイヨト イヨト 二日