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Introduction to symmetry in field theories
Abstract

The Part III Symmetries, Fields and Particles course is about symmetry as applied to our modern theories of particle physics.
Whilst most of the course will focus on mathematics, in this introductory handout we will attempt to motivate why we need
the theory that follows.

We begin by discussing field theory, the language in which all modern particle physics is written. Field theories possess
two types of symmetries: external and internal symmetries (and in turn, internal symmetries can be classified as either global
or gauge symmetries). The fields in a field theory transform under representations of the external and internal symmetry
groups; this will be an important theme throughout the course.

In the second part of the handout, we describe in detail the symmetry properties of a specific field theory, namely the
Standard Model of particle physics.

1 Symmetry in field theories
All modern theories of particle physics are field theories, where the basic dynamical variables of interest are fields, defined as
follows:

Definition 1.1: Let M be a model of spacetime. A field is a map ϕ : M → N into some set N , called the target space of
the field.

This definition is a little bit silly, because it simply says, in the strict mathematical sense, a field is the same thing as a func-
tion. The important thing is the interpretation of the domain and codomain of this function; there is a contrast here with
particle theories, which are described by trajectoriesx : R → M taking values in spacetime.

Let’s try to be a little bit more specific by restricting the types of mathematical objects that the domain and codomain can
be (though be aware that these restrictions are not always appropriate):

• Typically, we take spacetime M to be some Lorentzian manifold.1 A manifold is a space which looks locally like Rn, and
where we can develop a theory of real multivariable calculus; manifolds are defined properly in a separate handout.
The word Lorentzian refers to the fact that there is a ‘local symmetric bilinear form’ (the metric) on this manifold, and
that this metric has signature (1,−1,−1, ...,−1). More details can be found in the Part III General Relativity course.

In Standard Model physics (where we ignore the possibility of curved spacetime) we take M = (R4, η), i.e. R4

equipped with the Minkowski metric η = diag(1,−1,−1,−1).

• The target space is normally taken to be some vector bundle; we will not develop this theory here, but more details can
be found in a differential geometry text.

Throughout this course, we will mainly focus on the case where M is Minkowski spacetime and N is a finite-dimensional
real or complex vector space.

With the basic definition of a field out of the way, we can give a broad definition of a symmetry of a field theory:

Definition 1.2: A symmetry of a field theory is a transformation of the fields which leaves all predictions of the theory
(e.g. cross-sections and decay rates) invariant.

1Whilst this might seem a very minimal assumption, this rules out lattice theories, for example.
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We now discuss two broad classes of symmetries of field theories.

Internal symmetries

One type of symmetry in a field theory is an internal symmetry, which only involves a transformation of the target space:

Definition 1.3: Suppose that ϕ : M → N is a field in a field theory with spacetime M and target space N . An internal
symmetry is is a transformationT : N → N of the target space such thatϕ 7→ T ◦ ϕ is a symmetry of the field theory.

A good example of an internal symmetry in a field theory is the colour symmetry of quarks:

Example 1.4: A quark is a fundamental particle, from which hadrons (such as protons and neutrons) are made. Quarks
arise as excitations of an underlying quark field which fills spacetime; let us write this field as q(x) (in fact, there are
different flavours of quark - so there are really fields for the up quark, down quark, etc, but we won’t worry about that
here). The quark field can be viewed as a map from Minkowski spacetime into a target space called the colour space,
q : M → C3 (actually, the space on the right hand side is a tensor product of C3 with other complicated ingredients
related to how quarks transform under weak isospin symmetry and Poincaré symmetries, but we’ll ignore those pieces
here). This means that we can view the quark field as being a vector-valued function:

q(x) =

qr(x)
qb(x)
qg(x)

 .

The components of the colour space are affectionately known as red, green and blue. If an excitation of the quark field is
completely aligned with the red direction, that excitation is referred to as a red quark, for example.

The theory built out of the quark field(s) (when all flavours are included) is called quantum chromodynamics. It is con-
structed so that the transformation:

q(x) 7→ Uq(x),

for any matrix U ∈ SU(3), is a symmetry of the theory - this symmetry is an example of an internal symmetry called
colour symmetry.

In order to insert interactions into the theory, we follow a procedure known as ‘gauging the symmetry’. The key step is to
demand that our ‘colour rotation’U is not just a global rotation of the colour space, but can instead vary smoothly from
point to point (so it is a local symmetry). That is, the quark fields instead transform as:

q(x) 7→ U(x)q(x),

whereU : M → SU(3) is now any smooth function from spacetime intoSU(3). Remarkably, this is still a symmetry
of the theory, provided that we introduce interactions between the quarks, mediated by a massless gauge boson called
the gluon. These interactions can be visualised using Feynman diagrams, for example, the diagram for quark-antiquark
fusion into a gluon is given in Figure 1.
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Figure 1: Quark-antiquark fusion to produce a gluon, keeping track of the conserved colour charge.

Applying Noether’s theorem to colour symmetry, we find that we get a conserved colour charge. Hence, colour must be
conserved in all interactions. For example, in Figure 1, we have shown a blue quark fusing with an antigreen (magenta)
antiquark, to produce a blue-antigreen gluon (gluons must carry two colours to ensure conservation of colour charge).

The above colour example shows us that we can make a further useful distinction between global internal symmetries and
local (or gauge) internal symmetries:2

Definition 1.5: If an internal symmetry is the same at all spacetime points, it is called a global symmetry. If an internal
symmetry varies smoothly between spacetime points, it is called a local or gauge symmetry.

External symmetries

Another natural way of generating symmetries of a field theory is to consider transformations of spacetime itself:

Definition 1.6: Suppose thatϕ : M → N is a field in a field theory with spacetimeM and target spaceN . An external
symmetry is a transformationT : M → M of spacetime such that:

ϕ 7→ R(T ) ◦ ϕ ◦ T−1

for some induced transformationR(T ) : N → N of the target spaceN .

The transformation law above, namelyϕ 7→ R(T )◦ϕ◦T−1, initially looks a little strange. There are two things that might
bother you:

• Why do we precompose the field withT−1? This ensures that the field takes the same value at the same point before
and after the transformation (up to the induced transformation of the target space); that is, the transformation is a
passive change of coordinates on spacetime. Explicitly, the field initially takes the value ϕ(x) at the point x ∈ M
before the transformation. After the transformation, the point x ∈ M is relabelled as T (x) ∈ M . The field adjusts
accordingly; the value of the transformed fieldϕ ◦ T−1 atT (x) ∈ M is stillϕ(T−1(T (x)) = ϕ(x).

2The particularly alert reader will have noticed that gauge symmetries are not actually internal symmetries in the way we have defined above. Indeed,
we said that an internal symmetry was a transformation purely of the target spaceN , i.e. a transformationT : N → N , so it cannot in fact know anything
about spacetime! This is remedied by replacing the field ϕ by the field ϕ̃ : M → M ×N , which satisfies ϕ̃(x) = (x, ϕ(x)). The ‘local’ transformation
ϕ(x) 7→ U(x)ϕ(x) can then be replaced by an honest, internal symmetry defined by the map T (x, ϕ(x)) = (x, U(x)ϕ(x)). We’ll completely ignore
this subtlety for now.

In fact, even the replacement of ϕ by ϕ̃ : M → M × N is, in general, a white lie; a proper discussion requires the replacement of ϕ by a new field
ϕ̃ : M → P , which maps into a fibre bundleP that looks locally likeM×N . The technicalities are discussed in David Skinner’s Part III Advanced Quantum
Field Theory notes, in the section on classical Yang-Mills theories.
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• How can it be the case that an external symmetry, i.e. a transformation of spacetime, somehow induces a transfor-
mation on the target space as well? This is most naturally seen when we consider vector-valued fields. For example,
consider the vector fieldϕϕϕ : R3 → R3. We can viewϕϕϕ as attaching a vector to each point of R3. Under a rotation of
the ‘spacetime’ R3, say v 7→ Av, it is natural to ask that the vectors attached to each of the points of R3 rotate in the
same way. Thus we should ask thatϕϕϕ transforms asϕϕϕ(·) 7→ Aϕϕϕ(A−1·). In this way, a ‘natural’ induced transformation
appears in the target space.

If we have a collection of external symmetries which we implement in our field theory, the associated induced transforma-
tions cannot be completely arbitrary. They must respect composition of external symmetries.

Proposition 1.7: LetT1, T2 : M → M be two external symmetries for a field theory with fieldsϕ : M → N . Then the
induced transformationsR(T1), R(T2) : N → N of the target space must obey:

R(T1) ◦R(T2) = R(T1 ◦ T2).

Proof: Simply consider applying the external symmetry T2 to the theory followed by the external symmetry T1, versus
applying the composed external symmetryT1 ◦ T2 all in one go.

WhenN is a vector space and the induced transformations are invertible linear maps, the above property makes the map:

R : {external symmetries} → {invertible linear mapsN → N}

a representation;3 we will study representations in great detail later in the course.

Specialising to particle physics, we are most interested in the case when M is Minkowski spacetime and N is a real or com-
plex finite-dimensional vector space. In this case, the natural transformations of spacetime are the Poincaré transformations
T(Λ,a) : M → M , given by

T(Λ,a)(x) = Λx+ a,

where a ∈ R4 is a four-translation and Λ is a Lorentz transformation matrix. Poincaré transformations are precisely the
transformations of Minkowski spacetime which preserve the Minkowski metric; we shall remind the reader of this fact later
in the course. Fields can be classified by which representation their induced transformations on target space follow:

Definition 1.8: Let ϕ : M → N be a field on Minkowski spacetime M , let N be a real or complex finite-dimensional
vector space, and suppose that under a Poincaré transformationT(Λ,a) we have:

ϕ 7→ R(T(Λ,a))ϕ ◦ T−1
(Λ,a),

for some matrixR(T(Λ,a)). We define the following types of fields:

• A scalar field has N = R or C and R(T(Λ,a)) = 1. We say that the field transforms in the trivial representation
under Poincaré transformations.

• A vector field hasN = R4 orC4 andR(T(Λ,a)) = Λ. We say that the field transforms in the vector representation
under Poincaré transfromations.

More general types of fields are possible; in order to discover these, we need to classify the possible representations of
the collection of Poincaré transformations. This may be covered later in the course; it is certainly covered in the first few
chapters of Weinberg’s excellent text The Quantum Theory of Fields, Volume I, otherwise.

3For those who already have exposure to group theory, observe that ‘representation’ is just a fancy word for ‘group homomorphism into the group of
automorphisms of a vector space’.
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2 Symmetry in the Standard Model of particle physics
The Standard Model of particle physics can be described in terms of its symmetries as a Poincaré-invariant4 SU(3)×SU(2)×
U(1) gauge theory with certain matter fields (to be described below), together with a scalar boson - called the Higgs boson -
which induces a symmetry-breaking mechanism reducing theSU(2)× U(1) symmetry to aU(1) symmetry.

To understand these words, we need to break down each of the pieces carefully:

• The fact that the theory is Poincaré invariant implies that the fields in the theory must be scalars, vectors, or spinors5

(which we shall meet later in the course, and which you shall also meet in Part III Quantum Field Theory), all of which
transform in different representations under Poincaré transformations. It is possible to show that when scalar fields
are excited they give rise to spin-0 particles, when vector fields are excited they give rise to spin-1 particles, and when
spinor fields are excited they give rise to spin- 12 particles.

• The set SU(3) × SU(2) × U(1) is called the gauge group6 of the Standard Model. As in the colour symmetry ex-
ample above, each factor of the gauge group contributes a massless gauge boson to the theory, which mediates some
interaction between the matter fields (described next). In particular:

– The factorSU(3) is called the colour symmetry group of the Standard Model. As we have already mentioned, the
massless gauge boson that arises from this gauge group is the gluon,g. There are 8 different types of gluon, each
carrying different combinations of the colour charge. The interaction mediated by the gluons is called the strong
interaction.

– The factors SU(2) × U(1) are collectively called the electroweak symmetry group of the Standard Model. It
comprises SU(2), called the weak isospin group, and U(1), called the weak hypercharge group. Both of these
have massless gauge bosons associated with them, but they do not appear in Nature! The reason for this is that
SU(2) × U(1) is broken in Nature by an asymmetry caused by the Higgs boson, h, so that only a U(1) gauge
symmetry remains.

The remaining factor U(1) contributes the familiar photon, γ, to the theory. The interaction mediated by the
photons is, of course, electromagnetism.

The broken part of the symmetry still contributes some bosons to the theory, but they are now massive bosons,
called the W+, W− and Z-bosons. The interaction mediated by the W+, W− and Z-bosons is called the
weak interaction.

• The matter content of the Standard Model consists of fields which transform under Poincaré transformations as spinor
fields (so they are spin- 12 fields, i.e. fermion fields). They are distinguished by their transformation properties under
SU(3)× SU(2)× U(1). We won’t go into detail here, but note:

– Coloured particles transform non-trivially underSU(3), whilst colourless particles transform trivially underSU(3).
Left-handed particles transform non-trivially under SU(2), whilst right-handed particles transform trivially under
SU(2). Electrically-charged particles transform non-trivially underU(1), whilst electrically-neutral particles trans-
form trivially underU(1).

– The Standard Model contains three ‘copies’ of each matter particle, which all transform in exactly the same way
under SU(3) × SU(2) × U(1). The only property that distinguishes these copies is the mass of each of the
particles. These three copies are called generations, and no-one knows why they exist.

– All of the following particles also come with respective anti-particles. Anti-particles are denoted by placing a bar
on top of the symbol for the particle, e.g. an anti-electron is denoted ē.

4When we say that a theory is Poincaré invariant, we typically mean that the theory is invariant under only Poincaré transformations which are connected
to the identity - we shall see that this means transformations such as parity and time-reversal are out. This is the sense in which we use the phrase Poincaré
invariant when describing the Standard Model.

5Technically, we can also have tensor fields, such as the hypothetical spin-2 graviton field gµν , however these theories become increasingly sick as the
number of tensor indices increases. In the Standard Model, there are only scalar, spinor and vector fields.

6We will define a group later in the course, for those who have not had prior exposure to group theory.
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– Quarks are coloured, electrically-charged particles. They can be left-handed or right-handed, both feature in
the Standard Model. There are two possible charges for quarks, either +2/3 for the up, u, charm, c, and top, t,
quarks (note the three generations - only mass distinguishes between up, charm and top quarks), and−1/3 for
the down, d, strange, s, and bottom, b, quarks (again, note the three generations).

– Charged leptons are colourless, electrically-charged particles. They can be left-handed or right-handed. They
each carry a charge−1, and in order of increasing mass they are electrons, e, muons,µ, and taus, τ .

– Neutrinos are colourless, electrically-neutral particles. They are only known to exist in their left-handed vari-
ety (right-handed neutrinos would not interact in the Standard Model). They are the electron neutrino, νe, the
muon neutrino, νµ, and the tau neutrino, ντ .

This completes our description of the Standard Model of particle physics, viewed in terms of its rich symmetry structure; a
summary of the particle content is given in Figure 2. During the course of Part III, you will deepen your understanding of this
structure; the Part III Symmetries, Fields and Particles course should provide a key step in that direction.

Summary of particles in the Standard Model

u

d

c

s

t

b

Quarks

νe

e

νµ

µ

ντ

τ

Leptons

γ

Z

W±

g

Gauge
bosons

h

Scalar
boson

Figure 2: The particles in the Standard Model of particle physics. See the text for more details.
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