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Elementary aspects of group theory
Abstract

Symmetries are codified mathematically in the subject of group theory. Naturally, the Part III Symmetries, Fields and Parti-
cles course will make a lot of use of this subject, so in this handout we will review some elementary aspects of the theory.

First, we review the basic definitions and notation used in group theory. We then give examples of some (hopefully
familiar) finite groups, which are occasionally useful in practice. We proceed to develop the theory by describing how one
can obtain new groups from old (by taking subgroups, quotient groups, and direct products), and maps between groups
(including homomorphisms and isomorphisms). Finally, we describe a more advanced construction, namely the semi-direct
product (which is useful in describing the structure of the Poincaré group, for example).

1 Groups: definitions and examples
For completeness, we begin by reminding ourselves of the definition of a group:

Definition 1.1: A group is a triple (G, ·, e) consisting of a set G, a distinguished element e ∈ G, and a binary operation
· : G×G → G such that the following axioms are obeyed:

(G1) Associativity. For all g, h, k ∈ G, we have (g · h) · k = g · (h · k).

(G2) Identity. For all g ∈ G, we have e · g = g · e = g. We say that e is an identity for the group.

(G3) Inverses. For all g ∈ G, there exists an element g−1 ∈ G such that g · g−1 = g−1 · g = e. We say that g−1 is
an inverse for the group element g.

Taken together, the axioms imply the uniqueness of the identity and the inverses in the group.

The group axioms are sometimes stated with the additional axiom of closure:

(G0) Closure. For all g, h ∈ G, we have g · h ∈ G.

This axiom is a little bit redundant, because the binary operation · : G ×G → G is defined to have codomain G. However,
it’s sometimes useful to bear in mind as an axiom when we are checking that something is a group, since we do indeed need
to check that the binary operation has the correct codomainG.

It is often the case that groups satisfy an additional axiom, commutativity, and hence we give these groups a special name:

Definition 1.2: A group (G, ·, e) is called Abelian if it satisfies the additional axiom:

(G4) Commutativity. For all g, h ∈ G, we have g · h = h · g.
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It’s also worth noting that there is some standard notation used in group theory:

• Suppose that (G, ·, e) is a group. If the identity is clear from context, we often abbreviate the group to (G, ·). If both e
and · are clear from context, we often simply abbreviate the group toG (hence it is common to refer to ‘the groupG’).

• We often omit the · in group products i.e. g · h = gh. This notation is almost universal, except for when the binary
operation is an addition operation + (e.g. addition of integers, vectors, etc.) - we then write g · h as g + h. Note that
if the binary operation is written as+, we additionally write the identity as 0, and the inverse g−1 as−g.

• We very often use power notation for products of group elements (except for when the group operation is written +).
The n-fold product of the group element g with itself, namely g · g · ... · g, n times, is often abbreviated to gn. The
n-fold product of the inverse element g−1 with itself, namely g−1 · g−1 · ... · g−1, n times, is often abbreviated to
g−n. Finally, we define the zeroth power of a group element to be the identity, i.e. g0 := e. With these definitions,
we have the standard rules for manipulation of exponents:

gngm = gn+m, gng−m = gn−m, etc.

Examples of finite groups

With our definitions and notation fixed, let’s see some examples of some familiar finite groups:

Example 1.3: The cyclic group of ordern, writtenCn, is defined to be the set:

Cn = {e, r, r2, ..., rn−1},

where elements are multiplied using the standard exponent rules described above, together with the rule rn = e.
Geometrically,Cn can be viewed as the set of all rotational symmetries of a regular planarn-gon; identifying r with an
anticlockwise rotation by 2π/n, we see that the rule rn = e tells us that an anticlockwise rotation by 2π takes us back
to our initial position.

Example 1.4: The dihedral group of then-gon, writtenDn, is defined to be the set:

Dn = {e, r, r2, ..., rn−1, s, sr, sr2, ..., srn−1},

where elements are multiplied using the standard exponent rules described above, together with the rules rn = e,
s2 = e and rs = srn−1. Geometrically, Dn can be viewed as the set of all rotational and reflectional symmetries of
a regular planar n-gon. Identifying r with an anticlockwise rotation by 2π/n, we see that the rule rn = e again tells
us that an anticlockwise rotation by 2π returns us to our initial position. Identifying s with a fixed reflection through
any axis of symmetry of the n-gon, we similarly see that the rule s2 = e tells us that reflecting twice in the same axis
returns us to our initial position.

The equation rs = srn−1 is a little trickier to interpret geometrically. It tells us that a reflection followed by an anti-
clockwise rotation by 2π/n is the same as a clockwise rotation by 2π(n− 1)/n followed by a reflection.

Example 1.5: The symmetric group onn symbols, writtenSn, is defined to be the set of all bijections:

π : {1, ..., n} → {1, ..., n},

together with the operation of function composition.
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Cayley tables

For groups of small order, it can be useful to visualise the group multiplication using Cayley tables, described as follows.

Definition 1.6: LetG be a finite group of ordern, and let (g1, ..., gn) be some ordering of its elements. The Cayley table
ofG (with respect to this ordering) is a matrix whose (i, j)th entry is the product gigj .

An example of a Cayley table is given below.

Example 1.7: A Cayley table forD3 is given by (appending an initial row and column to the matrix to help us keep track
of which elements are being multiplied to produce the entries):

e r r2 s sr sr2

e e r r2 s sr sr2

r r r2 e sr2 s sr

r2 r2 e r sr sr2 s

s s sr sr2 e r r2

sr sr sr2 s r2 e r

sr2 sr2 s sr r r2 e

One property of D3 that is immediately clear from the Cayley table is that it is a non-commutative group. This follows
immediately from the fact that the Cayley table is not symmetric about its leading diagonal.
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2 New groups from old
In mathematics, there are three fundamental constructions which can be used to construct new sets from old ones:

• We can take subsetsS′ ⊆ S.

• Given some equivalence relation∼on the setS, we can construct the quotient setS/ ∼, which consists of all equivalence
classes inS under the equivalence relation∼.

• Given two setsS1, S2, we can construct their Cartesian product,S1 × S2.

When we define additional mathematical structure on a set, we often ask the natural question: how can we take subsets,
quotients and products of instances of that structure, such that the resulting spaces inherit the same structure? In this sec-
tion, we carry out this analysis in the case of groups.

Subgroups

Let’s begin with the simplest set construction: taking subsets. We declare a subgroup to be a subset of a group which is a
group in its own right, with respect to the same binary operation as the ambient group:

Definition 2.1: Suppose that a subset H of a group G constitutes a group in its own right, with respect to the binary
operation ofG. We say thatH is a subgroup ofG, and we writeH ≤ G.

Every group possesses at least two subgroups: the improper subgroup is the whole group,G ≤ G, and the trivial subgroup
is the subgroup containing only the identity {e} ≤ G. We define a proper subgroup ofG to be a subgroup ofGwhich is
not improper, i.e. not G. We write H < G to mean that H is a proper subgroup of G. Similarly, we define a non-trivial
subgroup ofG to be a subgroup ofGwhich is not trivial, i.e. not {e}.

Checking all of the group axioms is tedious, so it would be very nice if we had some general criteria under whichH ⊆ G im-
pliesH ≤ G. Let’s begin by noting that for any subsetH , we will have associativity, i.e. for all g, h, k ∈ H , (gh)k = g(hk),
since this must be inherited from the groupG. Furthermore, since the identity and inverses of a given binary operation on a
group are unique, given a subsetH ⊆ Gwe haveH ≤ G if and only if:

(i) the identity is inH , e ∈ H ;

(ii) H is closed under the group multiplication, i.e. for all g, h ∈ H we have gh ∈ H ;

(iii) the inverse of any element g ∈ H is also contained inH , g−1 ∈ H .

The three conditions above can be further repackaged as the subgroup test, which we state and prove as follows.

Proposition 2.2: (The subgroup test) LetH ⊆ G be a subset of the groupG. We haveH ≤ G if and only if:

(i) H is non-empty,H ̸= ∅;

(ii) for all g, h ∈ H , we have gh−1 ∈ H .

Proof: SupposeH ≤ G. Then e ∈ H , soH is non-empty. For anyh ∈ H , we haveh−1 ∈ H sinceH is closed is taking
under inverses. Then by closure of the subgroupH , for all g, h ∈ H we have gh−1 ∈ H .

Conversely, suppose (i) and (ii). Since H is non-empty, there exists some g ∈ H , and hence by (ii) we have gg−1 =
e ∈ H . ThusH contains the identity. Now applying (ii) to the identity and a generic element g ∈ H , we have eg−1 =
g−1 ∈ H , so H is closed under taking inverses. Finally, suppose that g, h ∈ H are any two elements in H . Then
h−1 ∈ H , sinceH is closed under taking inverses; it follows by (ii) that g(h−1)−1 = gh ∈ H . ThusH is closed.
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The extra group structure that subgroups afford us (as opposed to considering generic subsets of a group) allows us to start
proving some interesting results. One of the most important ideas associated with subgroups is that they can be ‘transported’
around the group using the group multiplication:

Definition 2.3: LetGbe a group. Given a subgroupH ≤ G and an element g ∈ G, we define the left coset gH to be the
set gH := {gh : h ∈ H}, i.e. we apply g to all elements ofH (on the left). There is an obvious analogous definition of
a right coset,Hg. The set of all left cosets is called the left coset space, and is writtenG/H .

This indeed captures the notion of ‘transporting’ subgroups around the group; for example, if h ∈ H , then by multiplying
through by g ∈ G, we ‘transport’ this element to gh ∈ gH . Hence, under multiplication by g, the subgroup H is ‘trans-
ported’ to the left coset gH instead.

Similarly, we can transport left cosets to other left cosets. For example, given any element g1h ∈ g1H , under multiplication
by g2g−1

1 , we have g2g−1
1 g1h = g2h ∈ g2H , so the coset g1H is ‘transported’ into the left coset g2H .

There are some natural questions that this notion of transportation raises:

(i) Is the transportation surjective? We have seen that transporting g1H → g2H via multiplication by g2g−1
1 certainly

maps g1H into the coset g2H , but do we hit all elements of g2H?

(ii) Is there any overlap between the left cosets? That is, could g1H and g2H be distinct left cosets which overlap in some
region? In that case, our transportation would be much more disappointing - we might hope to map g1H → g2H ,
but some elements might just stay in the original set!

H

g2Hg1H

g3H

g1

g2g
−1
1

Figure 1: Using the group multiplication we can transport left cosets to other left cosets.

Fortunately both of these questions have straightforward answers: yes, the transportation is surjective, and no, there is no
overlap between distinct left cosets. This statement is precisely Lagrange’s celebrated theorem:

Theorem 2.4: (Lagrange’s Theorem) Let G be a group, and let H ≤ G be a subgroup. The left cosets of H obey the
following:

(i) There exists a bijection between any two left cosets ofH .

(ii) The left cosets ofH partitionG.
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Proof: (i) Let g1H, g2H be two left cosets of G. Then f : g1H → g2H given by f(x) = g2g
−1
1 x certainly

maps g1H into g2H . Next, observe that if f(x) = f(y), we have g2g
−1
1 x = g2g

−1
1 y. Multiplying on the left by

g1g
−1
2 , we see x = y and hence f is injective. Finally, note that for any g2h ∈ g2H , we have g1h ∈ g1H and

f(g1h) = g2g
−1
1 g1h = g2h, so f is surjective. Thus g1H, g2H are in bijection.

(ii) For anyg ∈ G, we haveg = ge ∈ gH sincee ∈ H , so all elements of the group are in some left coset. Next, suppose
that two left cosetsg1H, g2H intersect non-trivially (they ‘overlap’ in the above motivation); ifg ∈ g1H∩g2H , then we
have g = g1h1 = g2h2 for someh1, h2 ∈ H . In particular, this implies that g1 = g2h2h

−1
1 . Now letx = g1h ∈ g1H

be any element of the left coset g1H . Then x = g1h = g2h2h
−1
1 h ∈ g2H , and it follows that g1H ⊆ g2H . The

argument can clearly be run the other way to obtain g2H ⊆ g1H . It follows that the left cosets g1H , g2H are either
distinct or equal, and thus they must partition the groupG.

This has an immediate consequence for finite groups, also called Lagrange’s theorem:

Corollary 2.5: (Lagrange’s Theorem for finite groups) LetG be a finite group, and letH ≤ G be a subgroup. Then:

|G| = |H||G/H|,

so in particular the order ofH divides the order ofG.

Proof: This follows immediately from the more general form of Lagrange’s theorem. Since the left cosets ofH partition
G, we have:

|G| =
∑

|gH|

where the sum is over all distinct left cosets. But all left cosets are in bijection so have the same size; since eH = H
is itself a left coset, it follows that |gH| = |H| in all cases. There are |G/H| left cosets in total, and hence |G| =
|H||G/H| as required.

As a final note about subgroups, observe that since Lagrange’s theorem gives us a natural partition of the group for any given
subgroupH , we can construct an associated equivalence relation induced by the partition:

Definition 2.6: Given a subgroupH ≤ Gof a groupG, we define the subgroup equivalence relation∼H onGby declaring
g1 ∼H g2 if and only if g1, g2 are in the same left coset ofH . The equivalence classes are precisely the left cosets ofH
inG.

We can formulate this definition in a useful equivalent form:

Proposition 2.7: Let H ≤ G be a subgroup of a group G, and let ∼H be the subgroup equivalence relation. Then
g1 ∼H g2 if and only if g−1

2 g1 ∈ H .

Proof: Suppose that g1, g2 ∈ gH are in the same left coset. Then g1 = gh1, g2 = gh2 for some h1, h2 ∈ H , which
implies g2g−1

1 = (gh2)
−1(gh1) = h−1

2 g−1gh1 = h−1
2 h1 ∈ H .

Conversely, if g−1
2 g1 ∈ H , we have g−1

2 g1 = h for some h ∈ H , so g1 = g2h ∈ g2H . It follows that g1 is in g2H , and
clearly g2 = g2e ∈ g2H , so the two elements are in the same left coset.

The subgroup equivalence relation will be immediately useful for our next construction, quotient groups.
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Quotient groups

Let’s consider the next set construction, namely quotients of sets by equivalence relations. Given an equivalence relation ∼
on a group G, we would like to establish under what conditions the set G/ ∼ has a natural group structure, given by the
natural multiplication:

[a] · [b] = [ab],

where [a] denotes the equivalence class containing the element a ∈ G. Indeed, we can quickly establish conditions under
which this is true:

Proposition 2.8: Let ∼ be an equivalence relation on the group G. The quotient space G/ ∼ is a group under the
operation [a] · [b] = [ab] if and only if the equivalence relation is a subgroup equivalence relation, ∼H , for some
subgroupH obeyinggHg−1 ⊆ H for allg ∈ G (a subgroup obeying this special condition is called a normal subgroup).

Proof: Suppose thatG/ ∼ is a group under the given operation, and writeH = [e] for the equivalence class containing
the identity e. This equivalence class must be the identity for the quotient space G/ ∼, since [e] · [g] = [eg] = [g] for
all g ∈ G. In particular, we can deduce that inverses in the quotient group are given by [g]−1 = [g−1].

We claim that H = [e] is a subgroup. Note first that e ∈ H , and hence it is non-empty. Now for any a, b ∈ H ,
we have [a] = [b] = [e], and hence [ab−1] = [a] · [b]−1 = [e] · [e]−1 = [e]. Thus ab−1 ∈ H , and H is a
subgroup by the subgroup test. Furthermore, H is a normal subgroup, for suppose that g ∈ G and h ∈ H . Then
[ghg−1] = [g] · [h] · [g]−1 = [g] · [e] · [g]−1 = [e], and hence ghg−1 ∈ H .

Next, we claim that ∼ is the subgroup equivalence relation for H . We note that if a ∼ b, then we must have [b−1a] =
[b]−1 · [a] = [e], and so b−1a ∈ H . Conversely, if b−1a ∈ H , then [b] = [b] · [e] = [b] · [b−1a] = [a]. Thus we have
a ∼ b. It follows that∼ is indeed the subgroup equivalence relation forH .

It remains to prove the converse; we must show that if H ≤ G is a normal subgroup of G, then under the subgroup
equivalence relation∼H we have thatG/ ∼H is a group with the operation [a] · [b] = [ab]. First, we should show that
this operation is well-defined. Suppose that a1 ∼H a2 and b1 ∼H b2, so that a−1

2 a1 = ha and b−1
2 b1 = hb for some

ha, hb ∈ H . Then:
(a2b2)

−1(a1b1) = b−1
2 a−1

2 a1b1 = b−1
2 hab1 = b−1

2 hab2hb ∈ H,

sinceH is a normal subgroup, so b−1
2 hab2 ∈ H . It follows thata1b1 ∼H a2b2, and hence [a1] · [b1] = [a2] · [b2]. Thus

the group operation is well-defined.

Finally, we must show that this operation indeed makes G/ ∼H into a group. Closure is obvious, and associativity is
inherited fromG. Clearly we have an identity, [e], and finally the inverse of [g] is given by [g−1]. So we’re done.

We should emphasise that the fact G/ ∼ is a well-defined group if and only if ∼ is the subgroup equivalence relation of a
normal subgroup is an accident of group theory.

Indeed, for some other mathematical structures, there are no restrictions on when quotient spaces inherit the same mathe-
matical structure (e.g. topological spaces), whilst in others the ability to construct a quotient space doesn’t depend on some
substructure of the same type but on something entirely different (e.g. in ring theory the notion of ‘quotienting by a normal
subring’ makes no sense - instead, quotient rings are only well-defined if we have a different substructure called an ideal).
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Now we have decided when we can give a group structure to the quotient space, we bake these ideas into some definitions:

Definition 2.9: A normal (or invariant) subgroup is a subgroup H ≤ G such that gHg−1 ⊆ H for all g ∈ G. This is
denotedH ⊴ G.

Given a normal subgroup H ⊴ G, we define the quotient group G/H to be the quotient space G/ ∼H , together with
the group operation [g]·[h] = [gh] (note thatG/H is precisely the left coset space when∼ is the subgroup equivalence
relation, so the notation matches up with what we had before). That this is a well-defined group is a consequence of
the above work.

Some useful examples of normal subgroups and quotient groups include:

Example 2.10: For any group G, we always have {e} ⊴ G and G ⊴ G. One can easily verify that the corresponding
quotient groups are given byG/{e} ∼= G andG/G ∼= {e}.

Example 2.11: IfG is an Abelian group, then all subgroupsH ≤ G are normal. To check this, simply note that if g ∈ G
andh ∈ H , we have ghg−1 = hgg−1 = h ∈ H , since all elements commute.

In particular, given any subgroupH ⊴ G of an Abelian groupG, we can form the quotient groupG/H .

Example 2.12: The centre of the groupG, writtenZ(G), is the set:

Z(G) = {g ∈ G : hg = gh for allh ∈ H}.

In other words, Z(G) is the collection of elements of G which commute with all other elements of G. It is an Abelian,
normal subgroup; you will check this in the exercises at the end of the handout.

Since Z(G) ⊴ G, we can form the quotient group G/Z(G). You will show in the exercises at the end of this handout
that this is isomorphic to a special group of maps associated to the group, called the inner automorphisms of the group.

We have seen that whenever we can identify a normal subgroup of a group, we can reduce the study of the group to a smaller
quotient group instead. Iterating this process, we arrive at the most ‘fundamental’ groups, which have no (proper, non-trivial)
normal subgroups. These groups are of particular interest in group theory (especially finite group theory), and they have a
special name:

Definition 2.13: A groupG is called simple if it has no proper, non-trivial normal subgroups.
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Direct products

The final set construction is the direct product. Given two groupsG,H , we would like to produce a natural group structure on
their Cartesian productG×H . There are numerous ways of achieving this (in Section 4 we shall see a vast generalisation of
the construction presented here), but the easiest is to simply use component-wise multiplication of group elements:

Definition 2.14: LetG,H be groups. We define the direct product ofG,H to be the setG×H together with the binary
operation:

(g1, h1) · (g2, h2) = (g1g2, h1h2),

for all (g1, h1), (g2, h2) ∈ G×H .

We can straightforwardly show that the direct productG×H forms a group as follows:

Proposition 2.15: The direct productG×H of the groupsG,H is itself a group.

Proof: Certainly G × H is closed under the multiplication; this follows immediately from the definition of the oper-
ation and the closure of G,H separately. Similarly, the operation is associative because of the associativity of G,H
separately; for all (g1, h1), (g2, h2), (g3, h3) ∈ G×H , we have:

(g1, h1) ·
(
(g2, h2) · (g3, h3)

)
= (g1, h1) · (g2g3, h2h3)

= (g1(g2g3), h1(h2h3))

= ((g1g2)g3, (h1h2)h3)

= (g1g2, h1h2) · (g3, h3)

=
(
(g1, h1) · (g2, h2)

)
· (g3, h3).

An identity for the operation is given by (eG, eH) ∈ G × H , where eG ∈ G is the identity in G, and eH ∈ H is the
identity inH . This is an identity since for all (g, h) ∈ G×H , we have:

(eG, eH) · (g, h) = (eGg, eHh) = (g, h) = (geG, heH) = (g, h) · (eG, eH),

using the fact that eG is an identity forG, and eH is an identity forH . Finally, we note that (g, h) ∈ G×H has inverse
(g, h)−1 = (g−1, h−1) ∈ G×H , since:

(g, h) · (g, h)−1 = (g, h) · (g−1, h−1) = (gg−1, hh−1) = (eG, eH),

and similarly
(g, h)−1 · (g, h) = (g−1, h−1) · (g, h) = (g−1g, h−1h) = (eG, eH).

Thus all axioms are satisfied, andG×H is indeed a group under component-wise multiplication.
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3 Maps between groups
Aside from producing new natural instances of a mathematical structure from existing instances using the three standard
set constructions, another interesting question we can ask when we introduce a new mathematical structure is: what are
the natural structure-preserving maps between instances of our new mathematical structure? In the case of group theory,
there is little additional structure on top of our set - we just add in a binary operation. Therefore, we might say that a map
θ : G → H respects the structure of the groupsG,H if it simply respects the operations on the groups:

θ(g1g2) = θ(g1)θ(g2),

for allg1, g2 ∈ G. That is, θ is a map such that it doesn’t matter whether we perform multiplication of group elements in the
domain first then apply the map, or apply the map first then perform multiplication of group elements in the codomain.

In this section, we begin by studying this type of structure-preserving map, which we call a homomorphism between groups.
We then specialise to homomorphisms which are bijective, called isomorphisms. We conclude with some important isomor-
phism theorems which can help us prove various relations between groups.

Homomorphisms

Motivated by the above, we define a homomorphism as follows:

Definition 3.1: LetG,H be groups, and let θ : G → H be a function satisfying:

θ(g1g2) = θ(g1)θ(g2)

for all g1, g2 ∈ G. We say that θ is a homomorphism from the group G to the group H . In the special case G = H , we
call a homomorphism θ : G → G an endomorphism.

As anticipated, homomorphisms preserve various pieces of structure in the groups that we have previously defined:

Proposition 3.2: Let θ : G → H be a homomorphism between the groupsG,H . Then:

(i) (Identities) Let eG ∈ G be the identity ofG. Then θ(eG) ∈ H is the identity ofH .

(ii) (Inverses) Let g ∈ G have inverse g−1 ∈ G. Then the inverse of θ(g) ∈ H is given by θ(g)−1 = θ(g−1) ∈ H .

(iii) (Subgroups) LetK ≤ G be a subgroup ofG. Then the image θ(K) ≤ H is a subgroup ofH , and further, every
subgroup ofH is the image of some subgroup ofG under θ.

Proof: (i) Note θ(eG)2 = θ(e2G) = θ(eG). Multiplying on the left by θ(eG)−1, we have θ(eG) = eH , where eH ∈ H
is the identity inH .

(ii) We have θ(g)θ(g−1) = θ(gg−1) = θ(eG) = θ(g−1g) = θ(g−1)θ(g), so θ(g)−1 = θ(g−1) as required.

(iii) Let K ≤ G be a subgroup of G. Then eG ∈ K , so θ(eG) ∈ θ(K), and hence θ(K) is non-empty. Furthermore,
given θ(k1), θ(k2) ∈ θ(K), we have θ(k1)θ(k2)

−1 = θ(k1)θ(k
−1
2 ) = θ(k1k

−1
2 ) ∈ θ(K). Thus θ(K) ≤ H is a

subgroup ofH , by the subgroup test.

On the other hand, suppose that L ≤ H is a subgroup of H . Then θ(eG) = eH ∈ L, so eG ∈ θ−1(L); thus
the preimage θ−1(L) is non-empty. Now suppose that k1, k2 ∈ θ−1(L). Then θ(k1), θ(k2) ∈ L so θ(k1k

−1
2 ) =

θ(k1)θ(k
−1
2 ) = θ(k1)θ(k2)

−1 ∈ L since L ≤ H . Hence k1k
−1
2 ∈ θ−1(L), and it follows that θ−1(L) ≤ G is a

subgroup ofG, by the subgroup test.
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Some special cases of (iii) in the above proposition have names, which will be useful shortly:

Definition 3.3: Let θ : G → H be a group homomorphism. We define:

• The image of θ is the subgroup im(θ) := θ(G) = {θ(g) : g ∈ G} ≤ H .

• The kernel of θ is the subgroup ker(θ) := θ−1({eH}) = {g ∈ G : θ(g) = eH} ≤ G.

The kernel is particularly important, because it is a normal subgroup of G; this will allow us to construct the quotient group
G/ker(θ) shortly.

Proposition 3.4: Let θ : G → H . Then ker(θ) is a normal subgroup ofG.

Proof: We have already seen that ker(θ) ≤ G is a subgroup of G. Now note that given any g ∈ G and k ∈ ker(θ), we
have:

θ(gkg−1) = θ(g)θ(k)θ(g)−1 = θ(g)eHθ(g)−1 = θ(g)θ(g)−1 = eH .

Hence gkg−1 ∈ ker(θ), so it follows that gker(θ)g−1 ⊆ ker(θ). Hence ker(θ) is normal, as required.

Isomorphisms

An important special case of a homomorphism is an isomorphism between groups:

Definition 3.5: A bijective homomorphism θ : G → H between groups is called an isomorphism. In the special case
G = H , we call an isomorphism θ : G → G an automorphism.

If there is an isomorphism between two groupsG,H , then we say thatG,H are isomorphic. We write this asG ∼= H .

If two groups G,H are isomorphic, then we cannot tell them apart using only their group structure; from the point of view
of group theory, the two groups are identical, we have merely labelled their elements in different ways.

As an example of two isomorphic groups, consider the following:

Example 3.6: The set of integers modulo n, Zn = {0, 1, ..., n − 1}, forms a group under addition modulo n. Closure
is clear; associativity comes from the associativity of standard integer addition; the identity is 0 ∈ Zn; the inverse of
m ∈ Zn is−m (mod n) ∈ Zn.

We claim that Zn
∼= Cn. An isomorphism is given by ϕ : Zn → Cn, with ϕ(i) = ri. This is clearly a bijection;

furthermore, it is a homomorphism since for all i, j ∈ Zn we have:

ϕ(i+ j (mod n)) = ri+j (mod n) = ri+j = rirj = ϕ(i)ϕ(j).

where in the second equality we recall that rn = e, so the exponent can always be taken modulon.

11
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Isomorphism theorems

Proving that two groups are isomorphic can be made a little easier with the help of the following two theorems. The first
constructs an isomorphism from a given homomorphism:

Theorem 3.7: (The first isomorphism theorem) Let θ : G → H be a homomorphism. Then:

G

ker(θ)
∼= im(θ).

Proof: Defineϕ : G/ker(θ) → im(θ) byϕ(gker(θ)) = θ(g). Then:

• The map ϕ is well-defined. To see this, let g1, g2 be two representatives of the same left coset of ker(θ). Then
g−1
2 g1 ∈ ker(θ), so we have θ(g−1

2 g1) = e, which implies θ(g1) = θ(g2) using the properties of homomor-
phisms. Thusϕ(g1ker(θ)) = ϕ(g2ker(θ)). Furthermore, the map certainly has the correct codomain, im(θ).

• The map is injective, since θ(g1) = θ(g2) implies θ(g−1
2 g1) = e, so that g−1

2 g1 ∈ ker(θ). Thus g1, g2 are in the
same left coset of ker(θ), i.e. g1ker(θ) = g2ker(θ).

• The map is surjective, since givenh ∈ im(θ), there exists g ∈ Gwith θ(g) = h. Thenϕ(gker(θ)) = θ(g) = h.

• The map is a homomorphism. To see this, note:

ϕ(g1ker(θ) · g2ker(θ)) = ϕ(g1g2ker(θ)) = θ(g1g2) = θ(g1)θ(g2) = ϕ(g1ker(θ))ϕ(g2ker(θ)).

Henceϕ is a well-defined bijective homomorphism fromG/ker(θ) to im(θ). The result follows.

The second theorem we shall prove constructs an isomorphism between a group and the direct product of two of its sub-
groups (under some special conditions):

Theorem 3.8: (The direct product theorem) LetH,K ≤ G be subgroups of the groupG. Suppose that:

(i) For allh ∈ H, k ∈ K , we havehk = kh.

(ii) Given any g ∈ G, there existsh ∈ H and k ∈ K such that g = hk.

(iii) The two subgroupsH,K have trivial intersection,H ∩K = {e}.

ThenG ∼= H ×K ; that is,G is isomorphic to the direct productH ×K .

Proof: Define a map ϕ : H ×K → G given by ϕ(h, k) = hk. We shall show that this map is an isomorphism. First,
we note that it is a homomorphism, since:

ϕ((h, k) · (h′, k′)) = ϕ(hh′, kk′) = hh′kk′ = hkh′k′ = ϕ(h, k)ϕ(h′, k′),

using the commutativity of elements drawn fromH and drawn fromK (assumption (i)).

Next, we show that the map is injective; suppose that ϕ(h, k) = ϕ(h′, k′). Then hk = h′k′, which implies
k(k′)−1 = h−1h′. The left hand side is an element of K whilst the right hand side is an element of H . By (iii), these
two subgroups are trivially intersecting, and hence k(k′)−1 = e and h−1h′ = e, from which it follows that k = k′

andh = h′.

Finally, the map is clearly a surjection, since assumption (ii) tells us that any g ∈ G can be written as g = hk for some
h ∈ H and some k ∈ K . It follows that g = ϕ(h, k), and we’re done.

12
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4 Semi-direct products
In Section 2, we introduced a group structure on the Cartesian product G × H of two groups using component-wise mul-
tiplication, which we called the direct product of the groups. In general, we can obtain more interesting group structures on
G×H , and it is the goal of this section to introduce such a structure.

It is of course possible to impose arbitrarily silly group structures on G×H . This wouldn’t be very useful, however - we will
restrict the types of group structures which we shall endowG×H with by imposing the following natural conditions:

(1) G,H arise naturally as subgroups ofG×H . We should have subgroupsG×{e} ≤ G×H and{e}×H ≤ G×H ,
which are isomorphic toG andH respectively; that is, the group multiplication should obey:

(g1, e) · (g2, e) = (g1g2, e), (e, h1) · (e, h2) = (e, h1h2)

for all g1, g2 ∈ G andh1, h2 ∈ H .

(2) Elements ofG×H can be naturally factored. Multiplying an element ‘g ∈ G’, represented in the direct product by
(g, e) ∈ G × {e}, by an element ‘h ∈ H ’, represented in the direct product by (e, h) ∈ {e} ×H , we would like to
get the element ‘gh’, which should be interpreted as the element (g, h) ∈ G×H . Thus we impose the equation:

(g, e) · (e, h) = (g, h)

for all g ∈ G, h ∈ H . In this way, elements of G × H can be ‘factored’ into a product of an element from G and
an element from H . Note that this doesn’t work the other way around; multiplying (e, h) · (g, e) should give us the
element ‘hg’, which only has a natural corresponding element inH ×G.

These assumptions are enough to force the group multiplication to be of a very specific form, determined completely by two
mapsα : H ×G → G andβ : H ×G → H ; we can see this as follows. Note that to evaluate the generic product of group
elements, (g1, h1), (g2, h2) ∈ G×H we first ‘factor’ both terms using the second assumption:

(g1, h1) · (g2, h2) = (g1, e) · (e, h1) · (g2, e) · (e, h2).

Now since we want G × H to be a group, for closure we require (e, h1) · (g2, e) = (α(h1, g2), β(h1, g2)) for some
α(h1, g2) ∈ G and some β(h1, g2) ∈ H . This defines some functions α : H × G → G and β : H × G → H . We
can now evaluate the product in terms of the functionsα, β using our two basic assumptions:

(g1, h1) · (g2, h2) = (g1, e) · (α(h1, g2), β(h1, g2)) · (e, h2) = (g1, e) · (α(h1, g2), e) · (e, β(h1, g2)) · (e, h2)

= (g1α(h1, g2), e) · (e, β(h1, g2)h2) = (g1α(h1, g2), β(h1, g2)h2).

This shows that the group operation must be of the form:

(g1, h1) · (g2, h2) = (g1α(h1, g2), β(h1, g2)h2)

for some functionsα : H ×G → G andβ : H ×G → H .

So far we have shown that the group operation is necessarily of this form. It is also possible to derive some sufficient conditions
on the functionsα, β for the multiplication defined above to yield a group,1 but in practice two special cases suffice:

• The direct product corresponds to the special caseα(h1, g2) = g2,β(h1, g2) = h1. The group operation simplifies to
component-wise multiplication:

(g1, h1) · (g2, h2) = (g1g2, h1h2).

We already introduced this structure in Section 2.
1The general structure is called the external Zappa-Szép product viaα, β.
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• The semi-direct product corresponds to the special case β(h1, g2) = h1 (and with α obeying some extra sufficient
conditions which we shall describe below). In particular, this generalises the direct product construction described in
the previous bullet point. The group operation simplifies to:

(g1, h1) · (g2, h2) = (g1α(h1, g2), h1h2).

We have already seen that the first choice leads to a group structure on G ×H ; we shall now determine the conditions on
α in the second choice which lead to a group structure onG×H .

Proposition 4.1: Given groupsG,H and a mapα : H ×G → G, consider the Cartesian productG×H together with
the binary operation:

(g1, h1) · (g2, h2) = (g1α(h1, g2), h1h2).

The set G × H forms a group under this operation, with the multiplication obeying (g1, e) · (g2, e) = (g1g2, e) for
all g1, g2 ∈ G, and (e, h1) · (e, h2) = (e, h1h2) for all h1, h2 ∈ H , if and only if α satisfies the following additional
properties:

(i) α(h,−) : G → G is an automorphism for allh ∈ H ;

(ii) α(h1h2, g) = α(h1, α(h2, g)) for all g ∈ G andh1, h2 ∈ H .

Proof: First, let’s suppose that G × H is a group under the given operation, and that the operation obeys the given
condition. We begin by showing thatα(h,−) is an automorphism for fixedh ∈ H . Suppose thatα(h, g1) = α(h, g2)
for g1, g2 ∈ G. By definition of the operation, we have:

(e, h) · (g1, e) = (α(h, g1), h) = (α(h, g2), h) = (e, h) · (g2, e).

Since we assume that G × H is a group under the given operation, inverses exists, and hence we can multiply on the
left by (e, h)−1. We conclude that g1 = g2, soα(h,−) is an injection.

Next, note that given any g ∈ G, we have by the assumptions:

(α(h, α(h−1, g)), h) = (e, h) · (α(h−1, g), e) = (e, h) · (e, h−1) · (g, h) = (g, h).

Henceα(h, α(h−1, g)) = g, soα(h,−) is a surjection. It follows thatα(h,−) is a bijection.

To finish showing (i), it remains to show that α(h,−) is a homomorphism. We use associativity together with the as-
sumed condition:

(α(h, g1g2), h) = (e, h) · (g1g2, e) = (e, h) · (g1, e) · (g2, e) = (α(h, g1), h) · (g2, e) = (α(h, g1)α(h, g2), h),

so α(h, g1g2) = α(h, g1)α(h, g2). It follows that α(h,−) is a homomorphism. All in all, we have that α(h,−) is an
automorphism for eachh ∈ H .

Finally, we can demonstrate property (ii) using associativity and the assumed condition:

(α(h1h2, g), h1h2) = (e, h1h2) · (g, e) = (e, h1) · (e, h2) · (g, e) = (e, h1) · (α(h2, g), h2)

= (α(h1, α(h2, g)), h1h2).

It follows thatα(h1h2, g) = α(h1, α(h2, g)) as required.

14
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Now we prove the converse: assuming (i) and (ii), the given operation endows G × H with a group structure, where
the multiplication obeys the given condition. We trivially have closure since g1α(h1, g2) ∈ G, h1h2 ∈ H for all
g1, g2 ∈ G,h1, h2 ∈ H , by the closure ofG,H .

Next, note that we have associativity; we evaluate the product (g1, h1) · (g2, h2) · (g3, h3) in the following two ways:(
(g1, h1) · (g2, h2)

)
· (g3, h3) = (g1α(h1, g2), h1h2) · (g3, h3) = (g1α(h1, g2)α(h1h2, g3), h1h2h3),

and:

(g1, h1) ·
(
(g2, h2) · (g3, h3)

)
= (g1, h1) · (g2α(h2, g3), h2h3) = (g1α(h1, g2α(h2, g3)), h1h2h3).

These agree since α(h1, g2α(h2, g3)) = α(h1, g2)α(h1, α(h2, g3)) since, assuming (i), α(h1,−) is a homomor-
phism for eachh1 ∈ H , andα(h1, g2)α(h1, α(h2, g3)) = α(h1, g2)α(h1h2, g3) using (ii).

We now claim that the identity is (e, e). We note that:

(e, e) · (g, h) = (α(e, g), h).

Now α(e, g) = α(e2, g) = α(e, α(e, g)) by property (ii), and by property (i) injectivity of α(e,−) then implies
α(e, g) = g. Thus (e, e) · (g, h) = (g, h). On the other hand, we have:

(g, h) · (e, e) = (gα(h, e), h) = (g, h),

since by property (i),α(h,−) is a homomorphism so maps the identity to the identity.

Finally, we show that inverses exist. We have:

(g1, g2) · (α(g−1
2 , g−1

1 ), g−1
2 ) = (g1α(g2, α(g

−1
2 , g−1

1 )), e).

Now by property (ii), we have α(g2, α(g−1
2 , g−1

1 )) = α(e, g−1
1 ), then by the above discussion we have α(e, g−1

1 ) =
g−1
1 . It follows that we have produced the right inverse of (g1, g2). We also see that this is a left inverse for (g1, g2):

(α(g−1
2 , g−1

1 ), g−1
2 ) · (g1, g2) = (α(g−1

2 , g−1
1 )α(g−1

2 , g1), e).

Using property (i),α(g−1
2 ,−) is a homomorphism, so we have: α(g−1

2 , g−1
1 )α(g−1

2 , g1) = α(g−1
2 , e) = eas required.

All that remains is to show that the group multiplication obeys (g1, e) · (h1, e) = (g1h1, e) and (e, g2) · (e, h2) =
(e, g2h2) for all g1, h1 ∈ G1 and g2, h2 ∈ G2. We simply note:

(g1, e) · (h1, e) = (g1α(e, h1), e) = (g1h1, e),

using the property we derived above, and similarly using property (i) thatα(h1,−) is a homomorphism we have:

(e, h1) · (e, h2) = (α(h1, e), h1h2) = (e, h1h2).

HenceG1 ×G2 is indeed a group under this operation, and the given condition on the multiplication holds.
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Now we have proved that this more general operation endowsG×H with a group structure, provided we have conditions
(i) and (ii) in the above proposition, we can bake things into a definition. Before doing so, it is convenient to observe that
condition (ii) in the above, namely:

α(h1h2, g) = α(h1, α(h2, g))

can be interpreted as saying that the mapϕ : H → Aut(G) fromH into the set Aut(G) of all automorphisms ofG, given
byϕ(h) = α(h,−), is a homomorphism. In order for this to be the case, we require the set of all automorphisms to be a group
under composition of automorphisms; you will check this in the exercises at the end of this handout:

Proposition 4.2: Let G be a group, and let Aut(G) be the set of all automorphisms of G. Then Aut(G) is a group
under composition.

Proof: Left as an exercise to the reader, at the end of the handout.

This observation allows us to conveniently write the definition of the semi-direct product as follows:

Definition 4.3: Let G,H be groups, let ϕ : H → Aut(G) be a homomorphism, and write ϕh for the image of h ∈ H
underϕ (so thatϕh := ϕ(h) here). The setG×H together with the binary operation:

(g1, h1) · (g2, h2) = (g1ϕh1
(g2), h1h2)

forms a group called the semi-direct product ofG,H with respect toϕ. We use the notationG⋊ϕH to mean the setG×H
endowed with this binary operation.

A non-trivial example of semi-direct product is the following:

Example 4.4: The dihedral groups can be written as the semi-direct products of cyclic groups,Dn
∼= Zn ⋊ϕ Z2, where

ϕ : Z2 → Aut(Zn) is given byϕ0(x) = x,ϕ1(x) = −x.

To see this, define θ : Zn ⋊ϕ Z2 → Dn by θ(a, b) = rasb. This is clearly surjective and injective (e.g. note rasb = ra

for b = 0, and rasb = sr−a = srn−a for b = 1); it remains to show that it is a homomorphism. We have:

θ((a, b) · (a′, b′)) = θ(aϕb(a
′), bb′) = raϕb(a

′)sbb
′
= rarϕb(a

′)sbsb
′
.

Now if b = 0, we have rϕb(a
′)sb = ra

′
= sbra

′
. On the other hand if b = 1, we have rϕb(a

′)sb = r−a′
s = sra

′
=

sbra
′
. Thus in all cases we have θ((a, b) · (a′, b′)) = rasbra

′
sb

′
= θ(a, b)θ(a′, b′).
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✎ Exercises

Examples of groups

1. Consider the setR2 consisting of pairs of real numbers. For (x, y) ∈ R2, find which of the following operations make
R2 into a group (and if not, find why not):

(a) (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

(b) (x1, y1) · (x2, y2) = (x1x2, y1y2)

(c) (x1, y1) ◦ (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).

2. LetG be a set ofn× nmatrices.

(a) Prove that if G is a group under matrix multiplication and if one of the elements of G is a non-singular matrix
then all of the elements of G must be non-singular matrices. Conclude that the elements of G are either all
non-singular matrices or all singular matrices.

(b) Consider the set of 2× 2 singular matricesG of the form:(
x x
x x

)
(∗)

where x ∈ R and x ̸= 0. Prove that G is a group with respect to matrix multiplication. Determine the matrix
corresponding to the identity element ofG. Determine the inverse element of (∗).

New groups from old

3. Write down the Cayley table for the dihedral group D4. Enumerate the subgroups and the normal subgroups. Can
D4 be written as the non-trivial direct product of some of its subgroups?

4. LetZ(G) be the centre of the groupG.

(a) Show thatZ(G) is an Abelian subgroup ofG.
(b) Show thatZ(G) is a normal subgroup ofG.
(c) Find the centre ofD4 and construct the groupD4/Z(D4). Determine whether the isomorphism

D4
∼= [D4/Z(D4)]× Z(D4)

is valid.

Maps between groups

5. Identify a well known mathematical object that is isomorphic to R2\{(0, 0)} under the operation ◦, as defined in
Question 1(c). Similarly, identify a well known group that is isomorphic to the group defined in Question 2(b).

6. Recall that an automorphism is an isomorphism from a groupG to itself.

(a) Show that for any g ∈ G, the mapping Tg(x) = gxg−1 is an automorphism (called an inner automorphism),
wherex ∈ G.

(b) Show that the set of all inner automorphisms ofG, denoted by I(G), is a group.
(c) Show that I(G) ∼= G/Z(G), whereZ(G) is the centre ofG.
(d) Show that the set of all automorphisms ofG, denoted byA(G), is a group and thatI(G) is a normal subgroup

ofA(G). The quotient groupA(G)/I(G) is called the group of outer automorphisms ofG.
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