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Manifolds
Abstract

In the first handout, we mentioned that the types of groups in which we are typically interested in physics are Lie groups,
which are groups which can be ‘parametrised in terms of some smooth coordinates’ (the word ‘smooth’ implies some ability
to calculus on the group). In this handout, we make the notion of spaces which can be ‘parametrised by smooth coordinates’
precise; such spaces are called manifolds. This prepares the way for a full discussion of Lie groups later in the course.

The basic idea is that, locally, a manifold looks like an open subset of Rn; in particular, this allows us to port all defini-
tions from real multivariable calculus to the manifold, including notions such as smoothness. We begin by defining man-
ifolds and giving various examples. We then follow the standard sequence of steps when we define a new mathematical
structure: we begin by discussing how to obtain new instances of manifolds from existing instances, before discussing nat-
ural maps between manifolds. We close by discussing some useful properties that manifolds inherit from topology, namely
connectedness, path-connectedness, simply-connectedness and compactness.

1 Manifolds: definitions and examples
As described above, we would like a manifold to be a space which looks locally like an open subset ofRn. With this in mind,
we posit the following initial definition:

Definition 1.1: A topologicaln-manifoldX is a topological space satisfying the following axioms:

(M1) The topology onX is Hausdorff : given any two pointsp, q ∈ X , there exists open neighbourhoodsU ∋ p,V ∋ q
such thatU ∩ V ̸= ∅ (i.e. ‘points can be separated by open sets’).

(M2) The topology onX is second-countable: the topology is generated by a countable basis of open sets.

(M3) The topology on X is locally n-Euclidean: for all points p ∈ X , there exists an open neighbourhood U ∋ p on
which there is some homeomorphismϕ : U → ϕ(U) ⊆ Rn. The pair (U, ϕ) is called a chart, and the mapϕ is
called a set of local coordinates on the domainU . The inverseϕ−1 : ϕ(U) → U is called a parametrisation of the
domainU .

The integern is called the dimension of the topologicaln-manifold.1

X Rnϕ

Figure 1: A topologicaln-manifold is a topological space which looks locally like an open subset ofRn.

The first two axioms (M1) and (M2) are purely technical, and ensure the statements of some theorems are not too cluttered.
The important axiom realising our intuition was (M3).

1It can be shown using methods from algebraic topology that if a topological space is both a topological n-manifold and a topological m-manifold,
thenn = m; therefore, the dimension of a topologicaln-manifold is well-defined.
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Topological n-manifolds are not yet spaces on which we can do calculus. Suppose, for example, that we wish to define
smoothness of a real-valued function f : X → R on the topological n-manifold X at a point p. Reasonably, we might
declare that f is smooth at the point p ∈ X if there is some chart (U, ϕ) whose domain contains p such that the function
f ◦ ϕ−1 : ϕ(U) → R is smooth as a real, multivariable function (i.e. all its partial derivatives exist to all orders). We think
of f ◦ ϕ−1 as the ‘local coordinate expression of the function f ’.

However, this definition is a little unsatisfying. Suppose that we change coordinates about p, so that we now work with an-
other chart (V, ψ) whose domain contains p. Since our only assumption on ϕ and ψ is that they are homeomorphisms, the
most we can say about the ‘change of coordinates function’ ϕ ◦ ψ−1 : ψ(U ∩ V ) → ϕ(U ∩ V ) is that it is a continuous
function. In particular it does not follow that f ◦ ψ−1 = f ◦ ϕ−1 ◦ ϕ ◦ ψ−1 is necessarily smooth as a real, multivariable
function. Changing coordinates can change the smoothness of a function!

To remedy this, we restrict to a collection of charts where changes of coordinates are smooth. In particular, we choose some
subset of charts A = {(Uα, ϕα)}, whose domainsUα coverX , such that for any charts (Uα, ϕα), (Uβ , ϕβ), the transition
functionϕα ◦ ϕ−1

β is a smooth function in the sense of real, multivariable calculus. This fixes the problem, since if f ◦ ϕ−1
α

is smooth, then f ◦ ϕ−1
α ◦ ϕα ◦ ϕ−1

β is smooth by the chain rule.

Baking this into a definition, we have the following:

Definition 1.2: LetX be a topologicaln-manifold. A smooth atlas onX is a collection of chartsA = {(Uα, ϕα)}, whose
domainsUα coverX , such that for any charts (Uα, ϕα), (Uβ , ϕβ) the transition function:

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ)

is a smooth function in the sense of real, multivariable calculus.

X

Rn

ϕβ

ϕα

ϕα ◦ ϕ−1
β

Figure 2: A smooth atlas on a topologicaln-manifold is a collection of charts for which all transition functions, i.e. changes of
coordinates, are smooth (in the sense of real, multivariable calculus).

We can now define smooth functions on a topological n-manifold with respect to a smooth atlas, avoiding the problem we
described above.

Definition 1.3: LetX be a topologicaln-manifold, and let A be a smooth atlas onX . A function f : X → R is smooth
with respect toA if for some chart (U, ϕ) ∈ Awe have that f ◦ ϕ−1 : ϕ(U) → R is a smooth function in the sense of
real multivariable calculus.
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We are now in a good position; by choosing a special subset of charts on a topologicaln-manifold, we can reasonably begin
to talk about smooth functions. However, it is quite disappointing that our choice is arbitrary - would another choice have
led to the same set of smooth functions on the topologicaln-manifold?

To remove the arbitrariness, we introduce a natural notion of equivalence of smooth atlases:

Definition 1.4: LetX be a topologicaln-manifold and letA,B be smooth atlases onX . We say thatA,B are smoothly
equivalent if for all functions f : X → R, f is smooth with respect to A if and only if f is smooth with respect to B.
That is,A,B give rise to the same smooth functions onX .

Naturally, smooth equivalence of smooth atlases is an equivalence relation:

Proposition 1.5: Smooth equivalence of smooth atlases is an equivalence relation on the set of smooth atlases. We call
an equivalence class of smooth atlases a smooth structure.

Proof: Easy exercise.

Now, instead of saying that a function is smooth with respect to some arbitrary choice of smooth atlas, we can reliably say
that a function is smooth with respect to some smooth structure. This (finally) leads us to make the definition of a smooth
n-manifold:

Definition 1.6: A smoothn-manifold (henceforth abbreviated ton-manifold, or just manifold whenn is clear) is a topo-
logicaln-manifold equipped with a smooth structure. The integern is called the dimension of the manifold.

As an interesting aside, it turns out that topological1,2and3-manifolds can be given a unique smooth structure. Topological
n-manifolds withn ≥ 4 can be given multiple, inequivalent smooth structures.

Examples of manifolds

The most basic example of a manifold isRn itself.

Example 1.7: The standard topology on Rn is Hausdorff (since it is induced by a metric) and second-countable (a basis
for the topology is provided by balls with rational centres and rational radii). Given any point p ∈ Rn, we have that
(Rn, idRn) is a chart whose domain contains p. ThereforeRn is a topologicaln-manifold.

The chart (Rn, idRn) is a global chart since it covers all of Rn. In particular, {(Rn, idRn)} is trivially a smooth atlas on
Rn, since the only transition function is the trivial transition function. HenceRn can be made into ann-manifold, with
a representative of its smooth structure given by {(Rn, idRn)}.
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The above example allows us to immediately write down many related examples:

Example 1.8:

• Cn is a 2n-manifold. To see this, we simply note Cn = R2n, by writing each component of a vector in Cn in
terms of its real and imaginary parts.

• The space of n × n matrices over R, Matn(R), is an n2-manifold. Again, this is because we can identify
Matn(R) = Rn2

, simply by stacking all entries of a matrix in a column vector in some way.

• The space of n × n matrices over C, Matn(C), is a 2n2-manifold. This follows from the chain of equalities
Matn(C) = Cn2

= R2n2

, using both of the identifications in the previous two bullet points.

A less trivial example of a manifold is the circle,S1.

Example 1.9: Let S1 = {z ∈ C : |z| = 1} be the unit circle in the complex plane. We can endow S1 with the
subspace topology, inherited from its ambient space C = R2; in particular, its topology is therefore Hausdorff and
second-countable. We define two charts onS1:

• ϕ : S1\{1} → (0, 2π) given byϕ(eiθ) = θ for θ ∈ (0, 2π).

• ψ : S1\{−1} → (−π, π) given byψ(eiθ) = θ for θ ∈ (−π, π).

1
ϕ

(0, 2π) −1
ψ

(−π, π)

Figure 3: Two charts coveringS1. On their overlap, their transition functions must be smooth.

The existence of these charts shows thatS1 is locally 1-Euclidean, henceS1 is a topological 1-manifold. Furthermore,
{(S1\{1}, ϕ), (S1\{−1}, ψ)} is a smooth atlas onS1, since:

ϕ ◦ ψ−1 : (−π, 0) ∪ (0, π) → (0, π) ∪ (0, 2π), ϕ ◦ ψ−1(θ) =

{
θ if θ ∈ (0, π),
θ + 2π if θ ∈ (−π, 0),

is smooth, and similarly ψ ◦ ϕ−1 is smooth. It follows that S1 is a 1-manifold with {(S1\{1}, ϕ), (S1\{−1}, ψ)} a
representative of its smooth structure.
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2 New manifolds from old
Just as we described when we studied group theory, there are three basic constructions we can use to produce new math-
ematical objects from old ones: taking subsets, quotients and products. In the theory of manifolds, we can introduce the
notion of ‘submanifolds’ and ‘product manifolds’ as you might expect, but the idea of ‘quotient manifolds’ is unfortunately
rather complicated, and hence beyond the scope of the course.2

Embedded submanifolds

We would like to define an embedded submanifold3 to be a subset of a manifold which is a manifold in its own right, inheriting
the smooth structure of the ambient manifold in an appropriate way. The complication here is to decide what it means to
‘inherit the smooth structure of the ambient manifold’.

Our definition will be based on the following idea: to define an embedded submanifold Y of dimension m inside an n-
manifoldX (we say thatY has codimensionn−m in this case), we ask that about each point p ∈ Y , there is a chart (U, ϕ)
in some representative atlas of the smooth structure of the ambient manifoldX (in this way, we hope to inherit the smooth
structure fromX) such thatY ∩U is described by the restriction ofϕ to onlym of its components; equivalently, we ask that
n−m of the components ofϕ vanish onY ∩ U . Let’s make this precise:

Definition 2.1: LetX be an n-manifold. A subset Y ⊆ X is an embedded submanifold of codimension k if for all p ∈ Y
there exists a chart (U, ϕ)whose domain includesp, withϕ = (x1, ..., xn), in some representative atlas of the smooth
structure ofX such that:

Y ∩ U = {q ∈ U : x1(q) = ... = xk(q) = 0}.

That is,Y is locally (n− k)-Euclidean, through projections of charts drawn from an atlas in the smooth structure ofX .

X Rn
ϕ

Figure 4: About any pointp in an embedded submanifold of codimensionk, there is a chart drawn from a representative smooth
atlas in the smooth structure of the ambient in which the embedded submanifold is described by the vanishing ofk coordinates.

2To give an indication of what can go wrong, we note that quotients of a Hausdorff space are not necessarily Hausdorff. So deciding on when a quotient
of a manifold is a manifold is at least as hard as deciding when a quotient of a Hausdorff space is Hausdorff, which is a rather difficult problem!

3Unfortunately, the term submanifold on its own is already reserved in the mathematical literature for something slightly more general.

5



J. M. Moore, 2023

This definition does indeed result in the correct structure on Y . To prove this, it will be useful to first prove a small lemma
which characterises smooth equivalence of atlases in a slightly different way:

Lemma 2.2: Let A,B be two smooth atlases on the topological n-manifoldX . Then A,B are smoothly equivalent if
and only if for any charts (U, ϕ) ∈ A, (V, ψ) ∈ B, we have that the transition functions:

ϕ ◦ ψ−1 : ψ(U ∩ V ) → ϕ(U ∩ V ), ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V )

are smooth.

Proof: Suppose A,B are smoothly equivalent. Let ϕ = (x1, ..., xn); then each xi : U → R is obviously a smooth
function with respect to A (for any (U ′, ϕ′) ∈ A, we have that ϕ ◦ (ϕ′)−1 is smooth, and hence the projection of
this map onto any of its components is smooth), thus each xi : U → R is a smooth function with respect to B. In
particular,xi ◦ψ−1 : ψ(U ∩V ) → R is smooth for each i, soϕ ◦ψ−1 : ψ(U ∩V ) → ϕ(U ∩V ) is smooth. Similarly
ψ ◦ ϕ−1 is smooth.

For the converse, let f : X → R be smooth with respect to A. Given any chart (V, ψ) ∈ B, let {(Uα, ϕα)} ⊆ A be a
subset of charts drawn from A whose domains coverV . For any pointψ(p) ∈ ψ(V ), we haveψ(p) ∈ ψ(V ∩ Uα) for
someα. Thus we can write f ◦ ψ−1 = f ◦ ϕ−1

α ◦ ϕα ◦ ψ−1 onψ(V ∩ Uα). But f ◦ ϕ−1
α is smooth, andϕα ◦ ψ−1 is

smooth by assumption, so f ◦ ψ−1 is smooth atψ(p). It follows that f is smooth with respect to B. Similarly, if f was
smooth with respect toB, it would be smooth with respect toA, so we’re done.

We are now ready to prove the main result:

Proposition 2.3: LetX be an n-manifold, and let Y ⊆ X be a submanifold of codimension k. Then Y is naturally an
(n− k)-manifold.

Proof: Consider equippingY with the subspace topology. ThenY inherits Hausdorfness and second-countability from
X . Next, note that given p ∈ Y , by assumption there exists a chart (U, ϕ)whose domain contains p such that:

Y ∩ U = {q : x1(q) = ... = xk(q) = 0},

whereϕ = (x1, ..., xn). In particular, this implies that the restriction (Y ∩U, (xk+1|U , ..., xn|U )) is a chart onY ∩U .
It is obviously a bijection. Furthermore, it is continuous sinceϕ is continuous and the projection onto any coordinate is
continuous; similarly the inverse is continuous, since the map (xk+1, ..., xn) → (0, ..., 0, xk+1, ..., xn) is continuous,
andϕ−1 is continuous. Therefore,Y is locally (n− k)-Euclidean, and hence is a topological (n− k)-manifold.

Let {(Y ∩ Uα, (x
k+1
α |Uα

, ..., xnα|Uα
))} be the collection of all charts onY of this form. We claim that this is a smooth

atlas for Y , so can be taken as a representative of a smooth structure for Y . Certainly the domains of the charts cover
Y by construction, so it remains to check that transition functions are smooth. We note that the general transition
function takes the form:

(xk+1
α |Uα , ..., x

n
α|Uα) ◦ (xk+1

β |Uβ
, ..., xnβ |Uβ

)−1.

Suppose that these charts are inherited from charts (Uα, ϕα = (x1α, ..., x
n
α)) and (Uβ , ϕβ = (x1β , ..., x

n
β)) on X .

These may be drawn from different representatives of the smooth structure ofX , but by the lemma above, we must
haveϕα ◦ ϕ−1

β smooth since the two representative atlases are smoothly equivalent. The above transition function is
then is just pre-composed and post-composed with appropriate projections, hence it must be smooth.
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A particularly useful way of producing embedded submanifolds is by identifying open subsets of manifolds, which are always
embedded submanifolds:

Theorem 2.4: (The open subset theorem) An open subset Y ⊆ X of an n-manifoldX is an embedded submanifold
of codimension 0. In particular,Y is ann-manifold in its own right.

Proof: Given any point p ∈ Y , let (U, ϕ) be a chart about p in some representative smooth atlas A in the smooth
structure ofX . We would like to restrict the chart toY ∩ U ; to do so, we claim that:

A ∪ {(Y ∩ U, ϕ|Y ∩U )}

is also a smooth atlas in the smooth structure of X . To show this, suppose that f is smooth with respect to A. Then
f ◦ ϕ|−1

Y ∩U : ϕ(Y ∩ U) → R is certainly smooth, since it is simply the restriction of the smooth function f ◦ ϕ−1 to
ϕ(Y ∩ U). On the other hand if f is smooth with respect toA ∪ {(Y ∩ U, ϕ|Y ∩U )}, then it is obviously smooth with
respect toA. Therefore, we can without loss of generality take (Y ∩U, ϕ|Y ∩U ) as a chart about p. Using this chart, we
have:

Y ∩ (Y ∩ U) = {q ∈ Y ∩ U},

so by definitionY is an embedded submanifold of codimension 0.

Product manifolds

The construction of product manifolds is a little simpler, and proceeds exactly in the way you would expect:

Proposition 2.5: LetX,Y ben,m-manifolds respectively. ThenX × Y is naturally an (n+m)-manifold.

Proof: Certainly X × Y is a Hausdorff, second-countable topological space with respect to the standard product
topology. We now aim to produce a smooth atlas forX × Y .

LetA,B be representatives of the smooth structures ofX,Y respectively. Define:

C := {(U × V, (ϕ, ψ)) : (U, ϕ) ∈ A, (V, ψ) ∈ B}.

We claim that C is a smooth atlas forX × Y . Certainly charts of the form (U × V, (ϕ, ψ)) coverX × Y , since charts
of the form (U, ϕ), (V, ψ) coverX,Y respectively. It is also clear that (ϕ, ψ) : U × V → ϕ(U) × ψ(V ) is a bijec-
tion, is continuous in the product topology (since both ϕ, ψ are individually continuous), and has continuous inverse
(ϕ−1, ψ−1) : ϕ(U)× ψ(V ) → U × V (sinceϕ−1, ψ−1 are individually continuous). Furthermore, in general transi-
tion functions take the form:

(ϕ, ψ) ◦ ((ϕ′)−1, (ψ′)−1) = (ϕ ◦ (ϕ′)−1, ψ ◦ (ψ′)−1),

which are smooth sinceϕ ◦ (ϕ′)−1,ψ ◦ (ψ′)−1 are individually smooth.

We will need this construction when we look at Lie groupsG, because we would like to define the group operation to be a
smooth map fromG×G toG; in particular, we will needG×G to have some smooth structure.
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3 Maps between manifolds
Now we have defined manifolds and described how to obtain new instances of manifolds from existing instances, we can
begin defining natural maps between manifolds.

Smooth maps

When we initially defined manifolds, we motivated everything by the desire to define smooth maps f : X → R on topo-
logical manifolds X . We can now reasonably upgrade our definitions to smooth maps f : X → Y between manifolds
X,Y :

Definition 3.1: Let X,Y be manifolds, and let A,B be respective representatives of their smooth structures. We say
that a map f : X → Y is smooth if for all charts (U, ϕ) ∈ A and (V, ψ) ∈ B, we have:

ψ ◦ f ◦ ϕ−1 : ϕ(U ∩ f−1(V )) → ψ(f(U) ∩ V )

is a smooth map in the sense of real multivariable calculus. One can straightforwardly prove that the smoothness of
f : X → Y is independent of the representatives of the smooth structures ofX,Y chosen.

The set of smooth maps fromX toY is writtenC∞(X,Y ). The set of smooth maps fromX toR is writtenC∞(X).

Reassuringly, this matches up completely with the old definition which only applied to smooth maps f : X → R, since a
representative atlas for the smooth structure ofR is simply {(Rn, idRn)}.

Smooth maps have some basic properties, which will prove useful later in the course:

Proposition 3.2: We have the following:

(i) Iff : X → Y ,g : Y → Z are smooth maps between manifolds, theng◦f : X → Z is a smooth map between
manifolds.

(ii) Let (U, ϕ)be a coordinate chart in some atlas for the manifoldX . Then bothϕ : U → ϕ(U)andϕ−1 : ϕ(U) →
U are smooth maps between manifolds (recall the open subsetU is an embedded submanifold ofX).

Proof: Both (i) and (ii) are straightforward and left as an exercise to the reader.

Diffeomorphisms

As we described above, when two groups are isomorphic, we cannot tell them apart using only their group structure. We can
define a similar notion for manifolds, called diffeomorphism:

Definition 3.3: LetX,Y be manifolds. A smooth map f : X → Y which possesses a smooth inverse f−1 : Y → X
is called a diffeomorphism betweenX andY . If there exists a diffeomorphism betweenX andY , we say thatX andY
are diffeomorphic, and we writeX ≃ Y .

8



J. M. Moore, 2023

Diffeomorphism is the correct notion of ‘equivalence’ because there it induces a natural bijection between the smooth struc-
tures ofX and Y . In particular, if A = {(Uα, ϕα)} is a representative atlas for the smooth structure ofX , then f(A) :=
{(f(Uα), ϕα ◦ f−1)} is a representative atlas for the smooth structure ofY . Similarly, given a representative atlas for the
smooth structure ofY , we can construct a natural representative atlas for the smooth structure ofX .

A basic example of a diffeomorphism comes from the proposition above:

Example 3.4: Given a chart (U, ϕ) on a manifold, we have thatϕ : U → ϕ(U) is a diffeomorphism, sinceϕ is a smooth
map with a smooth inverse, by part (ii) of the proposition above.

More interestingly, but well beyond the scope of this handout, the Whitney embedding theorem tells us that any n-manifold
X is diffeomorphic to an embedded submanifold ofR2n.

4 Connectedness and compactness
Since manifolds are topological spaces, we can check whether they have particular topological properties. In this section,
we describe how connectivity and compactness properties transfer to the theory of manifolds from the theory of topological
spaces.

Connectivity of manifolds

We begin by reminding the reader of some of the connectivity properties of a topological space:

Definition 4.1: LetX be a topological space.

• We say thatX is disconnected if there exist open subsetsU, V ⊆ X such thatU ∩ V = ∅ (i.e.U, V are disjoint)
andU ∪ V = X (i.e.U, V coverX). We say thatX is connected if it is not disconnected.

• We say thatX is path-connected if for every two pointsx1, x2 ∈ X , there exists a continuous mapγ : [0, 1] → X
such that γ(0) = x1 and γ(1) = x2.

• We say thatX is simply-connected if it is path-connected and every continuous map γ : S1 → X from the circle
S1 into the spaceX is homotopic to a point. Informally, this means that any loop in the space can be continuously
deformed to a point. Formally, there exists a continuous mapF : S1 × [0, 1] → X such that:

F (x, 0) = γ(x), F (x, 1) = x1,

where x1 ∈ X is some fixed point. We view the second parameter inF as ‘time’, so that at time t = 0,F looks
like the loop γ, whilst at time t = 1,F looks like a constant curve.

These properties immediately transfer to manifolds; we say that a manifoldX is connected if it is connected as a topolog-
ical space, etc. When checking the connectivity properties of a manifold in practice, it is useful to remember the chain of
implications:

simply-connected ⇒ path-connected ⇒ connected.

However, recall that none of these implications reverse.
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For the examples of manifolds we described above, we have the following connectivity properties:

Example 4.2:

• Rn is simply-connected. Therefore,Cn, Matn(R) and Matn(C) are simply-connected too.

• S1 is path-connected, but is not simply-connected. Giving a rigorous proof that S1 is not simply-connected re-
quires some algebraic topology, which we consider beyond the scope of this handout. However, the reader should
be fairly satisfied that, intuitively, a loop which goes around the entire circle cannot be continuously deformed
to a point. On the other hand, any two points on the circle can be joined by a continuous path, so S1 must be
path-connected.

Compactness of manifolds

Another useful topological property that we can use to describe manifolds is compactness. This is usually defined in terms of
open covers of topological spaces:

Definition 4.3: An open cover of a topological spaceX is a collection of open subsets ofX , {Uα}, whose union isX . A
subcover {Vα} of an open cover {Uα} is an open cover such that {Vα} ⊆ {Uα}.

A topological spaceX is called compact if every open cover ofX has a finite subcover.

In most cases, we deal with manifolds which are embedded in some ambient Euclidean space (this will certainly be true of
the matrix Lie groups we shall describe later in the course). In this case, compactness can be characterised via two simple
conditions, using the Heine-Borel theorem:

Theorem 4.4: (The Heine-Borel theorem) LetS ⊆ Rn be a subset of Rn endowed with the subspace topology. Then
S is compact if and only if:

(i) S is a closed subset ofRn (in the topological sense);

(ii) S is a bounded subset of Rn; that is, there exists M such that S is fully contained in the ball of radius M , i.e.
S ⊆ {x ∈ Rn : ||x|| ≤M}.

Proof: The proof is technical, and is left to an undergraduate course in topology.

Example 4.5:

• The manifoldRn is non-compact. Therefore,Cn, Matn(R) and Matn(C) are also non-compact.

• S1 is compact, since it is a closed, bounded subset ofR2.

10


	Manifolds: definitions and examples
	New manifolds from old
	Maps between manifolds
	Connectedness and compactness

