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Lie groups
Abstract

In the previous handouts, we have prepared the way for the introduction of one of the most important objects of study of
the Part III Symmetries, Fields and Particles course, namely Lie groups. Formally, a Lie group is an object which is both a group
(as defined in an earlier handout) and a manifold (also defined in an earlier handout), where the group multiplication and
group inversion are smooth maps between manifolds. This naturally codifies the idea of a ‘group which can be parametrised
in terms of smooth coordinates’, the type of group that we have previously argued is most relevant in physical applications.

In this handout, we begin by clearly stating the definition of a Lie group and providing some basic examples. Next,
we describe various Lie group constructions (namely Lie subgroups and the direct product of Lie groups), before introducing
structure-preserving maps between Lie groups. In the penultimate section, we translate information about Lie groups into
the language of local coordinates about the identities of Lie groups. Finally, we review examples of matrix groups, which pro-
vide a plentiful source of interesting Lie groups for the rest of the course.

1 Lie groups: definitions and examples
We begin by defining Lie groups, combining the two structures we have defined previously:

Definition 1.1: A Lie group is a groupGwhich is also a manifold, such that the group multiplication · : G×G→ G and
group inversion (−)−1 : G→ G are smooth maps between manifolds.

We will shortly see many interesting examples of Lie groups in the form of matrix Lie groups. For now, we give some very basic
examples instead:

Example 1.2: (Rn,+) is a Lie group. Certainly (Rn,+) is a group, and Rn is an n-manifold as we saw above (with
a representative atlas {(Rn, idRn)}). It remains to show that the group addition and inversion are smooth maps
between Lie groups.

We note that the product manifold Rn × Rn has a representative atlas given by {(Rn × Rn, (idRn , idRn))}, so to
check that the group operation+ : Rn × Rn → Rn is smooth, it suffices to consider:

(idRn , idRn) ◦+ ◦ (id−1
Rn , id−1

Rn )(x1, x2) = x1 + x2.

This is clearly a smooth map in the sense of multivariable calculus, so it follows that indeed the group operation is
smooth. To check that group inversion (−)−1 : Rn → Rn is smooth, we simply note that:

idRn ◦ (−)−1 ◦ id−1
Rn (x) = −x

is a smooth map in the sense of multivariable calculus. So the group inversion is also smooth, and we’re done.

From this basic example, we can produce many more related examples:

Example 1.3: Cn, Matn(R) and Matn(C) are all Lie groups under addition.
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A slightly less trivial example of a Lie group is the circleS1, under multiplication of complex numbers:

Example 1.4: We showed in a previous handout that the circle S1 = {z ∈ C : |z| = 1} is a 1-manifold. It is also a
group under multiplication of complex numbers, since:

• Given z, w ∈ S1, we have |zw| = |z| · |w| = 1 · 1 = 1, so zw ∈ S1. It follows that S1 is closed under
multiplication.

• Multiplication of complex numbers is associative.

• 1 ∈ S1, which serves as an identity.

• The inverse of z ∈ S1 is given by 1/z, which is inS1 since |1/z| = 1/|z| = 1/1 = 1.

To show that S1 is a Lie group, it remains to show that multiplication · : S1 × S1 → S1 and inversion (−)−1 :
S1 → S1 in the group are smooth maps between manifolds. This requires a little more work since S1 is cov-
ered by two charts rather than just one; we saw earlier that a representative of the smooth structure is given by
{(S1\{1}, ϕ), (S1\{−1}, ψ)}, with:

ϕ(eiθ) = θ, θ ∈ (0, 2π),

ψ(eiθ) = θ, θ ∈ (−π, π).

To check that inversion is smooth, we should check that the four mapsϕ◦(−)−1◦ϕ−1,ϕ◦(−)−1◦ψ−1,ψ◦(−)−1◦ϕ−1

andψ ◦ (−)−1 ◦ ψ−1 are all smooth. To see this, note that:

(−)−1 ◦ ϕ−1(θ) = e−iθ, θ ∈ (0, 2π),

(−)−1 ◦ ψ−1(θ) = e−iθ, θ ∈ (−π, π).

Then we have:
ϕ ◦ (−)−1 ◦ ϕ−1(θ) = 2π − θ, ψ ◦ (−)−1 ◦ ψ−1(θ) = −θ,

and:

ψ ◦ (−)−1 ◦ ϕ−1(θ) =

{
−θ, θ ∈ (0, π),

2π − θ, θ ∈ (π, 2π),
ϕ ◦ (−)−1 ◦ ψ−1(θ) =

{
−θ, θ ∈ (−π, 0),
2π − θ, θ ∈ (0, π).

all of which are smooth maps.

The product manifoldS1 × S1 has a representative smooth atlas comprising four charts:{
(S1\{1} × S1\{1}, (ϕ, ϕ)), (S1\{1} × S1\{−1}, (ϕ, ψ))

(S1\{−1} × S1\{1}, (ψ, ϕ)), (S1\{−1} × S1\{−1}, (ψ,ψ))
}
.

With these charts identified, there are now eight coordinate maps we need to check for smoothness, to ensure that
multiplication · : S1 × S1 → S1 is indeed smooth, e.g. ϕ ◦ · ◦ (ϕ, ϕ)−1,ϕ ◦ · ◦ (ϕ, ψ)−1, etc. Indeed all of these are
smooth; we leave this as an exercise for the (slightly masochistic) reader. It follows that indeedS1 is a Lie group.
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2 New Lie groups from old
As usual, we can construct new Lie groups from existing instances of Lie groups by taking subsets and products, then appro-
priately endowing them with a Lie group structure.1

Embedded Lie subgroups

We begin by defining embedded Lie subgroups in the natural way:

Definition 2.1: LetG be a Lie group. An embedded Lie subgroupH ≤ G is a subgroup which is also an embedded sub-
manifold.

With this definition, an embedded Lie subgroup is naturally a Lie group in its own right:

Proposition 2.2: LetG be a Lie group of dimension n. An embedded Lie subgroupH ≤ G of codimension k is a Lie
group of dimensionn− k in its own right.

Proof: We already have that H is a group, since it is a subgroup, and it is a manifold of dimension n − k, since it is
an embedded submanifold of codimension k. Therefore, we need only show that the group operation and group
inversion onH are smooth functions between manifolds.

Recall that we can form a representative atlas on H of the form {(H ∩ Uα, (x
k+1
α |Uα

, ..., xnα|Uα
))}, where

(Uα, (x
1
α, ..., x

n
α)) are charts onG satisfying:

H ∩ Uα = {g ∈ Uα : x1α(g) = ... = xkα(g) = 0}.

In particular, the general coordinate expression for group inversion takes the form:

(xk+1
α |Uα , ..., x

n
α|Uα) ◦ (−)−1 ◦ (xk+1

β |Uβ
, ..., xnβ |Uβ

)−1.

SinceG is a Lie group, we have that (x1α, ..., xnα) ◦ (−)−1 ◦ (x1β , ..., xnβ)−1 is a smooth map; the above map is just this
map pre-composed and post-composed with appropriate projections, so must itself be smooth. Similarly multiplica-
tion inH is smooth.

In practice, a very useful tool in discovering embedded Lie subgroups is Cartan’s closed subgroup theorem. We will use this
theorem frequently when we discuss matrix Lie groups in the next section, but the proof is rather involved and is considered
beyond the scope of the course.

Theorem 2.3: (*Cartan’s closed subgroup theorem*) Let G be a Lie group. A subgroup H ≤ G is an embedded Lie
subgroup if and only ifH is closed (in the topological sense, rather than the group-theoretic sense).

Proof: Beyond the scope of the course.

1Quotients are beyond the scope of the course; see the discussion of quotient manifolds in a previous handout.
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Example 2.4: We can check that Rn−1 = {(x1, .., xn−1, 0) : xi ∈ R, i = 1, .., n − 1} ≤ Rn is an embedded Lie
subgroup in two ways:

• CertainlyRn−1 is a subgroup. It is also closed, since sequences with elements of the form (x1, ..., xn−1, 0) nec-
essarily tend to limits of the same form. Thus Rn−1 is an embedded Lie subgroup by the closed subgroup theo-
rem.

• On the other hand, instead of checking the closure ofRn−1 inRn, we could check it is an embedded submanifold.
Given any point (p1, ..., pn−1, 0) ∈ Rn−1, we have that (Rn, idRn) is a chart about (p1, ..., pn−1, 0) such that:

Rn ∩ Rn−1 = {x : xn = 0}.

Therefore,Rn−1 is indeed an embedded submanifold ofRn, of codimension 1.

Direct products of Lie groups

The direct product of Lie groups also forms a Lie group in the natural way.

Proposition 2.5: LetG,H be Lie groups. The Cartesian productG×H is a Lie group under the standard direct product
group structure, and the standard product manifold structure.

Proof: We just need to check that the group multiplication and group inversion are smooth maps between manifolds.
IfA,B are representative smooth atlases onG,H respectively, recall that:

C := {(U × V, (ϕ, ψ)) : (U, ϕ) ∈ A, (V, ψ) ∈ B}

is a representative smooth atlas on the product manifoldG×H . To check that inversion is smooth, note that a general
coordinate representation of (−)−1 : G×H → G×H with respect to this atlas is given by:

(ϕ1, ψ1) ◦ (−)−1 ◦ (ϕ2, ψ2)
−1 = (ϕ1 ◦ (−)−1 ◦ ϕ−1

2 , ψ1 ◦ (−)−1 ◦ ψ−1
2 ).

Both components on the right are smooth functions, so the left is a smooth function. Similarly for multiplication.
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3 Maps between Lie groups
In this brief section, we quickly describe the natural maps between Lie groups. The basic maps are defined in precisely the
way you would expect:

Definition 3.1: Let G,H be Lie groups. A Lie group homomorphism from G to H is a map θ : G → H which is both
smooth (when viewed as a map between manifolds) and a homomorphism (when viewed as a map between groups). In
the special case whereG = H , we call θ a Lie group endomorphism.

Definition 3.2: Let G,H be Lie groups. A Lie group isomorphism from G to H is a bijective Lie group homomorphism
θ : G→ H . In the special case whereG = H , we call θ a Lie group automorphism.

4 Local coordinates on Lie groups
Whilst the above abstract formalism is very nice, it is sometimes useful to have a coordinate description of the Lie group in
a neighbourhood of the identity. We can achieve this as follows.

Let G be a Lie group, and let (U, ϕ) be a chart whose domain contains the identity e. Without loss of generality, we may
assume the chart is centred at the identitye, so thatϕ(e) = 0; this is an immediate consequence of the following proposition.

Proposition 4.1: LetX be a manifold, and let A be a representative of its smooth structure. If (U, ϕ) is a chart whose
domain contains the point p ∈ X , then (U, ϕ− ϕ(p)) is a chart centred at p, and:

A′ = A ∪ {(U, ϕ− ϕ(p))}

is also a representative of the smooth structure onX .

Proof: First, note that ifϕ : U → ϕ(U) is a homeomorphism, thenϕ− ϕ(p) : U → (ϕ(U)− ϕ(p)) is also a homeo-
morphism, since translations are homeomorphisms and the composition of homeomorphisms is a homeomorphism.
Thus (U, ϕ−ϕ(p)) is indeed a chart. Furthermore, (ϕ−ϕ(p))(p) = ϕ(p)−ϕ(p) = 0, so this chart is indeed centred
at p.

It remains to show that A′ is a representative of the smooth structure on X . Clearly if f : X → R is smooth with
respect toA′, then f is smooth with respect toA. On the other hand, if f : X → R is smooth with respect toA, then:

f ◦ (ϕ− ϕ(p))−1 : (ϕ(U)− ϕ(p)) → R

is the composition f ◦ (ϕ − ϕ(p))−1 = f ◦ ϕ−1 ◦ ((−) + ϕ(p)), where (−) + ϕ(p) : ϕ(U) − ϕ(p) → ϕ(U) is
a translation so is smooth, and f ◦ ϕ−1 is smooth by assumption. In particular, it is smooth; thus A,A′ are smoothly
equivalent, and the result follows.

Thus, we have some local coordinates ϕ on a neighbourhoodU of the identity of our Lie group, centred at the identity. To
more clearly display this, let’s writeg(x) for the unique element ofU whose local coordinates are x ∈ ϕ(U), i.e.ϕ(g(x)) = x.
Since we assumeϕ(e) = 0, we have g(0) = e.
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We have now parametrised the group in a neighbourhood of the identity,U , in terms of some coordinates, x ∈ ϕ(U). We
might naturally ask: can we describe the group multiplication law in terms of these coordinates? Or: can we write down the
coordinates of the inverse of the group element g(x) ∈ U ? The answer to both these questions is yes, provided that we are
sufficiently close to the identity.

To see why there is a problem, suppose that g(x), g(y) ∈ U . In order to obtain a ‘coordinate description’ of the group multi-
plication, we would like to writeg(x)g(y) = g(µ(x, y)) for some coordinatesµ(x, y) ∈ ϕ(U). But this is only a well-defined
procedure if the product g(x)g(y) remains in U , so that it can be labelled by some coordinates µ(x, y) ∈ ϕ(U). Similar
considerations apply when taking the inverse.

As alluded to above though, we can avoid all problems by working very close to the identity:

Proposition 4.2: Let G be a Lie group, and let (U, ϕ) be a chart centred on the identity e ∈ G. Write g(x) for the
element ofU with coordinates x, i.e. the unique element satisfyingϕ(g(x)) = x.

For any integer n ≥ 2, there exists a sequence of open neighbourhoods of the identity, V1 ⊆ V2 ⊆ ... ⊆ Vn−1 ⊆
Vn = U , such that:

(i) For all g(x) ∈ Vi, we have g(x)−1 ∈ Vi+1, for i = 1, ..., n− 1.

(ii) For all g(x), g(y) ∈ Vi, we have g(x)g(y) ∈ Vi+1, for i = 1, ..., n− 1.

Proof: The construction is inductive. Suppose we have already constructed Vi+1, Vi+2, ..., Vn = U with the de-
sired properties. We need to construct Vi such that whenever g(x), g(y) ∈ Vi, we have g(x)−1 ∈ Vi+1 and
g(x)g(y) ∈ Vi+1.

Recall that the group multiplication, say m : G × G → G, is a smooth map between manifolds, so is in particular
a continuous map between topological spaces. Since Vi+1 is an open neighbourhood of the identity, it follows that
m−1(Vi+1) is an open neighbourhood of (e, e) inG×G, sincem(e, e) = e. By definition of the product topology, it
follows that we can write:

m−1(Vi+1) =
⋃
α

U1
α × U2

α

for some open subsetsU1
α, U

2
α ⊆ Gwith at least one α∗ such that (e, e) ∈ U1

α∗ × U2
α∗ . Fix such an α∗, and define

V ′
i = U1

α∗ ∩ U2
α∗ . ThenV ′

i is open since it is the finite intersection of open sets, and e ∈ V ′
i since e ∈ U1

α∗ , e ∈ U2
α∗ .

Note also thatU1
α∗ ⊆ Vi+1, sinceU1

α∗ = m(U1
α∗ ×{e}) ⊆ Vi+1; henceV ′

i ⊆ Vi+1. Finally,V ′
i ×V ′

i ⊆ m−1(Vi+1).

Similarly, recall that the group inversion, say i : G → G, is a smooth map between manifolds, so is in particular
a continuous map between topological spaces. Since Vi+1 is an open neighbourhood of the identity, it follows that
i−1(Vi+1) is an open neighbourhood of e, since i(e) = e. Let us define:

Vi = i−1(Vi+1) ∩ V ′
i .

Then Vi is open since it is the finite intersection of open sets, contains the identity since e ∈ V ′
i and e ∈ i−1(Vi+1),

and is such that i(Vi) ⊆ Vi+1 andm(Vi × Vi) ⊆ Vi+1. Finally,Vi ⊆ Vi+1 sinceV ′
i ⊆ Vi+1. The result follows.
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In particular, it follows that we can write:

g(x)g(y) = g(µi(x, y)), g(x)−1 = g(ιi(x)),

for some collection of mapsµi : ϕ(Vi)×ϕ(Vi) → ϕ(Vi+1), ιi : ϕ(Vi) → ϕ(Vi+1). This describes the group multiplication
law in local coordinates about the identity, as desired.

From now on, we will drop most of the notation, and simply say ‘for sufficiently small x’ whenever we need x to lie in Vi for
some i (e.g. if we need the product of three elements, we need to work with three nested open neighbourhoodsV1 ⊆ V2 ⊆
V3 = U , with the coordinates of all three elements lying inV1). For notational convenience, we drop the index onµi, ιi and
leave it implied.

Each of the group properties (identity, inverses, and associativity), and the fact that we are working with a Lie group, con-
tributes some structure to the mapsµ, ι:

Proposition 4.3: We have the following properties of the mapsµ, ι:

(i) µ, ι are smooth maps. More strongly, µ is an analytic function at the point (0, 0), and ι is an analytic function at
the point 0; that is, about these points,µ, ι are equal to their Taylor series.

(ii) For sufficiently small x, y, we haveµ(x, 0) = x andµ(0, y) = y.

(iii) For sufficiently small x, we haveµ(x, ι(x)) = µ(ι(x), x) = 0.

(iv) For sufficiently small x, y, z, we haveµ(x, µ(y, z)) = µ(µ(x, y), z).

Proof: (i) Smoothness follows immediately from smoothness of group multiplication and inversion as maps between
Lie groups. Explicitly, we recall that by definition:

µ = (ϕ, ϕ) ◦ · ◦ (ϕ, ϕ)−1, ι = ϕ ◦ (−)−1 ◦ ϕ−1,

so these are smooth by definition of a Lie group. Analyticity is much harder, and considered beyond the scope of the
course.

You will prove (ii), (iii) and (iv) as part of the exercises for this handout. They follow from the axioms of identity, inverses
and associativity respectively.
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5 Matrix Lie groups
A plentiful sources of Lie groups comes in the form of matrix Lie groups.2 The basic example isGL(n,C).

Definition 5.1: The general linear groupGL(n,F) over the field F is the set of n × n invertible matrices with entries in
F. In this course, we always takeF = R orF = C.

Proposition 5.2:GL(n,C) is a Lie group of dimension 2n2.

Proof GL(n,C) is a group: Given A,B ∈ GL(n,C), we have det(AB) = det(A) det(B) ̸= 0, since A,B are
invertible. Thus AB is invertible, and it follows that GL(n,C) is closed. Next, note that matrix multiplication is
associative, so the axiom of associativity is satisfied. Note that the identity matrix is in GL(n,C) since det(I) = 1,
and hence the axiom of identity is satisfied. Finally, ifA ∈ GL(n,C), we have thatA−1 is invertible with inverseA,
thusA−1 ∈ GL(n,C). It follows that indeedGL(n,C) is a group.

Proof GL(n,C) is a Lie group: Note that the determinant det : Matn(C) → C is a continuous map. Therefore,
det−1(C\{0}) = GL(n,C) is an open subset of Matn(C). It follows by the open subset theorem that GL(n,C)
is a 2n2-manifold. Furthermore, we know from the proof of the open subset theorem that a representative atlas on
GL(n,C) is inherited from Matn(C) simply by restricting the domains of charts on Matn(C). In particular, a global
chart onGL(n,C) is given byϕ : GL(n,C) → ϕ(GL(n,C))with:

ϕ


x11 + iy11 x12 + iy12 · · · x1n + iy1n
x21 + iy21 x22 + iy22 · · · x2n + iy2n

...
...

. . .
...

xn1 + iyn1 xn2 + iyn2 · · · xnn + iynn

 =



y11
y12

...
ynn
x11
x12

...
xnn


, (∗)

withxij , yij ∈ R. It follows immediately that the group inversion and group multiplication are smooth maps between
manifolds in this case, since both inversion and multiplication simply involve taking smooth functions of the real and
imaginary parts of the matrix entries. So we’re done.

The closed subgroup theorem now allows us to produce many Lie groups fromGL(n,C):

Definition 5.3: A matrix Lie group is a (topologically) closed subgroup ofGL(n,C). Equivalently, by the closed subgroup
theorem, any matrix Lie group is an embedded Lie subgroup ofGL(n,C).

Most straightforwardly,GL(n,R) is a matrix Lie group, since it is an closed subgroup ofGL(n,C):

Proposition 5.4: The general linear groupGL(n,R) is an embedded Lie subgroup ofGL(n,C); in particular, it is a Lie
group in its own right. It has dimensionn2.

2Though note that not all Lie groups are matrix Lie groups.
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Proof: Certainly GL(n,R) is a group, by the same argument we used for GL(n,C) above. It is also topologically
closed, since if Ai ∈ GL(n,R) is a sequence in GL(n,R) whose limit is A ∈ GL(n,C), then all the entries of A
must be real (since taking real parts is a continuous function). Hence the limit satisfiesA ∈ GL(n,R). It follows by
the closed subgroup theorem thatGL(n,C) is an embedded Lie subgroup ofGL(n,C).

Unfortunately, the dimension ofGL(n,R) is not provided by the closed subgroup theorem. We can instead compute
the dimension directly by constructing a chart on an open subset of GL(n,R). The global chart (GL(n,C), ϕ) de-
scribed in (∗) above immediately restricts to an appropriate chart, since:

GL(n,R) ∩GL(n,C) = {q ∈ GL(n,C) : ϕ1(q) = ... = ϕn2(q) = 0},

whereϕ = (ϕ1, ..., ϕ2n2). ThusGL(n,R) has dimension 2n2 − n2 = n2.

With the general linear groups GL(n,C), GL(n,R) defined, and proved to be Lie groups of dimension 2n2, n2 respec-
tively, we can introduce some more interesting matrix groups. This will be the focus of the rest of this section.

Special linear groups

Restricting to matrices which have unit determinant, i.e. those which preserve volumes, we obtain the special linear group:

Definition 5.5: The special linear groupSL(n,F) over the field F is the subset of matrices inGL(n,F) which have unit
determinant.

Proposition 5.6: SL(n,C) is a Lie group of dimension 2n2 − 2, andSL(n,R) is a Lie group of dimensionn2 − 1.

Proof: First, we show that SL(n,F) is a subgroup of GL(n,F). Certainly I ∈ SL(n,F), since I is invertible and
det(I) = 1; therefore,SL(n,F) is non-empty. Now letA,B ∈ SL(n,F). Then det(AB−1) = det(A)/det(B) =
1, since det(A) = det(B) = 1 forA,B ∈ SL(n,F). It follows thatAB−1 ∈ SL(n,F); thus by the subgroup test,
we haveSL(n,F) ≤ GL(n,F).

To show thatSL(n,F) is topologically closed inGL(n,F), letAi ∈ SL(n,F) be a sequence inSL(n,F), with limit
A ∈ GL(n,F). Sincedet is a continuous function, we have 1 = det(Ai) → det(A), thusdet(A) = 1, and it follows
that the limit is also inSL(n,F). ThusSL(n,F) is topologically closed inGL(n,F); therefore, by the closed subgroup
theorem, we have thatSL(n,F) is an embedded Lie subgroup ofGL(n,F).
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Again, the closed subgroup theorem does not immediately give us the dimension of SL(n,F). To find it, we should
exhibit some chart onSL(n,F). Recall that we already have a global chart onGL(n,C), given by (∗) above. We claim
that a compatible chart is given by:

ψ

Z =


x11 + iy11 x12 + iy12 · · · x1n + iy1n
x21 + iy21 x22 + iy22 · · · x2n + iy2n

...
...

. . .
...

xn1 + iyn1 xn2 + iyn2 · · · xnn + iynn


 =



Im(det(Z)− 1)
Re(det(Z)− 1)

y12
...
ynn
x12

...
xnn


.

This is a smooth map in the sense of multivariable calculus, since the real and imaginary parts ofdet(Z)−1are smooth
functions of the real and imaginary parts of the entries of Z ; therefore, this map must be invertible, at least in some
small neighbourhood of the identity. Furthermore,ψ ◦ ϕ−1 is obviously smooth in the sense of multivariable calculus,
whereϕ is the global chart onGL(n,C) given by (∗) above. It follows thatψ can be considered a chart in a compatible
smooth atlas onGL(n,C). Further, we note:

SL(n,C) ∩GL(n,C) = {q ∈ GL(n,C) : ψ1(q) = ψ2(q) = 0}

and
SL(n,R) ∩GL(n,C) = {q ∈ GL(n,C) : ψ1(q) = ψ2(q) = ... = ψn2+1(q) = 0}.

The dimensions ofSL(n,C) andSL(n,R) as Lie groups follow.

Orthogonal groups

The orthogonal groups provide a further interesting example of real matrix Lie groups.

Definition 5.7: The orthogonal group O(n) is the set of all n × n real matrices A satisfying ATA = I . The special
orthogonal groupSO(n) is the set of alln× n real matricesA satisfying bothATA = I anddet(A) = 1.

Recall that orthogonal matrices are interesting because they are the unique matrices which preserve the Euclidean norm. In
particular, they effect rigid-body transformations, namely rotations and reflections, in Euclidean space. For matrices inSO(n),
the condition that the determinant be positive implies that the transformations they effect are additionally orientation pre-
serving; in particular,SO(n) consists of all the rotations, andO(n)\SO(n) consists of all the reflections.

Naturally, both the orthogonal and special orthogonal groups are Lie groups:

Proposition 5.8: The orthogonal group O(n) and special orthogonal group SO(n) are embedded Lie subgroups of
GL(n,R). In particular, they are Lie groups in their own right. We havedim(O(n)) = 1

2n(n−1)anddim(SO(n)) =
1
2n(n− 1).
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Proof: The proofs that O(n), SO(n) are groups is left as an exercise to the reader. To see that O(n) is topolog-
ically closed in GL(n,R), note that given a sequence An ∈ O(n) with limit A ∈ GL(n,R) we have that
I = AT

nAn → ATA sinceAn 7→ AT
nAn is a continuous function; thereforeATA = I , and it follows thatO(n) is

topologically closed. Similarly SO(n) is topologically closed inGL(n,R). Thus by the closed subgroup theorem, we
have thatO(n), SO(n) are Lie groups.

Computing the dimensions ofO(n), SO(n) is left as an exercise to the reader at the end of the handout; again, it can
be done by exhibiting charts (this time it is useful to consider a chart on GL(n,R) with entries given by all possible
inner products of the columns of the preimage matrix). However, it is worth pondering why these groups have the
same dimension, even thoughSO(n)ostensibly has an additional ‘condition’ imposed upon its elements of having unit
determinant.

Unitary groups

Unitary groups are the complex analogues of orthogonal groups.

Definition 5.9: The unitary groupU(n) is the set of all n × n real matricesA satisfyingA†A = I . The special unitary
groupSU(n) is the set of alln× n real matricesA satisfying bothA†A = I anddet(A) = 1.

Similarly,U(n) andSU(n) are Lie groups:

Proposition 5.10: The unitary groupU(n)and special unitary groupSU(n)are embedded Lie subgroups ofGL(n,C).
In particular, they are Lie groups in their own right. We havedim(U(n)) = n2 anddim(SU(n)) = n2 − 1.

Proof: The proof is similar toO(n), SO(n) and is left as an exercise to the reader. In particular, the proof of the dimen-
sionality of the groups is left as an exercise at the end of the handout.
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✎ Exercises
A (∗) denotes a more difficult exercise.

Local coordinates on Lie groups

1. Let(U, ϕ)be a chart on a Lie group whose domain is centred on the identitye. Write the element ofU with coordinates
x ∈ ϕ(U). In a sufficiently small neighbourhood of the identity, write:

g(x)g(y) = g(µ(x, y)), g(x)−1 = g(ι(x)),

whereµ is an analytic function at (0, 0), and ι is an analytic function at 0.

(a) Why mustµ(x, 0) = x andµ(0, y) = y? Why mustµ(x, ι(x)) = µ(ι(x), x) = 0?
(b) Explain why the Taylor series ofµ(x, y) about (0, 0) takes the form:

µa(x, y) = xa + ya + cabcx
byc +O(x2y, xy2) (†)

for some coefficients cabc. Determine the Taylor series of ι(x) up to orderO(x3) in terms of cabc.
(c) Explain whyµ(x, µ(y, z)) = µ(µ(x, y), z). (∗) Using an expansion to one higher order than (†), prove the Jacobi

identity:
frst f

s
uv + frsu f

s
vt + frsv f

s
tu = 0,

where fabc := cabc − cacb.

Matrix Lie groups

2. (a) Prove thatSO(2) is an Abelian group.
(b) IsO(2)Abelian or non-Abelian? If the latter, exhibit twoO(2)matrices that do not commute.

3. Check that the orthogonal groupO(n) and the unitary groupU(n) are groups. Verify thatO(n) andSO(n) are the
subgroups of real matrices inU(n)andSU(n) respectively. By considering the action ofU(n)onCn, and identifying
Cn withR2n, show thatU(n) is a subgroup ofO(2n). (∗) Show further thatU(n) is a subgroup ofSO(2n).

4. (a) Show thatSO(n) is a normal subgroup ofO(n).
(b) If n is odd, show that Z2

∼= {In,−In} is a normal subgroup ofO(n), where In is the n × n identity matrix.
Prove thatO(n) can be written as a direct product,O(n) ∼= SO(n)× Z2.

(c) Explain why the results of (b) do not hold forn even. (∗) Prove that whenn is even, we can writeO(n) as a semi-
direct product,O(n) ∼= SO(n)⋊ϕ Z2, for some homomorphismϕ : Z2 → Aut(SO(n)) to be determined.

5. Suppose that we construct a matrixM ∈ O(n) column by column, from left to right. Explain why the first column is
an arbitrary unit vector, the second is a unit vector orthogonal to the first column, ..., the kth column is a unit vector
orthogonal to the span of the first k − 1 columns, etc. Deduce the dimension of O(n) as a Lie group. By similar
reasoning, determine the dimension ofU(n) as a Lie group.

6. (a) Show that a general element ofSU(2) can be written as:

U =

(
α β

−β∗ α∗

)
,

whereα, β are complex numbers satisfying |α|2 + |β|2 = 1.
(b) Deduce that an alternative form for anSU(2)matrix is

U = a0I + ia · σσσ,

with (a0, a) real,σσσ the vector of Pauli matrices, and a20 + |a|2 = 1.
(c) Using the second form, calculate the product of twoSU(2)matrices.
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