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Part 4 of the course: Semisimple, complex Lie algebrasg
(1) Understand structure ofg. This involves constructing all the Lie brackets of

g in some privileged bases (called Cartan-Weyl bases and Chevalley bases).

(2) Classify all possible structures. This is achieved by examining the structure
of the roots of the Lie algebra by studying Cartan matrices and Dynkin dia-
grams.

(3) Understand representations of g. The representation theory is an appli-
cation of the structure theory in (1) and (2). (We won't have time to discuss
this, but I encourage you to read the notes of Dexter Chua, Josh Kirklin, and Jan
Gutowski for further information.)



1: Lie bracket structure of g



Basic definitions
A Lie algebra over the fieldF is a vector spaceg equipped with a Lie bracket [−,−] :
g× g→ g satisfying:

[x, x] = 0, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for allx, y, z ∈ g. A Lie algebra is Abelian if [x, y] = 0 for allx, y ∈ g.

An isomorphism between Lie algebras g1, g2 is a bijective linear mapφ : g1 → g2
preserving the Lie bracket: φ([x, y]) = [φ(x), φ(y)] for allx, y ∈ g1. An isomor-
phism is an automorphism if g1 = g2.



Basic definitions
A subalgebra is a subspace h of g which is closed under the Lie bracket. We write
h ≤ g. An ideal is a subalgebrah ≤ gwhich is strongly closed under the Lie bracket,
i.e. for allx ∈ g,h ∈ h, we have [x, h] ∈ h. We write h E g.

A Lie algebra is simple ifghas no non-trivial proper ideals. A Lie algebra is semisim-
ple if g has no non-trivial Abelian ideals.

From now on: Everything we say will apply in general only to finite-dimensional,
complex, semisimple Lie algebrasg.



Cartan subalgebras
A Cartan subalgebra is a subalgebra h ≤ g satisfying:

(i) h is Abelian;

(ii) h is ad-diagonalisable: for all h ∈ h, we have that the map ad(h) : g → g
given by ad(h)x = [h, x] is diagonalisable;

(iii) h is maximal: ifx ∈ g is such that [x, h] = 0 for allh ∈ h, we havex ∈ h.

Key idea: maximum amount of simultaneous diagonalisation! Since allh, h′ ∈ h
commute, we have [ad(h), ad(h′)] = ad([h, h′]) = 0, so can simultaneously
diagonalise all ad(h).



Facts of life about Cartan subalgebras
For finite-dimensional, complex, semisimple Lie algebras g, we have that:

(1) Cartan subalgebras always exist.

(2) Two Cartan subalgebrash1, h2 are always equivalent, in the sense that there
always exists an automorphismφ : g→ g satisfyingφ(h1) = h2.

In particular, all Cartan subalgebras have the same dimension. We call the dimen-
sion of any Cartan subalgebra the rank of the Lie algebra g.



Roots and root spaces
Given a choice of Cartan subalgebra h ≤ g, since the adjoint maps ad(h) are
all diagonalisable and are all commuting, their are all simultaneously diagonal-
isable. Letx be a simultaneous eigenvector of ad(h). Then for allh ∈ h:

ad(h)x = [h, x] = α(h)x

for some complexh-dependent eigenvaluesα(h).

Note thatαdepends linearly onh, soα is a map fromh toC. Therefore the eigen-
value is a functionalα : h→ C, so lives in the dual space to h.



Roots and root spaces
There are two possibilities for the eigenvalueα ∈ h∗:

• α ≡ 0. Then ad(h)x = [h, x] = 0 for all h ∈ h, and it follows that x ∈
h\{0} by maximality of the Cartan subalgebra. Conversely, if x ∈ h\{0}
we have ad(h)x = [h, x] = 0 since the Cartan subalgebra is Abelian, and
hencex is a simultaneous eigenvector of all ad(h) with eigenvalue 0.

• α 6≡ 0. In this case we say that α ∈ h∗\{0} is a root of the Lie algebra
with respect to the Cartan subalgebra h. The set of all roots is finite (there
can only be finitely many eigenvalues!) and is called the root system with
respect to the Cartan subalgebra h, writtenR(h).



Roots and root spaces
The eigenspaces associated with the roots are called root spaces. Explicitly, the
eigenspace associated with the rootα is:

gα(h) = {x ∈ g | [h, x] = α(h)x for allh ∈ h}.

Sometimes it is useful to talk about generalised root spaces, wheregα(h) is defined
as above, butα is allowed to be any functional inh∗. Theng0(h) = h, andgα(h) =
0 whenα is not a root.



The Cartan decomposition
The above work allows us to decompose g into simultaneous eigenspaces of h:

g = h⊕
⊕

α∈R(h)

gα(h).

This is called the Cartan decomposition. The Lie brackets are given by:

• [h, h′] = 0 for allh, h′ ∈ h;

• [h, x] = α(h)x for allh ∈ h,x ∈ gα(h);

• [x, y] = ...? for allx ∈ gα(h), y ∈ gβ(h).



The Cartan decomposition
For the final bracket [x, y] with x ∈ gα(h) and y ∈ gβ(h), we can at least work
out where the result lands. Using the Jacobi identity, we have for allh ∈ h:

[h, [x, y]] = [x, [h, y]]−[y, [h, x]] = β(h)[x, y]−α(h)[y, x] = (α+β)(h)[x, y].

Hence [x, y] ∈ gα+β(h), wheregα+β(h) is a generalised root space. In particular:

• [x, y] ∈ h ifα+ β = 0.

• [x, y] is in the root space gα+β(h) ifα+ β is a root.

• [x, y] = 0 otherwise.



The Killing form and the caseα + β = 0

Fact: The Killing form restricts to a symmetric, non-degenerate bilinear form on
the Cartan subalgebra,κ : h× h→ C. (Proof: Easy using Cartan's theorem.)

This induces a canonical isomorphism θ : h → h∗ given by θ(h) = κ(h,−).
In particular, this implies that to every rootαwe can associate an element of the
Cartan subalgebra viaHα = θ−1(α).

Using non-degeneracy of the Killing form, it can then be shown that for all x ∈
gα(h), y ∈ g−α(h):

[x, y] = κ(x, y)Hα.



Another fact of life about root spaces
We now have all the brackets:

[h, h′] = 0, [h, x] = α(h)x, [x, y] =


κ(x, y)Hα ifα+ β = 0

z ∈ gα+β(h) ifα+ β is a root
0 otherwise.

To finish off, we need another fact about root spaces.

Fact: All roots are non-degenerate, i.e. dim(gα(h)) = 1 for all root spaces. (Proof:
Hard! Use representations of suC(2) on the Lie algebra.)



Cartan-Weyl bases
Overall, this implies we can define a basis for the Lie algebra as follows:

• Choose a Cartan subalgebra h and choose a basis {H1, ...,Hr}.

• For each rootα ∈ R(h), choose a generatorEα for the corresponding one-
dimensional space gα(h).

• For each root, define its components wrt {H1, ...,Hr} asαi = α(Hi).

Together,{H1, ...,Hr}∪
⋃
{Eα} form a basis for the Lie algebra called a Cartan-

Weyl basis. Note in particular,

dim(g) = rank(g) + |R(h)|.



Cartan-Weyl bases
The Lie brackets in this privileged basis are given by:

[Hi, Hj ] = 0, [Hi, Eα] = αiEα,

[Eα, Eβ ] =


κ(Eα, E−α)Hα ifα+ β = 0,
NαβEα+β ifα+ β is a root,
0 otherwise.

This leaves only some proportionality constantsNαβ to determine.



Brief detour: suC(2) subalgebras
The above Lie bracket structure is actually hiding some subalgebras isomorphic
to suC(2). We have the following fact:

Fact: Ifα is a root, then−α is a root. Furthermore, kα is a root for some k ∈ C if
and only if k = ±1. (Proof: First part easy using non-degeneracy of Killing form.
Second part hard; requires considering representations of suC(2) on g.)

This fact allows us to identify {Hα, E±α} as generating an suC(2) subalgebra.



Brief detour: suC(2) subalgebras
We can see how {Hα, E±α} generate an suC(2) subalgebra by examining the
brackets:

[Hα, E±α] = ±α(Hα)E±α = ±θ(θ−1(α))(Hα)E±α = ±κ(Hα, Hα)E±α,

and
[Eα, E−α] = κ(Eα, E−α)Hα.

We see that scalingHα,E±α, we can create an suC(2) subalgebra. We have:

hα =
2Hα

κ(Hα, Hα)
, e±α =

√
2E±α√

κ(Hα, Hα)κ(Eα, E−α)



Brief detour: suC(2) subalgebras
It can be shown thatκ(Hα, Hα) 6= 0 andκ(Eα, E−α) 6= 0 allowing this rescal-
ing to take place. Under this rescaling, the relations become:

[hα, e±α] = ±2e±α, [eα, e−α] = hα,

which are exactly the brackets of an suC(2) algebra.

Note: hα is completely fixed by this construction, but e±α can still be rescaled
again, as long as we keepκ(eα, e−α) = 1. This means we are free to scale eα 7→
ηαeα, e−α 7→ e−α/ηα and keep this subalgebra the same.



Another brief detour: a bilinear form on the roots
As we mentioned earlier, the Killing formκ is a non-degenerate symmetric bilin-
ear form when restricted to h × h. We can use this to define a non-degenerate
symmetric bilinear form on the roots by setting:

(α, β) = κ(θ−1(α), θ−1(β)) = κ(Hα, Hβ),

where θ : h → h∗ is the canonical isomorphism θ(h) = κ(h,−). In particular,
for the basis defined above, we have:

[hα, eβ ] = β(hα)eβ = θ(θ−1(β))(hα)eβ =
2κ(Hβ , Hα)

κ(Hα, Hα)
eβ =

2(α, β)

(α, α)
eβ .



Determination of proportionality constantsNαβ

In general, determination of the constants Nαβ is very difficult, as they satisfy
some non-trivial relations. For example, using the Jacobi identity, you saw in the
lectures that we can deduce relations of the form:

[eα, [e−α, eβ−nα]] + [e−α, [eβ−nα, eα]] = −[eβ−nα, [eα, e−α]]

⇒ Nβ−nα,−αNβ−(n−1)α,α −Nβ−(n+1)α,−αNβ−nα,α =
2(α, β − nα)

(α, α)
.

Summing, we can infer information about the products of the constantsNαβ (in
particular, if we sum up fromn = 1 ton = pwhere p is the largest integer such
thatβ − pα is a root, the sum telescopes, andNβ−(p+1)α,−α drops out).



Determination of proportionality constantsNαβ

This information is coupled with a particular normalisation called Chevalley normal-
isation: we demand that the constants obeyNα,β = N−α,−β . It turns out that
this can always be guaranteed, by choosing the generators eα of the root spaces
such that the linear mapσ : g→ g extended from:

σ(h) = −h, σ(eα) = −e−α, whereh ∈ h,

is an automorphism of the Lie algebra. This corresponds to taking the Hermi-
tian conjugate in a matrix Lie algebra (which are the only things we care about
in physics), with generators replaced byh 7→ ih, eα 7→ ieα.



Determination of proportionality constantsNαβ

It turns out that Chevalley normalisation Nα,β = N−α,−β is enough to deter-
mine the constants (up to signs) together with the relations from the Jacobi iden-
tity (though the proof is very technical). The result is:

[eα, eβ ] =


hα ifα+ β = 0
±(p+ 1)eα+β ifα+ β is a root
0 otherwise,

where p is the largest integer such thatβ − pα is a root.



Determination of proportionality constantsNαβ

The signs inNαβ = ±(p+ 1) are quite difficult to pin down too. It turns out that
certain signs are free and can be chosen by changing generators; these signs cor-
respond to pairs of roots (α, β) called extraspecial pairs. The other signs are fixed
once we have chosen the signs for the extraspecial root pairs.



Chevalley bases
To construct a final basis with all brackets determined then, we do the following:

• Leth ≤ gbe a Cartan subalgebra, and let the subset of the roots{α(1), ..., α(r)}
form a basis forh∗ (note since the roots span, a subset are linearly indepen-
dent). By the canonical isomorphism θ : h → h∗ induced by the Killing
form, we have that the normalised elements

hi := hα(i)
=

2θ−1(α(i))

κ(θ−1(α(i)), θ−1(α(i)))
=

2Hα(i)

κ(Hα(i)
, Hα(i)

)

form a basis for h.



Chevalley bases
• Let {h1, ..., hr} be the basis for h defined as above. Let eα be normalised

generators of the root spaces gα(h), satisfying κ(eα, e−α) = 1, and such
that the linear mapσ : g→ g defined on a basis by:

σ(hi) = −hi, σ(e±α) = −e∓α,

is an automorphism.

• Choose signs for all extraspecial root pairs (α, β).

We have that {h1, ..., hr} ∪
⋃
{eα} forms a basis called a Chevalley basis for the

Lie algebra.



Chevalley bases
In a Chevalley basis, all brackets of the Lie algebra are given by:

[hi, hj ] = 0, [hi, eα] =
2(α(i), α)

(α(i), α(i))
eα,

[eα, eβ ] =


hα ifα+ β = 0

±(p+ 1)eα+β ifα+ β is a root
0 otherwise,

where p is the greatest integer such thatβ − pα is a root.



What have we achieved?
To summarise:

• Given a choice of Cartan subalgebra h, we have completely determined all
Lie brackets in the Lie algebra (up to some sign convention).

• All of these Lie brackets are determined in terms of properties of the roots.
In particular, if we know all the roots, we would like to understand the ratio:

2(α, β)

(α, α)

for each pair of rootsα, β; these are the only non-trivial structure constants
of the Lie algebra. By linearity it's sufficient to know these ratios on a basis.



Question 1
A Lie algebra has Cartan subalgebraH = (H1, ...,Hr) and the remaining gener-
ators areEα, corresponding to rootsα, where [H,Eα] = αEα. Assume [Eα, E−α] =
Hα = 2α ·H/α2. For a rootβ,Eβ satisfies:

[Eα, Eβ ] = 0, [Hα, Eβ ] = nEβ , [E−α, [. . . , [E−α︸ ︷︷ ︸
r times

, Eβ ], . . . ] = Eβ−rα.

(a) Show that

[Eα, Eβ−rα] = r(n− r + 1)Eβ−(r−1)α.

(b) Forn an integer, show that we may assumeEβ−(n+1)α = 0.



Notation is different! Unfortunately, this is just the way the theory is - everyone has
their own notation.

What is everything? We note:

• {H1, ...,Hr} is a basis of the Cartan subalgebra.

• Eα is a generator for theα-root space, since [H,Eα] = αEα.

• The generators are normalised such that [Eα, E−α] = Hα, which we see
corresponds tohα in our earlier notation.

• The relation [Eα, Eβ ] = 0 tells us thatα+ β is not a root.



• The relation [Hα, Eβ ] = nEβ tells us about the product on roots:

[Hα, Eβ ] = β(Hα)Eβ =
2α · β
α2

Eβ .

So we see thatn = 2α · β/α2.

• We are defining generatorsEβ−rα by the final relation:

Eβ−rα := [E−α, [. . . , [E−α︸ ︷︷ ︸
r times

, Eβ ], . . . ].

These obviously generator the β − rα-root spaces by the theory of where
the brackets land (providedβ − rα is still a root!).



(a) Show that

[Eα, Eβ−rα] = r(n− r + 1)Eβ−(r−1)α.

We use induction. The base case r = 0 is trivial, since [Eα, Eβ ] = 0. Now as-
sume the result holds for r = k, and consider the case r = k + 1. We have:

[Eα, Eβ−(k+1)α] = [Eα, [E−α, Eβ−kα]]

= −[E−α, [Eβ−kα, Eα]]− [Eβ−kα, [Eα, E−α]]



= k(n− k + 1)[E−α, Eβ−(k−1)α]− 2α

α2
· [Eβ−kα, H]

= k(n− k + 1)Eβ−kα +
2α

α2
· (β − kα)Eβ−kα

= k(n− k + 1)Eβ−kα + (n− 2k)Eβ−kα

= (k + 1)(n− k)Eβ−kα.



(b) Forn an integer, show that we may assumeEβ−(n+1)α = 0.

The Lie algebra is finite-dimensional, so there are only finitely many generators!
Hence we must stop producing them at some point via the definition in the ques-
tion.

If you're not convinced, there's another argument in the solutions which is based
on suC(2) representations. The algebra we construct in this question is an irre-
ducible representation ofsuC(2)on a finite space, which is necessary finite-dimensional
(though again the reason is finite-dimensions!).



2: Classification of complex, semisimple Lie algebras



Properties of the roots
Everything we have done so far means that we can always reduce everything there
is to know about a finite-dimensional, semisimple, complex Lie algebra into the
questions:

• What are the roots of the Lie algebra (once we have picked a Cartan subal-
gebra h)?

• What are the ratios
2(α, β)

(α, α)
for any two rootsα, β (in a basis)?

We now develop some machinery to answer these questions.



Properties of the roots
Most importantly, we have the result:

The quantisation condition: Let α, β be distinct roots. There exist integers
n− ≤ 0 ≤ n+ such thatβ + nα is a root for alln− ≤ n ≤ n+, and where
n+ andn− satisfy:

n+ + n− = −2(α, β)

(α, α)
.

We call the collection of rootsβ+n−α, ..., β+n+α theα-root string passing
throughβ.



Real geometry of the roots
The proof of the quantisation condition isn't trivial; to show it we consider an ap-
propriate representation ofsuC(2) on the Lie algebra. It is very important though,
because it can be used to prove that the roots can be viewed as having a real, Eu-
clidean geometry.

Pick a basis {α(1), ..., α(r)} of h∗ from the roots. We define:

h∗R = spanR{α(1), ..., α(r)}.

It is possible to use the quantisation condition to show that h∗R is independent of
the basis we chose; call it the real subalgebra of the dual of the Cartan subalgebra.



Real geometry of the roots
Again, the quantisation is important in showing the following amazing result:

The symmetric, non-degenerate, bilinear form (−,−) : h∗ × h∗ → C re-
stricts to a positive definite inner product on h∗R × h∗R.

This means that we can embed the roots in a real space, Rr , and consider their
geometry! In particular, we can define lengths and angles between roots:

|α| =
√

(α, α), cos(θαβ) =
(α, β)

|α||β|
.



Real geometry of the roots
Finally, quantisation delivers us strong constraints on the angles between the roots.
Since we have:

2|β|
|α|

cos(θαβ) =
2(α, β)

(α, α)
∈ Z,

2|α|
|β|

cos(θαβ) =
2(α, β)

(β, β)
∈ Z,

it follows that 4 cos2(θαβ) ∈ Z. Remarkably, the angles between roots are con-
strained to take only a small set of values!



Simple roots
So far, when we've wanted to pick a basis, we've simply said ‘choose a basis of roots’.
However, there is a particularly convenient choice of basis which we can use the
real geometry of the roots to construct.

Since−α is a root wheneverα is a root, we can use a hyperplane through the ori-
gin to split the roots into two groups. Choose such a hyperplane, and label one
group of roots as ‘positive’ and the other group as ‘negative’.

We define a simple root as a positive root which cannot be written as the sum of
two positive roots.



Simple roots
Simple roots indeed provide a basis, together with lots of useful properties:

• Any set of simple roots forms a basis for h∗R (and also for h∗ when we allow
complex linear combinations).

• Any positive root can be written as the positive integer linear combination of
simple roots; this implies that any root can be written as the integer linear
combination of simple roots.

• Ifα, β are simple roots, thenα− β is not a root.



Simple roots
Further, we can generate any root of the Lie algebra from the simple roots via the
following simple algorithm. Let ∆ be a set of simple roots. Then:

Generating all roots from simple roots:

(1) LetS = ∆.

(2) For each pair of distinct rootsα ∈ ∆,β ∈ S, determine the maximum
and minimum integers n− ≤ 0 ≤ n+ such that β + n−α and
β + n+α are roots.



For all integersn such thatn− ≤ n ≤ n+, we have that β + nα is a
root; add all of these roots to the setS.

A useful result we can apply here are the fact that the integers
n−, n+ obey the quantisation condition:

n− + n+ = −2(α, β)

(β, β)
.

It is also useful to remember that: (i) twice a root of the Lie algebra is
never a root; (ii) ifα andβ are simple roots, thenβ − α is not a root.



(3) Repeat (2) until we generate no new elements. At this point S con-
tains all positive roots; the full root set is given byS ∪ (−S).

Hence we can write all roots as integer linear combinations of the simple roots,
and there's a simple algorithm telling us how to do so!



The Cartan matrix
Recall that the point of studying the properties of the roots was to better under-
stand the ratio (on a basis):

2(α, β)

(α, α)
,

Now we have a useful basis of simple roots {α(1), α(2), ..., α(r)}, we define:

Aij :=
2(α(i), α(j))

(α(j), α(j))
.

This is called the Cartan matrix.



The Cartan matrix
Defining the Cartan matrix only on bases of simple roots gives it nice enough prop-
erties that we can classify all possible Cartan matrices. The way to do this is to use
Dynkin diagrams. We define a Dynkin diagram as follows:

• Draw blobs for each simple rootα(i).

• Connect the blobsα(i) andα(j) byAijAji lines.

• Draw an arrow on the lines fromα(i) toα(j) if the rootα(i) is longer (in the
sense of its length |α(i)|) than the rootα(j).



The Cartan classification
We now have the following major theorems:

• Theorem: The Cartan matrix of a finite-dimensional, semisimple, complex
Lie algebra is independent of the choice of Cartan subalgebra, and the choice
of positive roots (up to reordering of columns and rows).

• Theorem: The Cartan matrix uniquely determines all brackets of a finite-
dimensional, semisimple, complex Lie algebra.

• Theorem: There is a bijection between the set of Cartan matrices of finite-
dimensional, semisimple, complex Lie algebras and the set of Dynkin dia-
grams.



• Theorem: The Dynkin diagram of a finite-dimensional, simple, complex Lie
algebra must be of one of the following types:

These theorems classify all finite-dimensional semisimple complex Lie algebras.
For semisimple Lie algebras, the Dynkin diagrams are disconnected with all dis-
connected pieces of the above simple forms.



Question 2
A Lie algebra has simple rootsααα1, ...,αααr .

(b) A rank two Lie algebra has simple rootsααα1 = (1, 0) andααα2 = (−1, 1).
What is the Cartan matrix?

(c) Assuming any other positive roots are equal in length to either one of the
simple roots, show thatααα3 = ααα1 +ααα2 andααα4 = 2ααα1 +ααα2 are the other
positive roots.

(d) Draw the root diagram, and show that the dimension of the Lie algebra is
ten.



(b) We have to be careful, because the Cartan matrix is defined by:

Aij =
2(αααi,αααj)

(αααj ,αααj)
.

In particular, the inner products (−,−) are not just dot products - they have some-
thing to do with the Killing form as we described above.

Throughout these questions, we assume that the components of the simple roots
have been written with respect to some basis of the Cartan subalgebrah such that
the Killing form is diagonal with all diagonal entries 1, i.e. the Killing form be-
comes a Euclidean inner product. It is possible to show that such a basis always
exists.



Making this implicit assumption, we can evaluate the Cartan matrix easily:

A =

(
2 −1

−2 2

)
,

usingααα2
1 = 1,ααα2

2 = 2 andααα1 ·ααα2 = −1.



(c) Next, we are asked to generate all roots from the simple roots. We use the algo-
rithm described above. Start with the set of simple roots ∆ = {ααα1,ααα2}. Setting
S = {ααα1,ααα2}, we have:

• Examine roots of the formααα2+nααα1. We have thatααα2 is a root, andααα2−ααα1

is not a root, sinceααα1,ααα2 are simple roots. Hencen− = 0. In particular, it
follows that:

n+ = −2ααα1 ·ααα2

ααα2
1

= 2.

Hence we have thatααα1+ααα2, 2ααα1+ααα2 are also roots which must be added
to the setS.



• The set S is now given by S = {ααα1,ααα2,ααα1 + ααα2, 2ααα1 + ααα2}. Consider-
ing roots of the form s + nααα1 for s ∈ S, i.e. roots of the formααα2 + nααα1,
ααα1 +ααα2 +nααα1 and 2ααα1 +ααα2 +nααα1, will not give us anything new, so we
should instead start considering roots of s+ nααα2.

First, consider roots of type ααα1 + nααα2. Here, ααα1 is a root, but ααα1 − ααα2

is not a root, hencen− = 0. It follows that:

n+ = −2ααα1 ·ααα2

ααα2
2

= 1.

Hence we generate the rootsααα1,ααα1 +ααα2 which are already inS.



Considering roots of typeααα1 + ααα2 + nααα2 = ααα1 + (n + 1)ααα2 will not
give us anything new, and hence we are left considering roots of type 2ααα1+
ααα2 + nααα2 = 2ααα1 + (n + 1)ααα2. When n = 0 we have a root, but when
n = −1 we have that 2ααα1 is not a root because it is twice a root of a Lie
algebra. Hence we haven− = 0. Furthermore, whenn = 1 we have that
2ααα1 + 2ααα2 = 2(ααα1 +ααα2) is not a root because it is twice a root of a Lie al-
gebra. Hence we haven+ = 0, and it follows that the only root generated
this way is 2ααα1 +ααα2.

At this point, we have generated no new roots, and so the algorithm terminates.
It follows that the complete root set is:

S = {±ααα1,±ααα2,±(ααα1 +ααα2),±(2ααα1 +ααα2)}.



(d)

ααα1

2ααα1 +ααα2ααα1 +ααα2ααα2

−ααα1

−2ααα1 −ααα2 −ααα1 −ααα2 −ααα2



If we had used a basis for h where (−,−) didn't act as a Euclidean inner product
on the components of the simple roots, then we would have found a ‘stretched’ or
‘distorted’ square instead.

The dimension of the Lie algebra is given by the size of the root system, 8, plus
the dimension of the Cartan subalgebra, 2 (which is equal to the number of sim-
ple roots, which form a basis for the dual of the Cartan subalgebra), hence is 10.



Question 3
The Lie algebra ofU(n) may be represented by a basis consisting of then2−noff
diagonal matrices (Eij)kl = δikδjl for i 6= j and also the n diagonal matrices
(hi)kl = δikδkl, no sum on k, where i, j, k, l = 1, · · · , n. For SU(n) it is nec-
essary to restrict to traceless matrices given by hi − hj for some i, j. The n − 1
independenthi − hj correspond to the Cartan subalgebra.

(a) Show that

[hi, Ejk] = (δij − δik)Ejk, [Eij , Eji] = hi − hj .

Solution to (a): The proof of these Lie brackets is via a standard argument with in-
dex notation (see solutions).



(b) Let ei be orthogonal n-dimensional unit vectors, (ei)j = δij . Show that
Eij is associated with the root vector ei− ej whileEji corresponds to the
root vector ej − ei.

Solution to (b): From part (a), we have:

[hk, Eij ] = (δki − δkj)Eij = (ei − ej)kEij .

This implies that the action of the root ei−ej ∈ h∗ on a basis is (ei−ej)(hk) =
(ei−ej)k. This implies that the roots inSU(n) are also of this form, sincehk−hl
is just a linear combination of the Cartan generators forU(n); we've ‘embedded’
the Cartan subalgebra for SU(n) into the Cartan subalgebra for U(n) to make
our lives easier. (Careful:U(n) isn't semisimple, so results only apply toSU(n).)



(c) Hence show that there are n(n − 1) root vectors belonging to the n − 1
dimensional hyperplane orthogonal to

∑
i ei.

Solution to part (c): There's a root vector associated to every Eij for i, j distinct.
There are n options for i, and that leaves n − 1 options for j, which is n(n − 1)
in total.

Note we have:

(ei − ej) ·

(∑
i

ei

)
= 1− 1 = 0,

so the root vectors are indeed in the (n − 1)-dimensional hyperplane normal to∑
i ei.



(d) Verify that we may take as simple roots

α1 = e1−e2, α2 = e2−e3, · · · , αi = ei−ei+1, · · · , αn−1 = en−1−en,

by showing that all roots may be expressed in terms ofαi with either posi-
tive or negative integer coefficients.

Solution to part (d): Divide the roots into two sets by declaring ei− ej to be a posi-
tive root if and only if i < j, and a negative root otherwise. Thenα1, ..., αn are all
positive roots. Furthermore, suppose we can write αi as the sum of two positive
roots:

αi = ei − ej = ek − el + em − en.



The conditions i < j,k < l andm < n are enough to force ek = el or em = en.
Thus noαi can be written as the sum of two positive roots, and it follows thatαi
is a simple root for all i (with this choice of positive and negative roots).

Furthermore, for any positive root ei − ej , we have:

ei − ej = αi + αi+1 + · · ·+ αj ,

since the sum on the right hand side telescopes. Thus we can write any positive
root as the positive integer linear combination of simple roots (verifying some of
the general theory from earlier). Reversing the signs, we can write any negative
root as the negative integer linear combination of simple roots.



(e) Determine the Cartan matrix and write down the corresponding Dynkin
diagram.

Solution to (e): Again, assume the Killing form is Euclidean. Then:

(αi, αj) = (ei − ei+1, ej − ej+1) = δij − δi,j+1 − δi+1,j + δi+1,j+1.

This implies that the only non-zero brackets are:

(αi, αi) = 2, (αi, αi+1) = −1, (αi+1, αi) = −1.



Inserting this information into the formula for the Cartan matrix, we have:

A =



2 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0

0 0 0 · · · −1 2 −1

0 0 0 · · · 0 −1 2


.



To finish, we note that the only non-zero product between (distinct) simple roots
is(αi, αi+1) = −1, so we should insert one line between each node in our Dynkin
diagram. Thus the Dynkin diagram is of the form:

1 2 3 n− 1

This verifies the simplest Dynkin diagram we saw in the classification theorem
earlier!



Question 4
The Lie algebra for SO(n) is given by real antisymmetric n × nmatrices. Show
that the dimension is 1

2n(n−1). A basis for the Lie algebra is given by the matrices
Lij = −Lji, i, j = 1, ....n,where (Lij)mn = −δimδjn + δinδjm.

(a) Show that

[Lij , Lkl] = δikLjl − δilLjk − δjkLil + δjlLik.



Dimension: The vector space of real antisymmetricn×nmatrices can be thought
of as being spanned by matrices with a single one in their (strict) upper triangular
region, and a negative one in the transposed position in the (strict) lower trian-
gular region - these are the matrices Lij . There are 1

2n(n − 1) positions in the
upper triangular region, so this is the dimension of the algebra. Note we complex-
ify the Lie algebra so these real dimensions are actually transformed into complex
dimensions in Lie algebra theory.

Solution to (a): A calculation with index notation indeed verifies that:

[Lij , Lkl] = δikLjl − δilLjk − δjkLil + δjlLik.



(b) Forn = 2r orn = 2r + 1 verify that a maximal set of matrices is given by

iL12, iL34, ..., iL(2r−1)2r,

so that the rank is r in both cases.

Solution to (b): By ‘maximal’, this question means ‘maximally Abelian’. Using the
commutation relations from (a), we can verify using an index notation argument
that [iLi,i+1, iLj,j+1] = 0 for all i, j.

To show maximality, note that we can write any element of the Lie algebr as
∑
k,l cklLkl.



Suppose that there exists
∑
k,l cklLkl which commutes with all iLi,i+1. Then

we have:∑
k,l

[iLi,i+1, cklLkl] = i
∑
k

(cikLi+1,k − cikLi+1,k − ci+1,kLik + ck,i+1Lik) = 0

for all i. The first two terms on the right hand side immediately cancel, and using
antisymmetry of the coefficients ckl = −clk, we're left with:

2i
∑
k

ck,i+1Lik = 0.

SinceLik is a basis, we can read off ck,i+1 = 0 for all k 6= i. So an element can
only commute with all iLi,i+1 if it is in the span of the iLi,i+1, and we're done.



(c) Define:

Eεη = L13 + iεL23 + iη(L14 + iεL24), ε, η = ±1,

and verify the commutators:

[iL12, Eεη] = εEεη, [iL34, Eεη] = ηEεη, [iL2i−1,2i, Eεη] = 0,

for i = 3, ..., r, so thatEεη corresponds to a root vector (ε, η, 0, ..., 0).

Solution to (c): Via a short calculation using index notation. Note the result gener-
alises to a generator defined form 6= n,m,n = 1, ..., r:

Emnεη = L2m−1,2n−1 + iεL2m,2n−1 + iη(L2m−1,2n + iεL2m,2n),

with associated root vector εem + ηen, with ei the standard basis ofRr .



(d) Using the notation of the previous question where ei are orthogonal unit
vectors in anr-dimensional space, show that±ei±ej for all i, j = 1, ..., r,
i 6= j give in general 2r(r − 1) root vectors.

Solution to (d): The generalisation in (c) shows us that indeed all±ei± ej are root
vectors (for i 6= j, i, j = 1, ..., r). There are r choices for ei and r − 1 choices
for ej . There are 2 choices for signs ε and 2 choices for signs η. Finally, we note we
are double-counting because i and j can be exchanged. Putting all this together
gives:

r · (r − 1) · 2 · 2 · 1

2
= 2r(r − 1)

as required.



(e) Forn = 2r, choose as simple roots:

α1 = e1−e2, α2 = e2−e3, ..., αr−1 = er−1−er, αr = er−1+er.

Show that ei − ej , for i < j, and ei + ej may be expressed as linear com-
binations of these simple roots with positive or zero integer coefficients.

(f) Show also that the other roots are given by negative linear combinations.

Solution to (e) and (f): We choose ei − ej and ei + ej to be the positive roots; then
allαi are positive. We can also check that allαi cannot be written as the sum of
two positive roots via a short calculation, so that they are the simple roots for this
choice of positive roots.



Note that we can write any positive root as the positive integer linear combination
of simple roots since:

ei − ej = αi + αi+1 + · · ·+ αj

for i < j and j = 1, ..., r, and

ei+ej = (ei−er)+(ej+er) = (αi+αi+1+· · ·+αj)+(αr+αr−2+· · ·+αj).

The negative roots are given by−(ei− ej) and−(ei + ej) so (f) follows trivially.



(g) Work out the Cartan matrix and determine the Dynkin diagram.

Solution to (g): We note that for distinct i, j < r:

(αi, αj) = (ei − ei+1) · (ej − ej+1) = −δi,j+1 − δi+1,j

For i = j < r, we have (αi, αi) = 2. For i < r, we have:

(αi, αr) = (ei − ei+1) · (er−1 + er) = δi,r−1 − δi+1,r−1 − δi+1,r,

Finally when i = j = r, we have (αr, αr) = 2.



Putting all this information together gives the r × r Cartan matrix:

A =



2 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 −1

0 0 0 · · · −1 2 0

0 0 0 · · · −1 0 2


.



It follows that the Dynkin diagram is:

There are a total of r nodes in the diagram. This verifies another of the Dynkin
diagrams we saw earlier in the classification!



(h) Forn = 2r + 1, verify that:

[iL12, E±1] = ±E±1, [iL2i−1,2i, E±1] = 0, i = 2, ..., r,

whereE±1 = L1,2r+1± iL2,2r+1, corresponding to roots (±1, 0, ..., 0).

(i) Hence show that there are 2r additional roots in this case, ei, i = 1, ..., r.

Solution to (h) and (k): Again, through a short calculation in index notation we get
the result. It is again useful to generalise to generators form = 1, ..., r given by:

Em±1 = Lm,2m+1 ± iL2,2m+1,

with associated roots±em. There are 2r additional roots as specified in the ques-
tion.



(k) In a similar fashion to the above, show that in this case we may take as sim-
ple roots:

α1 = e1− e2, α2 = e2− e3, ..., αr−1 = er−1− er, αr = er.

Solution to (k): We keep ei − ej , ei + ej as positive roots before, and add ei as
positive roots too. Then allαi are positive roots. It can be shown via a short calcu-
lation that none of the αi can be written as the sum of two positive roots, hence
the rootsαi are the simple roots for this choice of positive roots.

We can also verify that all positive roots can be written as positive integer combi-
nations of the simple roots. Similarly all negative roots can be written as negative
integer combinations of the simple roots.



(l) Hence obtain the Cartan matrix and determine the Dynkin diagram.

Solution to (l): Via a similar calculation to the above, the Cartan matrix is:

A =



2 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0

0 0 0 · · · −1 2 −2

0 0 0 · · · 0 −1 2


.



The Dynkin diagram is given by:

We introduce an arrow because one of the simple roots is shorter than the others
(the last one is only of length 1, and the others are all of length

√
2). Again, we get

a diagram that we saw in the classification earlier on.


