

James Moore, University of Cambridge

Beyond the Standard Proton

for PhD seminar series at the University of Edinburgh, October 2022

PBSP

European Research Council

Established by the European Commission

Talk overview

1. Background: Quantum chromodynamics, parton distributions, and all that...

2. Fitting parton distributions: A visit to the sausage factory

3. Beyond the standard proton

4. Conclusions/questions

1. - Introduction: Quantum chromodynamics, parton distributions, and all that...

- Modern particle physics is based on the Standard Model, which is a specific example of a quantum field theory (QFT).
- QFTs are described in terms of the following data:

- Modern particle physics is based on the Standard Model, which is a specific example of a quantum field theory (QFT).
- QFTs are described in terms of the following data:

A **spacetime** - normally 1+3 dimensional Minkowski spacetime

- Modern particle physics is based on the Standard Model, which is a specific example of a quantum field theory (QFT).
- QFTs are described in terms of the following data:

A **spacetime** - normally 1+3 dimensional Minkowski spacetime

A set of **fields** - operator-valued distributions on the spacetime

- Modern particle physics is based on the **Standard Model**, which is a specific example of a quantum field theory (QFT).
- QFTs are described in terms of the following data:

A **spacetime** - normally 1+3 dimensional Minkowski spacetime

A Lagrangian density - describes the dynamics of the fields, and depends on **parameters**, e.g. masses and interaction strength

$$\mathscr{L} = \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{1}{4!} g \phi^4$$

A set of **fields** - operator-valued distributions on the spacetime

- Modern particle physics is based on the **Standard Model**, which is a specific example of a quantum field theory (QFT).
- QFTs are described in terms of the following data:

A **spacetime** - normally 1+3 dimensional Minkowski spacetime

A Lagrangian density - describes the dynamics of the fields, and depends on **parameters**, e.g. masses and interaction strength

$$\mathscr{L} = \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{1}{4!} g \phi^4$$

A set of **fields** - operator-valued distributions on the spacetime

A **renormalisation scheme** - relates parameters in the Lagrangian density to physically observable quantities

 $m_{\text{phys}} = f_1(m^2(\epsilon), g(\epsilon))$ $g_{phys} = f_2(m^2(\epsilon), g(\epsilon))$

- For the **Standard Model (SM)** of particle physics, the ingredients are:

- For the **Standard Model (SM)** of particle physics, the ingredients are:
 - Minkowski spacetime

- For the Standard Model (SM) of particle physics, the ingredients are:
 - **Minkowski spacetime**
 - Fields of **special types** for each of the particles we **observe in Nature**: photons, Wand Z bosons, gluons, quarks, leptons, and the Higgs boson

Standard Model of Elementary Particles

- For the Standard Model (SM) of particle physics, the ingredients are:
 - Minkowski spacetime
 - Fields of **special types** for each of the particles we **observe in Nature**: photons, W and Z bosons, gluons, quarks, leptons, and the Higgs boson
 - A Lagrangian density of a special type, called a **gauge theory** (with gauge group $SU(3) \times SU(2) \times U(1)$)

Standard Model of Elementary Particles

- For the **Standard Model (SM)** of particle physics, the ingredients are:
 - **Minkowski spacetime**
 - Fields of **special types** for each of the particles we **observe in Nature**: photons, Wand Z bosons, gluons, quarks, leptons, and the Higgs boson
 - A Lagrangian density of a special type, called a gauge theory (with gauge group) $SU(3) \times SU(2) \times U(1)$
 - A suitable renormalisation scheme (usually dimensional regularisation with on-shell mass renormalisation of heavy particles, and **MS** subtraction for everything else)

Quantum chromodynamics for the general reader

- The SM Lagrangian can be broken into three main sectors: quantum electrodynamics, the weak sector and quantum chromodynamics (QCD).
- QCD involves the quark and gluon fields, and describes the strong force that **binds composite particles** together.
- The Lagrangian density for QCD is:

for **eight gluon fields**

covariant derivative $\mathscr{L} = -\frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu} + \sum_{q} \overline{q} (i\gamma_{\mu} D^{\mu} - m_q) q$ sum over **six quark** quark masses fields 14

Quantum chromodynamics for the general reader $\mathscr{L} = -\frac{1}{4}G^a_{\mu\nu}G^{a,\mu\nu} + \sum \overline{q}(i\gamma_\mu D^\mu - m_q)q$

- see experimentally:
 - pion...
 - 2. Quarks must always be confined in bound states.

• But... no-one knows how to do it! ($\exists a \$1 \text{ million prize!}$)

• From the QCD Lagrangian, we should be able to prove some things we

1. Strongly bound quark states exist, for example the proton, neutron,

Quantum chromodynamics for the general reader

- Some progress has been made...
 - 1. At low energies, simulations using **lattice** versions of QCD (where spacetime is discretised in order to regulate the QFT) predict the existence of e.g. the **proton**.
 - 2. In **model theories**, e.g. certain theories in 1+1 dimensions, or **supersymmetric** theories, it is possible to prove **confinement**, and derive the existence of bound states.

 These are limited in scope though. How do we make SM predictions for particle accelerators in 1+3 dimensions, where e.g. protons collide at extremely high energies? Do we just give up?

- **The solution:** perturbative QCD.
- Initially sounds crazy: normally in physics, perturbation theory is used for weakly-interacting phenomena which only deviate in small ways from free theories (where particles don't interact at all).
- Perturbation theory is good for quantum electrodynamics and the weak sector. But for QCD, the basic fields (quarks and gluons) are strongly interacting - it is a terrible approximation to treat them as free!

- This can be **partially overcome**, however:
 - If we study processes where we **sum over all final states** (inclusive) processes), then **completeness relations** tell us it doesn't matter whether we use free quarks and gluons, or the proper bound states.

states *H*

- **Classic example:** electron-positron annihilation, $e^+e^- \rightarrow$ any hadrons

- This can be **partially overcome**, however:
 - If we have **specified hadrons** in the **initial state** though (or indeed final state), need more help. At sufficiently high energies, the factorisation theorems save us.
 - E.g. deep inelastic scattering, e^- + proton $\rightarrow e^-$ + any hadron

• The factorisation theorems separate the physics into a calculable perturbative part, and a non-calculable, non-perturbative, BUT universal part.

universal part.

universal part.

function.

single quarks/ quark/gluon

$$\int_{y}^{1} \frac{dy}{y} \hat{\sigma}_{eq \to eX} \left(\frac{x}{y}, Q^{2}\right) f_{q}(y, Q^{2})$$

$$f_{q}(y, Q^{2}) + O\left(\frac{1}{ene}\right)$$

$$f_{q}(y, Q^{2}) = \int_{y}^{1} \frac{dy}{y} \hat{\sigma}_{eq \to eX} \left(\frac{x}{y}, Q^{2}\right) f_{q}(y, Q^{2})$$

single quarks/gluons q, χ quark/gluon states X

- that a particular quark or gluon will be ejected by the proton in a collision.
- We interpret $f_q(x, Q^2) dx$ to be the **number of constituents** of type q

• Speaking very loosely, the parton distributions capture the probability

carrying a fraction of the proton's momentum in the interval [x, x + dx], when the process in which the proton is involved has energy scale Q^2 .

Parton distributions are universal

- The non-perturbative parton distributions $f_q(x, Q^2)$ depend on:
 - A **momentum fraction** *x* tells us how much of the proton's momentum the ejected quark/gluon carries
 - An **energy scale** Q^2 , e.g. energy lost by the proton when ejecting a quark
 - The fact we are colliding **protons** if we started with a neutron, we would get different PDFs

 They don't depend on the fact we are colliding a proton with an electron, so can be used for other processes. This is why this approach is useful!

Parton distributions are universal

pair, plus any hadrons.

For example, the same parton distributions can also be used in the Drell-Yan process: the collision of two protons to make an electron-positron

Parton distributions are universal

pair, plus any hadrons.

For example, the same parton distributions can also be used in the Drell-Yan process: the collision of two protons to make an electron-positron

Parton distributions scale

Symanzik equation called the **DGLAP equation:**

quarks/gluons q'

- be determined perturbatively.
- them for all values of Q^2 .
- Only their x-dependence is unknown.

• Whilst the PDFs are non-perturbative, we can still say something about their Q^2 -dependence. Renormalisation theory predicts that PDFs should obey a Callan-

$$\int_{x}^{1} \frac{dy}{y} P_{qq'}\left(\frac{x}{y}\right) f_{q'}(x, Q^2)$$

• The functions (technically distributions) $P_{qq'}$ are called **splitting functions** and can

- This means that **if we know the PDFs for some value of** Q^2 , we can **determine**

2. - Fitting parton distributions: A visit to the sausage factory

'PDFs are like sausages: everyone loves them, but no one really wants to know how they are made.'

- Zahari Kassabov

- of possible PDFs is **infinite-dimensional**. What do we do?
- obtain the PDF at all energy scales using the **DGLAP equation**.
- Example functional form:

large and small x behaviour motivated by **Regge theory**

• TLDRN: Fitting PDFs using experimental data is an **ill-posed problem**.

• In short, you have **finite amounts of data** from experiments, but the space

 PDF fitting groups assume a functional form for the PDFs at some initial energy scale, parametrised by a finite set of parameters. They then

 $f(x, Q_0^2) = Ax^{\alpha}(1 - x)^{\beta} (1 + ax^{1/2} + bx + cx^{3/2})$

polynomial in \sqrt{x} seems to give nice fit

best describe experimental data.

Once we have selected a functional form, we find the parameters which

goodness of fit of our model:

uncertain, we don't require such precise agreement.

• This is usually done by minimising the χ^2 -statistic, which measures the

$\chi^2 = (data - theory)^T covariance^{-1}(data - theory)$

experimental covariance matrix

General idea: we want theory to be close to data, but if the data is more

- It's not good enough to find the PDF parameters which give just the central data values because experimental data comes with uncertainty. We must also propagate errors properly too.
- This can be handled using Monte Carlo error propagation. We create 100 different copies of Monte Carlo pseudodata, generated as a multivariate Gaussian distribution around the central data, then find the best-fit PDF parameters for each of the 100 copies.
- We can then take **envelopes** to get uncertainties from the resulting **PDF ensemble**.

34

The choice of functional form

• The choice of functional form that we have suggested so far is:

$$f(x, Q_0^2) = Ax^{\alpha}(1-x)^{\beta} \left(1 + ax^{1/2} + bx + cx^{3/2}\right)$$

• This seems a bit arbitrary though! To try to remove as much bias as **neural network** instead:

$$f(x, Q_0^2) = Ax^{\alpha}(1 - x)^{\beta} \mathsf{NN}(x, \omega)$$

has network parameters ω .

possible, another possible choice is to parametrise the PDFs using a

• Here, $NN(x, \omega)$ is a **neural network** which takes in x as an argument, and

The choice of functional form

$$f(x, Q_0^2) = Ax^{\alpha}(1 - x)^{\beta} \mathsf{NN}(x, \omega)$$

• The neural network parametrisation is used by the **NNPDF** collaboration, whose fitting code is publicly available (and I use regularly!).

Input layer

• Now we have described how to obtain PDFs, let's look at some examples!

• Now we have described how to obtain PDFs, let's look at some examples!

• Now we have described how to obtain PDFs, let's look at some examples!

x = 1/3.

Now we have described how to obtain PDFs, let's look at some examples!

• If we think of the proton as 'two up quarks and two down quarks', we naively expect the up, down distributions to be delta functions peaked at

cause the distributions to **increase at small** x.

• Now we have described how to obtain PDFs, let's look at some examples!

• In reality, we see that **quantum fluctuations** result in the creation of up/ anti-up and down/anti-down pairs with small momentum fractions, which

peaked behaviour for other species of quark.

Most flavours only arise virtually inside the proton, so we don't get the

- One flavour features much more heavily than others: gluons.
- In fact, the momentum due to the gluons accounts for nearly 1/3 of all momentum of a proton!

3. - Beyond the standard proton

The Standard Model is incomplete...

- be incomplete. There are lots of things it does not describe:
 - Gravity
 - Dark matter
 - Neutrino masses
 - many more obscure things...

 People working to extend the Standard Model to account for these physics (BSM).

• Whilst the Standard Model has been **extremely successful**, it is known to

phenomena are said to be working on **Beyond the Standard Model**

• For example, to include dark matter in the Standard Model, we might hypothesise new particles and add them in. The Standard Model Lagrangian density is augmented to:

\mathscr{L} new = \mathscr{L} SM + \mathscr{L} dark matter

 For example, to include dark matter in the Standard Model, we might hypothesise new particles and add them in. The Standard Model Lagrangian density is augmented to:

 We could then try to produce the new particles directly (direct detection), or fit existing data using this theory to see if we get a better fit (indirect detection).

$$\Lambda + \mathscr{L}$$
dark matter

 For example, to include dark matter in the Standard Model, we might hypothesise new particles and add them in. The Standard Model Lagrangian density is augmented to:

- We could then try to produce the new particles directly (direct detection), or fit existing data using this theory to see if we get a better fit (indirect detection).
- However, there are thousands of possibilities, so just guessing particles seems a bit like stabbing in the dark!

$$A + \mathscr{L}$$
dark matter

• For example, to **include dark matter** in the Standard Model, we might hypothesise new particles and add them in. The Standard Model Lagrangian density is augmented to:

$$\mathscr{L}$$
new = \mathscr{L} SM + \mathscr{L} dark matter

- We could then **try to produce the new particles directly** (direct detection), or fit existing data using this theory to see if we get a better **fit** (indirect detection).
- However, there are **thousands** of possibilities, so just guessing particles seems a bit like stabbing in the dark!
- Some models are more motivated than others, but it would be nice to have a more general approach... 48

- this problem.
- Idea: at low energies we can't distinguish between a particle being exchanged, or an interaction between multiple particles.

• Fortunately, the language of **effective field theory** exists to help us tackle

- For example, in **muon decay**, the final decay products are two neutrinos and an electron, and the decay is mediated by a *W*-boson.
- But if we didn't know the W-boson existed, we would think that there was
 a direct interaction between muons, neutrinos and electrons.

(b)

- they are 'non-renormalisable'.
- the W-boson, we could **infer its existence**!

(b)

• It can be shown that four-point interactions, like those in (b), are actually forbidden in a fundamental quantum field theoretic description of Nature

• In particular, if we saw the process (b) without knowing the existence of

- add to the SM Lagrangian density all possible **non-renormalisable interactions** between the **SM particles**.
- Roughly speaking, they can be organised by the number of particles participating in the interaction:

$$\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \mathscr{L}_{4}$$
-point + \mathscr{L}_{5} -point + ...

Looking at the smallest number of particles first, the **interaction** \bullet

This is the idea of the Standard Model effective field theory (SMEFT). We

strengths in $\mathscr{L}_{4-\text{point}}$ are unknown, but can be found by precise fits to data. If we see non-zero values, it means there must be new particles.

 \mathscr{L} SMEFT = \mathscr{L} SM + \mathscr{L}_4 -point + \mathscr{L}_5 -point + ...

- Unfortunately, there are **2499 different interactions** in $\mathscr{L}_{\text{SMEFT}}$, so this is a lot of work! At the moment, people can only fit subsets of the interactions at a time.
- Various fitting groups just fit the interactions strengths, for example the SMEFiT collaboration, and the FitMaker collaboration.
- This can be problematic if data involving protons is used in the fits because of PDFs...

Joint PDF-SMEFT fits?

Usually, people fit the SMEFT parameters and PDFs separately:

PDF parameter fits

• Fix SMEFT parameters (usually to zero), $c = \overline{c}$:

 $\sigma(\overline{c},\theta) = \hat{\sigma}(\overline{c}) \otimes \mathsf{PDF}(\theta)$

- Optimal PDF parameters θ^* then have an **implicit dependence** on initial SMEFT parameter choice: $PDF(\theta^*) \equiv PDF(\theta^*(\overline{c}))$.
- E.g. NNPDF4.0 fit, Ball et al., 2109.02653.

SMEFT parameter fits

• Fix PDF parameters $\theta = \overline{\theta}$:

$\sigma(c,\overline{\theta}) = \hat{\sigma}(c) \otimes \mathsf{PDF}(\overline{\theta})$

- Optimal SMEFT parameters c^* then have an implicit dependence on PDF choice: $c^* = c^*(\overline{\theta}).$
- E.g. SMEFiT, Ethier et al., 2105.00006.

Fitting PDFs and physical parameters

This could lead to inconsistencies.

PDF parameter fits

 $\mathsf{PDF}(\theta^*) \equiv \mathsf{PDF}(\theta^*(\overline{c}))$

Fitted PDFs can depend implicitly on fixed SMEFT parameters used in the fit.

- **might be misleading**. The same applies to SM parameters.
- **Physics that isn't really there**!

SMEFT parameter fits $c^* \equiv c^*(\theta)$

Bounds on SMEFT parameters can depend implicitly on the fixed PDF set used in the fit.

• In particular, if we fit PDFs assuming all SMEFT interactions are zero, but then use those PDFs in a fit of SMEFT interactions, our resulting bounds

• In the case of BSM models, we could even **miss New Physics**, or **see New**

Key question for remainder of talk:

To what extent do bounds on SMEFT parameters change if they are fitted simultaneously with PDF parameters? Is a consistent treatment important?

Simultaneous SM fits

- This is not a new problem! It's been known for a while that simultaneous fits of SM parameters alongside PDFs can be **important** in many cases. In particular, PDF parameters have a **strong correlation** with the strong coupling $\alpha_{S}(m_{Z})$ (see e.g. Forte, Kassabov, 2001.04986).
- method, 1802.03398. In a nutshell:
 - 1. A grid of benchmark $\alpha_S(m_Z)$ points is selected.
 - $\alpha_{\rm S}(m_{\rm Z}).$

3. χ^2 parabolas for each set of correlated replicas are produced, and hence bounds on $\alpha_S(m_Z)$ are found.

• The standard method for simultaneous extraction of $\alpha_S(m_Z)$ and PDFs is the **correlated replica**

2. A **PDF fit** is performed at each benchmark point, with $\alpha_S(m_Z)$ set to the appropriate value. The PDF replicas are correlated appropriately so as to be comparable for different values of

92	
90	
88	(^ב נ
86	α _S (π
84	irred
82	Prefe
80	
78	

Simultaneous SMEFT fits

- between **PDFs** and **Wilson coefficients in the SMEFT**.
- There are **four main works** in this direction:
 - 3. PBSP team + Greljo and Rojo, 2104.02723. Parton 1. Carrazza et al., 1905.05215. Can New Physics distributions in the SMEFT from high-energy Drell-Yan Hide Inside the Proton? tails.

A proof-of-concept study, performing a simultaneous extraction of 4 four-fermion SMEFT operators together with PDFs, using DIS-only data.

2. Liu, Sun, Gao, 2201.06586. Machine learning of log-likelihood functions in global analysis of parton distributions.

A methodological study; simultaneous SMEFT/ PDF extraction is noted as a possible application, and one SMEFT four-fermion operator is fitted using DIS-only data. 58

• More recently, however, it has been shown that there can be a **non-negligible** interplay

- A phenomenological study, demonstrating the impact of a simultaneous SMEFT/PDF fit in the context of the oblique W, Y parameters using current and projected Drell-Yan data.
- 4. CMS, 2111.10431. Measurement and QCD analysis of double-differential inclusive jet cross sections in protonproton collisions at $\sqrt{s} = 13$ TeV.
- A proof-of-concept study in the SMEFT case, involving a simultaneous extraction of PDFs, $\alpha_{\rm S}(m_{\rm Z})$, the top pole mass and one SMEFT Wilson coefficient.

Simultaneous SMEFT fits

- between **PDFs** and **Wilson coefficients in the SMEFT**.
- There are **four main works** in this direction:
 - 1. Carrazza et al., 1905.05215. Can New Physics Hide Inside the Proton?

A proof-of-concept study, performing a simultaneous extraction of 4 four-fermion SMEFT operators together with PDFs, using DIS-only data.

2. Liu, Sun, Gao, 2201.06586. Machine learning of log-likelihood functions in global analysis of parton distributions.

A methodological study; simultaneous SMEFT/ PDF extraction is noted as a possible application, and one SMEFT four-fermion operator is fitted using DIS-only data. 59

• More recently, however, it has been shown that there can be a **non-negligible** interplay

- 3. PBSP team + Greljo and Rojo, 2104.02723. Parton distributions in the SMEFT from high-energy Drell-Yan tails.
 - A phenomenological study, demonstrating the impact of a simultaneous SMEFT/PDF fit in the context of the oblique W, Y parameters using current and projected Drell-Yan data.
- 4. CMS, 2111.10431. Measurement and QCD analysis of double-differential inclusive jet cross sections in protonproton collisions at $\sqrt{s} = 13$ TeV.
 - A proof-of-concept study in the SMEFT case, involving a simultaneous extraction of PDFs, $\alpha_{\rm S}(m_{\rm Z})$, the top pole mass and one SMEFT Wilson coefficient.

Parton distributions in the SMEFT from highenergy Drell-Yan tails

- In particular, in the paper 2104.02723 from the PBSP team (+ Greljo, Rojo), we find that in the context of the **oblique**
 - W, Y parameters, a simultaneous fit of PDFs and the SMEFT parameters using current data has a small impact on the bounds.
- The methodology used is similar to the 'scan' methodology described for the $\alpha_{\rm S}(m_{\rm Z})$ fit, but replicas are not correlated, we simply take the χ^2 of a PDF fit at each **benchmark point** in Wilson coefficient space to **construct bounds**.

Parton distributions in the SMEFT from highenergy Drell-Yan tails

- On the other hand, when we use projected HL-LHC data, the impact of a simultaneous fit versus a fixed PDF fit becomes enormous!
- Without a simultaneous fit, we find that the size of the bounds is significantly underestimated - this could lead to claims of discovering New Physics when it isn't necessarily there.

4. - Conclusions

Conclusions

 The Standard Model of particle physics has proven robust to all theory.

obtained from **global fits to data**.

SMEFT interaction strengths can result in **misleading bounds**.

challenges so far, but remains incomplete. We can search for New Physics is an organised way using the Standard Model effective field

• One of the key ingredients of collider predictions, namely **PDFs**, must be

Assuming that there is no interplay between PDF fitting and fits of the

Thanks for listening! Questions?