Part IA: Physical Natural Sciences Preparatory Mathematics Examples Sheet

Please send all comments and corrections to jmm232@cam.ac.uk.

Starred questions, denoted (∗*), (*∗∗*), are harder; they should not be completed at the expense of the rest of the sheet.*

Topic: exponential functions

- 1. Find the derivatives of the following functions:
	- (a) e^x , (b) $xe^{3x} - 2$, (c) e^{x^2+3} , (d) $\frac{e^{x^2}}{2}$ $\frac{e^x}{x^2+1}$, (e) 2^x , (f) x^{x^3} .
- 2. Sketch the graphs of the following functions:

(a)
$$
e^x
$$
, (b) e^{2x} , (c) e^{-x} , (d) xe^{-x} , (e) $\frac{e^{-x}}{x}$, (f) e^{-x^2}

3. Show that the x -coordinates of the points of intersection between the normal to the graph of $y=e^x$ at $x=1$ and the graph of $y = e^{-x}$ satisfy:

$$
x = e^2 + 1 - e^{1-x}.
$$

How many solutions do you expect to this equation? Using a numerical method of your choice, show that the unique positive solution to this equation is $x \approx 8.39$.

4. Find the indefinite integrals of the following functions:

(a)
$$
e^x
$$
, (b) $3e^{7x} - 4$, (c) 2^x , (d) $3xe^{x^2}$, (e) $\frac{e^{-1/x}}{x^2}$, (f) xe^x .

5. For non-negative integers n, we define the integral I_n to be:

$$
I_n := \int\limits_0^\infty x^n e^{-x} \, dx.
$$

Using integration by parts, show that $I_n = nI_{n-1}$. Hence or otherwise, show that $I_n = n!$.

(∗) Hence, suggest a possible definition of x!for x a *real* number. (∗∗) Using your suggested definition, determine the value of $\frac{1}{2}$!. [Hint: look up the Gaussian integral.]

6. Using any method you know, solve the differential equation:

$$
\frac{dy}{dx} = \alpha y + \beta, \qquad y(0) = y_0,
$$

where α , β are constants. What happens when $\alpha = 0$? What happens when $y_0 = -\beta/\alpha$? Taking $\alpha < 0$ and $\beta > 0$, sketch some solution curves for different values of y_0 , on the same set of axes.

7. (*) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function satisfying:

$$
f(x)f(y) = f(x + y)
$$

for all $x, y \in \mathbb{R}$. Show that $f(x) = f(1)^x$. [Hint: take logarithms, then differentiate with respect to x , keeping y constant.] Hence, we have shown that the property $f(x) f(y) = f(x + y)$ uniquely characterises exponential functions.

(**) What if we *only* assume that f is continuous, instead of differentiable - must we have $f(x) = f(1)^x$?

.