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Symmetries and quantum mechanics
Abstract

We discuss the implementation of symmetries in quantum mechanics via unitary projective representations on Hilbert spaces.
We discuss the transition between projective and non-projective representations via Bargmann's Theorem, and end by giving
applications in quantum field theory.

1: Symmetries and Wigner's theorem
Our key goal in the Symmetries, Fields and Particles course is to implement symmetries in the quantum theory (and see the nice
things that we get when we do); hence let's quickly recap how quantum mechanics works:

Summary ofHilbert space quantummechanics

A quantum systemQ comprises (i) a set of physical statesS in which it can reside, and (ii) a set of observablesOwhich
we can measure the system for. These qualities are realised in mathematics as follows:

• Postulate I: The quantum systemQ has an associated Hilbert spaceH.

• Postulate II: Given a non-zero vectorψ ∈ H, we define the ray containingψ to be the set:

[ψ] = {λψ : λ ∈ C} .

The set of all rays, called the projective Hilbert space P (H), partitionsH\{0}. The set of physical states S is in
bijection with some subsetP ⊆ P (H), called the set of physical rays. We usually setP = P (H).1

• Postulate III: The set of observablesO is in bijection with some subalgebraA ⊆ H(H) of the algebra of Hermi-
tian operators on the Hilbert space.

• Postulate IV: (The Born rule) If the systemQ is in the physical state corresponding to the ray [ψ] ∈ P , on a
measurement of the observable corresponding to the Hermitian operatorA ∈ A, we see the eigenvaluea∗ ofA
with probability:

Prob(see a∗) = |([ψ], [ψa∗ ])|2,

whereψa∗ is the projection ofψ onto the eigenspace ofAwith eigenvalue a∗, and the bracket (·, ·) : P (H) ×
P (H)→ C is called the ray product, defined by:

([ψ], [φ]) =
(ψ, φ)√

(ψ,ψ)(φ, φ)
.

After the measurement, the system is in the physical state corresponding to the ray [ψa∗ ].

• Postulate V: Suppose we have two quantum systems, described respectively by the Hilbert spacesH1 andH2.
Then the joint system corresponds to the tensor product Hilbert spaceH1 ⊗H2.

• Postulate VI: Let t be a time coordinate for the quantum system in some frame of reference, and let |ψ(t)〉 be
the state of the system at that time. There exists a distinguished observableH , called the Hamiltonian, which
describes the evolution of the state via the Schrödinger equation:

i
d |ψ(t)〉
dt

= H |ψ(t)〉 .
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We should now decide how symmetries should be implemented in the quantum theory. Physically, a natural way to think
about a ‘symmetry’ is: a reversible transformation of the physical state of a system that leaves all experimental observations the same.
In quantum mechanics, this statement has the following translation into mathematics:

• A transformation of the physical state of a quantum systemQwith corresponding Hilbert spaceH is some map

S : P → P,

whereP is the subset of physical rays in P (H). The requirement that a symmetry is a reversible map implies that S
should be invertible, and hence a bijection.

• If we scan through the axioms of quantum mechanics, summarised on the previous page, we see that the only ac-
tual prediction of the quantum theory is the Born rule, which tells us the probability distribution for the outcome of
any measurement. Therefore, to ensure that experimental observations remain the same under a symmetry transfor-
mation, all we have to do is ensure that this probability distribution remains unaffected - we see that this is indeed
fulfilled if we ask a symmetryS to obey:

(S[ψ], S[φ]) = ([ψ], [φ]),

i.e. we ask any symmetry to preserve the ray product.

Hence, a reasonable definition of a symmetry in quantum mechanics might be the following (this definition was introduced
by Eugene Wigner in 1931):

Definition: LetQ be a quantum system with associated Hilbert spaceH. LetP be the set of physical rays in the projec-
tive Hilbert spaceP (H). A symmetry (in the sense of Wigner) is a bijective map of the physical raysS : P → P which
preserves the ray product, (S[ψ], S[φ]) = ([ψ], [φ]).

This is all well and good, but projective Hilbert space P (H) is a pretty nasty place to have to do calculations - it's not even
a vector space! We would much rather exploit the vector space structure ofH to do calculations. Therefore, we would like
a way of ‘projecting down symmetries’ from being transformations of projective Hilbert space to being operators on Hilbert
space.

A natural way to do this is the following. At the level of projective Hilbert space, a symmetry maps a ray [ψ] ∈ P to a ray
S[ψ] ∈ P . If we were working in Hilbert spaceHhowever, we'd have to first pick a representative of this ray before we applied
the transformation. Suppose we pick the representativeφ ∈ [ψ]. After the transformation, this representative must be sent
to some representative of the transformed ray,S[ψ]. Hence our transformed representativeφ′ should obeyφ′ ∈ S[ψ].

Hence our desired Hilbert space operator U : H → H should be such that for all φ ∈ [ψ], we have Uφ ∈ S[ψ]. This
is precisely the notion we want of ‘projecting down’ the symmetry transformation to an operator on Hilbert space:

Definition: LetS : P → P be a symmetry transformation on the physical rays of a projective Hilbert spaceP (H). We
say that an operatorU : H → H on Hilbert space is compatible withS if for all rays [ψ] ∈ P , we have that

φ ∈ [ψ] implies Uφ ∈ S[ψ].

1The caseP ( P (H) implies having some rays in projective Hilbert space which do not correspond to physical states. This can occur if certain symme-
tries are present; for example, in a Hilbert space involving both bosonic and fermionic states, superpositions of bosons and fermions are forbidden physically
but still exist in the projective Hilbert space. We say that a superselection rule is in force, and that the bosonic and fermionic states live in different superselection
sectors of the Hilbert space. We ignore such subtleties in this course.

2



J. M. Moore, 2022

Fortunately, there are always operators compatible with symmetry transformations, and they take a very specific form:

Wigner's Theorem: Suppose that the set of physical rays of a quantum system with Hilbert spaceH is given by the
whole projective Hilbert spaceP = P (H). Then for every symmetryS : P → P , there exists a compatible operator
U : H → H such thatU is either:

(i) linear and unitary. Recall thatU is linear ifU(λψ + ηφ) = λUψ + η Uφ for allλ, η ∈ C andψ, φ ∈ H, andU
is unitary if (Uψ,Uφ) = (ψ, φ) for allψ, φ ∈ H.

(ii) anti-linear and anti-unitary. Recall thatU is anti-linear ifU(λψ + ηφ) = λ∗ Uψ + η∗ Uφ for all λ, η ∈ C and
ψ, φ ∈ H, andU is anti-unitary if (Uψ,Uφ) = (ψ, φ)∗ for allψ, φ ∈ H.

If the Hilbert spaceH is one-dimensional, then there exists a compatible linear, unitaryU and a compatible anti-linear,
anti-unitaryU ′.

*Proof:* Non-examinable.

2: Projective representations and Bargmann's theorem
We are now in a good position to construct a quantum theory which has symmetry groupG. By Wigner's theorem, we now
know that to implement the groupG in the quantum theory every symmetryg ∈ G should be represented by either a linear,
unitary or anti-linear, anti-unitary operatorU(g) : H → H. If we writeU(H) for the set of operators on the Hilbert space
H that are either linear, unitary or anti-linear, anti-unitary, we see that we must choose an appropriate map:

U : G→ U(H).

However, our choice of U shouldn't be arbitrary. Instead, we should choose U such that we can perform composition of
symmetries in the groupG or in the spaceU(H). This implies that for all statesψ ∈ H, we must have:

U(S1)U(S2)ψ = c(S1, S2, ψ)U(S1S2)ψ,

for some complex number c(S1, S2, ψ) 6= 0, which appears since physical states are rays in Hilbert space. We first notice
that this constant must be a phase, which we can prove as follows:

Theorem: The above constant c(S1, S2, ψ)must be a phase.

Proof: Note that for both unitary and anti-unitary U we have (Uψ,Uψ) = (ψ,ψ), since in the anti-unitary case we
have (Uψ,Uψ) = (ψ,ψ)∗ = (ψ,ψ) by conjugate symmetry of the inner product. Hence we have for allψ ∈ H:

(ψ,ψ) = (U(S1)U(S2)ψ,U(S1)U(S2)ψ) (U(S1),U(S2) are (anti-)unitary)

= (c(S1, S2, ψ)U(S1S2)ψ, c(S1, S2, ψ)U(S1S2)ψ) (definition of c(S1, S2, ψ))

= |c(S1, S2, ψ)|2(U(S1S2)ψ,U(S1S2)ψ) (bilinearity)

= |c(S1, S2, ψ)|2(ψ,ψ) (U(S1S2) is (anti-)unitary).

It follows that |c(S1, S2, ψ)|2 = 1 as required.

Thus, let us write c(S1, S2, ψ) = eiγ(S1,S2,ψ).
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The phase γ(S1, S2, ψ) could in principle depend on the symmetries we are using and the vectorψ we are acting on - how-
ever, we can simplify things in the case where the set of physical states is the whole projective Hilbert space:2

Theorem: IfP = P (H), the phase γ(S1, S2, ψ) is independent of the stateψ.

Proof: By unitarity of antiunitarity, for any pair of vectorsφ, ψ ∈ Hwe have:

χ((φ, ψ)) = (U(S1)U(S2)φ,U(S1)U(S2)ψ) = (eiγ(S1,S2,φ)U(S1S2)φ, e
iγ(S1,S2,ψ)U(S1S2)ψ)

= ei(γ(S1,S2,ψ)−γ(S1,S2,φ))χ((φ, ψ)).

whereχ(z) = z orχ(z) = z∗ depending on the unitary or antiunitary nature of the operators (note that ifU(S1S2)
is unitary or antiunitary, thenU(S1)U(S2)must be unitary or anitunitary respectively).

It follows that whenever (φ, ψ) 6= 0, we must have ei(γ(S1,S2,ψ)−γ(S1,S2,φ)) = 1. Hence γ(S1, S2, ψ) ≡
γ(S1, S2, φ) (mod 2π)wheneverψ, φ are non-orthogonal, and hence γ can be chosen independent of the state.

In the case that φ, ψ are orthogonal, consider ψ + φ ∈ H (if P 6= P (H), this vector may not correspond to a
physical state, hence the assumption in the theorem). Then:

eiγ(S1,S2,ψ+φ)U(S1S2)ψ + eiγ(S1,S2,ψ+φ)U(S1S2)φ = eiγ(S1,S2,ψ+φ)U(S1S2)(ψ + φ)

= U(S1)U(S2)(ψ + φ)

= U(S1)U(S2)ψ + U(S1)U(S2)φ

= eiγ(S1,S2,ψ)U(S1S2)ψ + eiγ(S1,S2,φ)U(S1S2)φ,

by linearity or antilinearity of U(S1), U(S2), U(S1S2). Now, unitary operators and antiunitary operators both pre-
serve inner products (up to complex conjugation in the latter case), so in particular preserve norms and preserve or-
thogonality. This ifφ, ψ are orthogonal, we must haveU(S1S2)φ,U(S1S2)ψ orthogonal too. Comparing coefficients
in the above then, we have:

eiγ(S1,S2,ψ+φ) = eiγ(S1,S2,ψ) = eiγ(S1,S2,φ),

so that γ(S1, S2, ψ + φ) = γ(S1, S2, ψ) = γ(S1, S2, φ), modulo 2π. It follows that we can choose γ(S1, S2, ψ)
independent ofψ in all cases.

It follows that our ‘symmetry implementation map’U : G→ U(H)must obey the general property:

U(S1)U(S2) = eiγ(S1,S2)U(S1S2).

This property is a slight generalisation of what it means to be a representation; we callU a projective representation:

Definition: A mapU : G → GL(V), whereV is a complex vector space, is called a projective representation of the group
G if it obeys the condition:

U(g)U(h) = eiγ(g,h)U(gh)

for all g, h ∈ G. The phase γ(g, h) is called a cocyle.

2In the case whereP ( P (H), then it is possible to show that the Hilbert space breaks up into a direct sum of spaces, called superselection sectors; we
can then show that γ(S1, S2, ψ) depends only onS1,S2 and the superselection sector to whichψ belongs.
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The above discussion has led us to conclude that classifying the ways that a groupG can be implemented in a quantum the-
ory is the same task as classifying (unitary and anti-unitary) projective representations of the groupG.

This doesn't seem very useful, because throughout the course we only discuss representations rather than projective representa-
tions. However, there is an important theorem that tells us how we can ‘deprojectivise’ (i.e. pass from a projective representa-
tion to an ordinary representation) projective representations of Lie groups; this theorem is called Bargmann's theorem. First,
we must define some new mathematical terms:

Definition: Let M and C be topological spaces. We say that C is a covering space for M if there exists a continuous,
surjective map p : C → M , such that for all open setsU ⊆ M , the preimage p−1(U) is the disjoint union of open
sets inC , each of which is homeomorphic toU via p. We call p the covering map for the covering space.

A universal covering space forM is a covering spaceC which is simply-connected. It can be shown that universal covering
spaces are unique up to homeomorphism.

The universal covering group of a Lie groupG is the universal covering space G̃ ofG viewed as a topological space. It can
be shown that G̃ is also a Lie group.

With these terms, we can make precise the sense in which we wish to ‘deprojectivise’ the projective representation:

Definition: Let Û : G→ GL(V) be a projective representation of the groupG on the complex vector spaceV , and let
G̃ be the universal covering group ofG, with covering map p : G̃→ G.

Suppose thatU : G̃→ GL(V) is an ordinary representation of the universal covering group G̃ on the complex vector
spaceV . We say that Û is a lift ofU to the universal covering group if we have:

U = Û ◦ p.

This final condition ensures that we can ‘project back’ to the projective representation using the covering map.

We are now ready to state the theorem:

Bargmann's Theorem: Let Û be a projective, unitary representation of a Lie group G. Then Û can be lifted to an
ordinary, unitary representationU of the universal covering group G̃.

*Proof:* Beyond the scope of the course.

Note that the theorem is about unitary representations, but usually we can just add in the anti-unitary elements of the rep-
resentation as an afterthought (e.g. in representations of the Poincaré group, the representations are generated completely
by unitary elements and a single anti-unitary element related to reversing the flow of time).

This theorem has an exceptionally important application in quantum mechanics: if we wish to implement the symmetry
groupG in quantum mechanics, it is sufficient to classify the ordinary, non-projective unitary (or anti-unitary) representations
of its universal covering group G̃. This is essentially what we shall do in the rest of the course, when we consider implement-
ing rotations SO(3) in quantum mechanics (with universal cover SU(2)) and the Lorentz group SO+(1, 3) in quantum
mechanics (with universal coverSL(2,C)).3

3More generally, the universal covering groups ofSO(p),SO(p, q),SO+(p, q) are called the spin groups Spin(p), Spin(p, q), Spin+(p, q) (so that
Spin(3) ∼= SU(2) and Spin+(1, 3) ∼= SL(2,C)) - the reason for the name will become apparent later in the course, when we see that transitioning to
the universal cover forces us to introduce spin in quantum mechanics.
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3: Applications of symmetry in QFT
There are numerous applications of symmetry in QFT, but here are a few of the most important ones:

• Classifying free particles.The story we have told throughout this handout has a very important consequence when
the groupGwe wish to implement in the quantum theory is the group of spacetime symmetries. Let's suppose that

U : G̃→ U(H)

is an ordinary representation of the universal covering group G̃ of the spacetime symmetry group G, consisting of
unitary and anti-unitary operators on some Hilbert spaceH. An interesting question we might ask is: what is the in-
terpretation of an irreducible representationU ?

Recall that spacetime symmetries correspond to changing observers. In particular, this means thatU(g)ψ should be
interpreted as a ‘rotated version ofψ’ or a ‘translated version ofψ’, etc. In particular, any representationH (since it has
an invariant inner product, asU is unitary) can be decomposed into irreducible representations:

H =
⊕
α

nαHα

where the irreducible representationsHα correspond to ‘states related by changing observers’. On the contrary, we
cannot relateHα andHβ forα 6= β by some change of observers.

Wigner realised that this meant we could consider the irreducible representationsHα to be the ‘Hilbert spaces of free
particles’. This is because each of theHα has different transformation properties under the symmetry group's univer-
sal cover G̃ (otherwise they would be the same as irreducible representations), and hence can be distinguished from
one another physically, but states withinHα should be considered as ‘viewing a free particle state from different ref-
erence frames’. The reason we consider these particles ‘free’ is because the symmetry group G of spacetime usually
include time translations, so we have to assume that the particle is doing nothing - it looks the same at any time.

In the case of the Poincaré group, which is the symmetry group of Minkowski spacetime, we find that the irreducible
unitary representations are labelled by two numbers: an arbitrary real number m ∈ R, which we interpret as the
mass of the particle, and a non-negative integer s, which we interpret as the spin (or helicity in some cases - see later
on) of the particle. Hence the fundamental properties of mass and spin pop out of the theory magically! We will see
this later in the course when we study irreducible representations of the Poincaré group (this classification is called
the Wigner classification).

The key point to take away from this intuition is:

Definition: An irreducible representation of the universal covering group G̃ of the spacetime symmetry group G is
called a free particle (in the sense of Wigner).

We can use this definition to construct fully-fledged interacting theories:

• Construction of quantum fields. States with more than one free particle are to be found in the tensor product spaces
Hα1

⊗ ...⊗Hαn
. From these spaces, we can form a new Hilbert space called Fock space, given by:

F = C⊕

(⊕
α

Hα

)
⊕ ...⊕

( ⊕
α1,...,αn

Hα1 ⊗ ...⊗Hαn

)
⊕ ...

A Fock space is supposed to capture the notion that we could have no particles in our system, or we could have one
particle in our system, or we could haven particles in our system, etc.
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We can move between thenparticle space and then+1particle space using creation and annihilation operators. Let's
focus on the case that there is a single irreducible representation of our spacetime symmetry group, call itH, and
suppose that this space is spanned by the basis statesH = {|p〉}where p is some label. Then Fock space takes the
form:

F = C⊕H⊕ (H⊗H)⊕ · · · .

Writing then-fold tensor product ofH asHn, we define the creation and annihilation operators via:4

a†p̃ : H
n → Hn+1, a†p̃ |p1, ..., pn〉 = |p1, ..., pn, p̃〉 ,

with the appropriate extension by linearity, and

ap̃ : Hn+1 → Hn, ap̃ |p1, ..., pn〉 =

0 if pi 6= p̃ for any i;

|p1, ..., pi−1, pi+1...pn〉 if pi = p̃,

again with the appropriate extension by linearity.

It is possible to show that any operator on Fock space can be written in terms of creation and annihilation operators.
In particular, some Hamiltonian for the systemH (which could include interactions where particles are created or de-
stroyed) must be expressible in terms of creation and annihilation operators.

It turns out that under the further assumption that such a H is a local function (i.e. can be written as an integral of
some operator, representing the Hamiltonian density, over spacetime) that H must be expressed only in terms of
specific linear combinations of creation and annihilation operators, namely quantum fields. However, this becomes
quite technical, and we will not discuss the details in this course - see Weinberg's Quantum Theory of Fields Volume I for
further information.

• Gauge symmetry.As a last application we consider gauge symmetry, but in even vaguer terms than the previous point
(a proper discussion takes us too far off track from this course). If we take the spacetime symmetry groupG to be the
Poincaré group in the above, then one of the possible irreducible representations we find is a spin-1 massless particle.
However, there is a complication in this case when we want to write down an associated quantum field - it turns out
that any quantum field we wish to write down in this case is actually undetermined. The freedom in the description is
called the gauge redundancy of the field.

If we choose to have a spin-1 massless particle in our theory then (which we must, because they exist in Nature!), we
will be working with a gauge theory. Choosing the way that the spin-1 massless particle self-interacts determines the
gauge group of the theory, which should be selected to correspond to Nature.

So symmetry is very important - it determines a huge amount about the structure of a quantum theory! These points should
motivate the more detailed exposition we will cover later in the course.

4Actually, slightly more care is necessary here, because we wish to identify the states |p1, p2, ..., pn〉 and |p2, p1, ..., pn〉 for example. This requires a
discussion of particle statistics, which can lead to phases being necessary in the definitions of the creation and annihilation operators. We know we've chosen
the right or the wrong phase when we try to write down associated quantum fields and things go wrong - this is the famous spin statistics theorem, but it is
not part of the main narrative of this course. The definitions we have written down for the creation and annihilation operators only work in the bosonic case;
a more detailed treatment is given in Weinberg's Quantum Theory of Fields Volume I.
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