
Part IB: Electromagnetism
Solving Electrostatics vs Magnetostatics

Please send all comments and corrections to jmm232@cam.ac.uk.

Electrostatics
The electric field E : R3 → R3 produced by a static charge distri-
bution ρ : R3 → R is given by the equations of electrostatics:

Equations of electrostatics:

∇ · E = ρ/ε0 (Gauss’ law)

∇× E = 0

We can recast the first equation in integral form by integrating over
an arbitrary volumeV and applying the divergence theorem:∫

∂V

E · dS = Q/ε0,

where∂V is the boundary ofV andQ is the total charge contained
inV .

Highly symmetric solutions. When the charge distribution ρ pos-
sesses a lot of symmetry, one can usually argue that the functional
form of the electric field must reduce to a simple form (using the
fact that the electric field transforms as a vector under translations,
rotations and reflections). In this case, we can use the differential or
integral forms of Gauss’ law from above to obtain the electric field
easily.

General solution. If the charge distributionρ is not very symmetric,
we can still solve the equations. To obtain a general solution:

(1) Note∇× E = 0 implies that E = −∇Φ for some Φ.

(2) Substituting E = −∇Φ into Gauss’ law, we obtain∇2Φ =
−ρ/ε0. This is Poisson's equation.

(3) Using the free-space Green's function solution to Poisson's
equation from Part IB Methods, we see that:

Φ(x) =
1

4πε0

∫
V

ρ(x′)
|x− x′|

d3x′.

Taking the gradient of this formula, we obtain the electric field.

Magnetostatics
The magnetic field B : R3 → R3 produced by a static current dis-
tribution J : R3 → R3 is given by the equations of magnetostatics:

Equations of magnetostatics:

∇ · B = 0

∇× B = µ0J (Ampère's law)

We can recast the second equation in integral form by integrating
over an arbitrary surfaceS and applying Stoke's theorem:∮

∂S

B · dx = µ0I

where ∂S is the boundary of the surface S, and I is the current
passing through the surfaceS.

Highly symmetric solutions. When the current distribution J pos-
sesses a lot of symmetry, one can usually argue that the functional
form of the magnetic field must reduce to a simple form (using
the fact that the magnetic field transforms as a pseudovector under
translations, rotations and reflections). In this case, we can use the
differential or integral forms of Ampère's law from above to obtain
the magnetic field easily.

General solution. If the current distribution J is not very symmetric,
we can still solve the equations. To obtain a general solution:

(1) Note∇ · B = 0 implies that B = ∇× A for some A.

(2) Substituting B = ∇ × A into Ampère's law, and expanding
using a standard identity from vector calculus, we obtain:

∇2A−∇(∇ · A) = −µ0J. (∗)

(3) Using the gauge freedom A 7→ A′ = A + ∇χ, we can WLOG
choose A such that∇ · A = 0. Using the Green's function, we
have:

A(x) =
µ0

4π

∫
V

J(x)

|x− x′|
d3x′.

Taking the curl of this formula, we obtain the magnetic field.


